1	fruitless tunes functional flexibility of courtship circuitry during development
2	
3	Jie Chen ¹ , Sihui Jin ¹ , Jie Cao ¹ , Qionglin Peng ¹ , Yufeng Pan ^{1,2,*}
4	
5	
6	¹ The Key Laboratory of Developmental Genes and Human Disease, School of Life
7	Science and Technology, Southeast University, Nanjing, 210096, China.
8	² Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019,
9	China.
10	
11	*Correspondence to: pany@seu.edu.cn (Y. P.)
12	
13	

14 ABSTRACT

15•	Drosophila male courtship is controlled by the male-specific products of the fruitless
16	(fru^M) gene and its expressing neuronal circuitry. fru^M is considered a master gene that
17	controls all aspects of male courtship. By temporally and spatially manipulating fru^M
18	expression, we found that fru^M is required during a critical developmental period for
19	innate courtship towards females, and its function during adulthood is relatively
20	trivial. By altering or eliminating fru^M expression, we generated males that are
21	innately heterosexual, homosexual, bisexual, or without innate courtship but could
22	acquire such behavior in an experience-dependent manner. These findings show that
23	fru^M is not absolutely necessary for courtship but is critical during development to
24	build a sex circuitry with reduced flexibility and enhanced efficiency and provide a
25	new view about how fru^M tunes functional flexibility of a sex circuitry.
26•	

27• Keywords:

28• Drosophila; courtship; innate behavior; fruitless; circuit flexibility; sexual orientation29

30 Introduction

32	Drosophila male courtship is one of the best understood innate behaviors in terms of
33	genetic and neuronal mechanisms (Dickson, 2008; Yamamoto and Koganezawa,
34	2013). It has been well established that the <i>fruitless (fru)</i> gene and its expressing
35	neurons control most aspects of such innate behavior (Ito et al., 1996; Manoli et al.,
36	2005; Ryner et al., 1996; Stockinger et al., 2005). The male-specific products of the
37	P1 promoter of the <i>fru</i> gene (<i>fru^M</i>) are expressed in ~2000 neurons, which are inter-
38	connected to form a sex circuitry from sensory neurons to motor neurons (Cachero et
39	al., 2010; Lee et al., 2000; Manoli et al., 2005; Stockinger et al., 2005; Usui-Aoki et
40	al., 2000; Yu et al., 2010). fru^M function is necessary for the innate courtship behavior
41	and sufficient for at least some aspects of courtship (Baker et al., 2001; Demir and
42	Dickson, 2005; Manoli et al., 2005). Thus, the study of fru^M function in controlling
43	male courtship serves as an ideal model to understand how innate complex behaviors
44	are built into the nervous system by regulatory genes (Baker et al., 2001).
45	Although fru^M serves as a master gene controlling <i>Drosophila</i> male courtship, we
46	recently found that males without fru^M function, although do not court if raised in
47	isolation, were able to acquire at least some courtship behaviors if raised in groups
48	(Pan and Baker, 2014). Such <i>fru^M</i> -independent but experience-dependent courtship
49	acquisition requires another gene in the sex determination pathway, the doublesex
50	(dsx) gene (Pan and Baker, 2014). dsx encodes male- and female-specific DSX

51	proteins (DSX ^M and DSX ^F , respectively) (Burtis and Baker, 1989), and DSX ^M is
52	expressed in ~700 CNS neurons, the majority of which also express fru^M (Rideout et
53	al., 2010; Robinett et al., 2010). It has been found that the fru^M and dsx^M co-
54	expressing neurons are required for courtship in the absence of fru^M function (Pan and
55	Baker, 2014). Thus fru^M -expressing neurons, especially those co-expressing dsx^M ,
56	control the expression of courtship behaviors even in the absence of FRU ^M function.
57	Indeed, although the gross neuroanatomical features of the <i>fru^M</i> -expressing circuitry
58	are largely unaffected by the loss of fru^M , detailed analysis revealed morphological
59	changes of many <i>fru^M</i> -expressing neurons (Kimura et al., 2005; Kimura et al., 2008;
60	Mellert et al., 2010). Recent studies further reveal that FRU ^M specifies neuronal
61	development by recruiting chromatin factors and changing chromatin states, and also
62	by turning on and off the activity of the transcription repressor complex (Ito et al.,
63	2012; Ito et al., 2016; Sato et al., 2019a; Sato et al., 2019b; Sato and Yamamoto,
64	2020).
65	That FRU ^M functions as a transcription factor to specify development and/or
66	physiological roles of certain <i>fru^M</i> -expressing neurons, and perhaps the
67	interconnection of different fru^M -expressing neurons to form a sex circuitry raises
68	important questions regarding when fru^M functions and how it contributes to the sex
69	circuity (e.g., how the sex circuitry functions differently with different levels of
70	FRU ^M), especially in the background that fru^M is not absolutely necessary for male
71	courtship (Pan and Baker, 2014). To at least partially answer these questions, we

72	temporally or spatially knocked down fru^M expression, and compared courtship
73	behavior in these males with that in wild-type males or fru^M null males and revealed
74	crucial roles of fru^M during a narrow developmental window for the innate courtship
75	towards females. We also found that the sex circuitry with different fru^M expression
76	has distinct function such that males could be innately heterosexual, homosexual,
77	bisexual, or without innate courtship but could acquire such behavior in an
78	experience-dependent manner. Thus, fru^M tunes functional flexibility of the sex
79	circuitry instead of switching on its function as conventionally viewed.
80	
81	
82	Results
83	
84	To specifically knock down fru^M expression, we used a microRNA targeting fru^M
85	(UAS-fruMi) and a scrambled version as a control (UAS-fruMiScr) as previously used
86	(Chen et al., 2017). We firstly tested male courtship without food in the behavioral
87	chamber. Knocking down fru^{M} in all the fru^{GAL4} labeled neurons eliminated male
	chamber. Knocking down <i>fru</i> in an the <i>fru</i> habeled heurons eminiated mate
88	courtship towards females (courtship index [CI], which is the percentage of
88 89	
	courtship towards females (courtship index [CI], which is the percentage of
89	courtship towards females (courtship index [CI], which is the percentage of observational time that males displayed courtship, is nearly 0) (Figure 1A), consistent

93	developmental stages. We raised <i>tub-GAL80^{ts}/+; fru^{GAL4}/UAS-fruMi</i> flies at 18°C
94	(permissive for GAL80 ^{ts} that inhibits GAL4 activity) and transferred these flies to
95	fresh food vials every two days. In this way we generated <i>tub-GAL80</i> ^{ts} /+;
96	fru ^{GAL4} /UAS-fruMi flies at 9 different stages from embryos to adults and incubated all
97	flies at 30°C to allow fru^M knock-down for 2 days, then placed all flies back to 18°C
98	until courtship test (Figure 1B). We found that males with fru^M knocked down from
99	stage 5 to 6, matching the pupation phase, rarely courted (CI < 10%) and none
100	successfully mated, while males with fru^M knocked down near this period showed a
101	partial courtship deficit (Figure 1C, D). Knocking down <i>fru^M</i> specifically during
102	adulthood for 2 days did not affect male courtship (CI $> 80\%$) and mating success.
103	These results reveal a critical developmental period where fru^M is required for adult
104	male courtship towards females.
105	As we did not see an obvious courtship deficit in males with fru^M knocked down
106	in adulthood for 2 days, we further tested the role of fru^M in adulthood using different
107	approaches. We set out to express the female-specific <i>transformer</i> (<i>traF</i>) gene (Baker
108	and Ridge, 1980; McKeown et al., 1988) to feminize all <i>fru^{GAL4}</i> labeled neurons, in
109	addition to the fru^M RNAi experiments. We express UAS-traF or UAS-fruMi in all the
110	fru ^{GAL4} labeled neurons specifically during adulthood for 4 days before test (see
111	procedure above each figure) for single-pair male-female, male-male, and male
112	chaining (in groups of 8 males) behaviors. We found that overexpression of $traF$ in all
113	fru ^{GAL4} labeled neurons during adulthood for 4 days did not affect male-female

114	courtship (Figure 1E), but slightly increased male-male (Figure 1F) and male chaining
115	behaviors (Figure 1G). Furthermore, knocking down fru^M in all fru^{GAL4} labeled
116	neurons during adulthood for 4 days did not affect male-female (Figure 1E) or male-
117	male courtship (Figure 1F), but slightly increased male chaining behaviors (Figure
118	1G). Together these results indicate that fru^M function during pupation is crucial for
119	adult courtship towards females, while its function during adulthood is dispensable
120	for female-directed courtship, though it plays a minor role in inhibiting male-male
121	courtship behaviors.
122	To further reveal the role of fru^M in male courtship, we tried to spatially knock
123	down fru^M expression using a simple way: fru^M in brain and fru^M outside brain. We
124	used Otd-Flp expressing FLP specifically in the central brain (Asahina et al., 2014) to
125	divide fru^{GAL4} expression (Figure 2A) into two parts: fru^{M} - and <i>Otd</i> -positive neurons
126	(specifically in brain) in Otd-Flp/UAS-myrGFP; fru ^{GAL4} /tub>GAL80> males (Figure
127	2B), and fru^{M} -positive but <i>Otd</i> -negative neurons (theoretically outside brain, but still
128	with few in brain) in Otd-Flp/UAS-myrGFP; fru ^{GAL4} /tub>stop>GAL80 males (Figure
129	2C). We also checked GFP expression in peripheral nervous system in these males,
130	and found a few GFP-positive cells in antennae and forelegs in Otd-Flp/UAS-
131	<i>myrGFP; fru^{GAL4}/tub>stop>GAL80</i> males, but no expression in <i>Otd-Flp/UAS</i> -
132	<i>myrGFP; fru^{GAL4}/tub>GAL80></i> or wild-type males (Figure 2D-G). Thus, we
133	successfully divided fru^{GAL4} expression into two categories, one with $GAL4$ expressed

134 in fru^+Otd^+ neurons in brain, and the other with *GAL4* expressed in fru^+Otd^- neurons 135 outside brain.

136	We then used the above intersectional strategy to knock down fru^M expression
137	in all <i>fru^{GAL4}</i> neurons or those neurons in or outside brain, and compared male
138	courtship with that in wild-type males and fru^M null males. We tested one-time single-
139	pair male-female and male-male courtship (single-housed before test) as well as male
140	chaining in groups of 8 males over 3 days on food for better comparison of these
141	courtship assays, as courtship by fru^M null males largely depends on food presence
142	(Pan and Baker, 2014). We found that male-male courtship in fru^M knocked down
143	males is higher if tested on food, consistent with a courtship promoting role by food
144	(Grosjean et al., 2011; Pan and Baker, 2014), while courtship in wild-type males on
145	food or without food is not changed in our assays (Figure 3—figure supplement 1).
146	We found that wild-type males performed intensive courtship behavior towards virgin
147	females (CI $>$ 80%) and rarely courted males (CI \sim 0) (Figure 3A). Furthermore, these
148	control males did not show any chaining behavior after grouping from 3 hours to 3
149	days (ChI = 0) (Figure 3B). In striking contrast, fru^M null mutant (fru^{LexA}/fru^{4-40}) males
150	rarely courted either females or males (Figure 3C); however, these males developed
151	intensive chaining behavior after grouping for 1-3 days (Figure 3D). These
152	observations replicated previous findings that there exists a fru^M -independent
153	experience- and dsx^M -dependent courtship pathway (Pan and Baker, 2014) (Figure
154	3E). To compare behavioral differences by fru^M null males and fru^M RNAi knocked

155	down males, we quantified to how much extent the microRNA against fru^M worked.
156	We found that the fru^M mRNA level was reduced to ~40% of that in control males
157	(Figure 3F). Interestingly, while males with fru^M knocked down in all fru^M neurons
158	rarely courted females (CI~5%, Figure 3G), they displayed a high level of male-male
159	courtship behavior (CI $>$ 50%, Figure 3G) and constantly high level of male chaining
160	(Figure 3H), dramatically different from fru^M null males. These results reveal distinct
161	roles of low fru^M (RNAi) and high fru^M (wild-type) in regulating male-male and male-
162	female courtship (Figure 3I). To further dissect the role of fru^M in male courtship, we
163	knocked down fru^M specifically in brain, and found that such males had a reduced
164	level of courtship towards females (CI = $56.61 \pm 5.86\%$), but their sexual orientation
165	was not changed as they courted males in a much lower level (CI = $15.94 \pm 3.26\%$,
166	Figure 3J). Furthermore, males with fru^M knocked down in brain showed low male
167	chaining behavior initially but increasing levels of chaining behavior over 1-3 days
168	$(ChI[3h] = 9.35 \pm 5.40\%, ChI[3d] = 68.82 \pm 5.53\%$, Figure 3K). These results
169	indicate that fru^M function in brain promotes male-female courtship and inhibits
170	acquisition or progression of the experience-dependent chaining behavior (Figure 3L).
171	In contrast, males with fru^M knocked down outside brain showed equally intensive
172	male-female and male-male courtship (CI[male-female] = $85.62 \pm 1.42\%$, CI[male-
173	male] = $82.89 \pm 2.76\%$, Figure 3M), indicating an inhibitory role of <i>fru^M</i> in these
174	neurons for male-male courtship (Figure 3O). These males performed a high level of
175	male chaining behavior initially (ChI[3h] =92.90 \pm 3.08%), but decreased levels of

176	chaining behavior over 1-3 days (ChI[3d] = $20.01 \pm 3.75\%$, Figure 3N), consistent
177	with the above finding that fru^M function in the brain which is intact in these males
178	inhibits acquisition or progression of male chaining behavior (Figure 3L).
179	Taken together, the above results indicate crucial role of fru^M expression level
180	during a critical developmental period for the manifestation of courtship behaviors
181	and reveal functional flexibility of the fru^{M} -expressing sex circuitry (Figure 4).
182	
183	
184	Discussion
185	
186	Previous findings show that fru^M expression commences at the wandering third instar
187	larval stage, peaks at the pupal stage, and thereafter declines but does not disappear
188	after eclosion (Lee et al., 2000), which suggests that fru^M may function mainly during
189	development for adult courtship behavior despite of no direct evidence. Here we
190	temporally knocked down fru^M expression in different developmental stages for 2
191	days and found that males with fru^M knocked down during pupation rarely courted,
192	while males with fru^M knocked down during adulthood courted normally towards
193	females. This is the first direct evidence that fru^M is required during development but
194	not adulthood for courtship behavior. However, we also found a minor role of fru^M
195	during adulthood in suppressing male-male courtship, as males with fru^M knocked
196	down or tra overexpressed during adulthood displayed slightly enhanced male-male

197	courtship or male chaining behaviors. Note that a previous study found that removal
198	of transformer 2 (tra2) specifically during adulthood using a temperature sensitive
199	tra2 allele induced 8 out of 96 females to show male-type courtship behaviors (Belote
200	and Baker, 1987), which suggests that expression of FRU^M and DSX^M (by removal of
201	tra2 function in females) during adulthood is sufficient to masculinize CNS to some
202	extent and induce a small fraction of females to display courtship behaviors. A recent
203	study also found that fru^M expression in the Or47b-expressing olfactory receptor
204	neurons depends on the activity of these neurons during adulthood (Hueston et al.,
205	2016). Based on all these findings, we propose that fru^M expression during pupation is
206	crucial for specifying a sex circuitry that allows innate courtship towards females, and
207	its expression during adulthood may be activity-dependent in at least some neurons
208	and modulates some aspects of courtship (e.g., inhibits male-male courtship). Thus,
209	there are at least two separate mechanisms that fru^M contributes to the sex circuitry,
210	one during a critical developmental period to build the female-directed innate
211	courtship into that circuity, and the other during adulthood to modulate neuronal
212	physiology in an experience-dependent manner.
213	Most importantly, we revealed striking flexibility of the fly sex circuitry by
214	manipulating fru^M expression. We listed four cases with fru^M manipulation here for
215	comparison: (1) males with a sex circuitry having wild-type fru^M function have innate
216	heterosexual courtship, as they court readily towards females, but do not court males
217	no matter how long they meet; (2) males with a sex circuitry having no fru^M function

218	lose the innate courtship ability, but have the potential to acquire courtship towards
219	males, females, and even other species in an experience-dependent manner; (3) males
220	with a sex circuitry having limited fru^M expression (e.g., 40%) have innate
221	homosexual courtship, as they court readily towards other males, but rarely court
222	females; (4) males with a sex circuitry having limited fru^M expression outside brain
223	(but intact fru^M expression in brain) are innately bisexual, as they court equally
224	towards females or males. Although previous studies found that different fru^M alleles
225	(e.g., deletions, inversions or insertions related to fru) showed very different courtship
226	abnormalities (Anand et al., 2001; Villella et al., 1997), it was very hard to link fru^M
227	function to the flexibility of sex circuitry, and often seen as allele-specific or
228	background-dependent phenotypes. Our study using relatively simple genetic
229	manipulations that generate dramatical different courtship behaviors promoted us to
230	speculate a different view about the role of fru^{M} : instead of simply being a master
231	gene that controls all aspects of male courtship, fru^M is not absolutely necessary for
232	courtship, but changes the wiring of the sex circuitry during development such that
233	the sex circuitry may function in very different ways, ranging from innately
234	heterosexual, homosexual, bisexual to largely experience-dependent acquisition of the
235	behavior. Such flexibility of the sex circuitry is tuned by different fru^M expression,
236	such that changes of fru^M regulatory regions during evolution would easily select a
237	suitable functional mode of the sex circuitry.

0	9	Ω
4	О	9

240 Materials and methods

241

242	Fly	Stocks
-----	-----	--------

- 243 Flies were maintained at 22 or 25°C in a 12 h:12 h light:dark cycle. Canton-S flies
- 244 were used as the wild-type strain. Other stocks used in this study include the
- following: *fru^{GAL4}* (Stockinger et al., 2005), *UAS-fruMi* and *UAS-fruMiScr* (Meissner
- et al., 2016), *fru^{LexA}* and *fru⁴⁻⁴⁰* (Pan and Baker, 2014) and *Otd-Flp* (Asahina et al.,
- 247 2014). UAS-traF (BL#4590), tub-GAL80^{ts} (BL#7019), tub>GAL80> (BL#38881)
- and *tub>stop>GAL80* (BL#39213) were from Bloomington Drosophila Stock
- 249 Center.
- 250

251 **Courtship and Chaining Assays**

For the single-pair courtship assay, the tester males and target flies (4-8 days old)

were gently aspirated into round 2-layer chambers (diameter: 1 cm; height: 3 mm per

- layer) and were separated by a plastic transparent barrier that was removed ~30 min
- 255 later to allow courtship test. Courtship index (CI), which is the percentage of
- 256 observation time a fly performs any courtship step, was used to measure courtship to
- 257 female targets or between 2 males. Paired male-male courtship used 2 males of the
- same genotype but focused on the male fly that first initiated courtship (courtship of

050	.1 • • • • • • • • • • • • • • • • • • •	.1 \ .11		• 1	1 1.0	.1 •
.7hu	the initiator to the	othor) All	toctor the	Word Cingle	housed it not	othorwice
200	the initiator to the	ounce i. An		were single	nouseu n not	

260 mentioned. Each test was performed for 10 min.

261	For male chaining assay,	tester males (4-8 days old)) were loaded into large round
-----	--------------------------	-----------------------------	--------------------------------

262 chambers (diameter: 4 cm; height: 3 mm) by cold anesthesia. Tests were performed

263 daily for 4 consecutive days (3 hours after grouping as day 0, then days 1–3).

- 264 Chaining index (ChI), which is the percentage of observation time at least 3 flies
- 265 engaged in courtship together, was used to measure courtship in groups of 8 males.
- 266

267 Immunohistochemistry

- 268 We dissected brains and ventral nerve cords of 5-7 days old males in Schneider's
- 269 insect medium (Thermo Fisher Scientific, Waltham, MA) and fixed in 4%
- 270 paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for 30 min at room
- temperature. After washing four times in PAT (0.5% Triton X-100 and 0.5% bovine
- serum albumin in PBS), tissues were blocked in 3% normal goat serum (NGS) for 60
- 273 min, then incubated in primary antibodies diluted in 3% NGS for ~24 hr at 4°C,
- 274 washed (4 × 15-min) in PAT at room temperature, and incubated in secondary
- antibodies diluted in 3% NGS for ~24 hr at 4°C. Tissues were then washed (4×15 -
- 276 min) in PAT and mounted in Vectorshield (Vector Laboratories, Burlingame, CA) for
- 277 imaging. Primary antibodies used were rabbit anti-GFP (1:1000; A11122, Invitrogen,
- 278 Waltham, MA) and mouse anti-Bruchpilot (1:50; nc82, Developmental Studies
- 279 Hybridoma Bank, Iowa City, IA). Secondary antibodies used were goat anti-mouse

280	IgG conjugated to Alexa 555 (1:500, A28180, Invitrogen) and goat anti-rabbit IgG
281	conjugated to Alexa 488 (1:500, A11008, Invitrogen). Samples were imaged at $10 \times$ or
282	$20 \times$ magnification on a Zeiss 700 confocal microscope and processed with ImageJ.
283	
284	Statistics
285	Experimental flies and genetic controls were tested at the same condition, and data are
286	collected from at least two independent experiments. Statistical analysis is performed
287	using GraphPad Prism and indicated inside each figure legend. Data presented in this
288	study were first verified for normal distribution by D'Agostino-Pearson normality
289	test. If normally distributed, Student's t test is used for pairwise comparisons, and
290	one-way ANOVA is used for comparisons among multiple groups, followed by
291	Tukey's multiple comparisons. If not normally distributed, Mann-Whitney U test is
292	used for pairwise comparisons, and Kruskal-Wallis test is used for comparisons
293	among multiple groups, followed by Dunn's multiple comparisons.
294	
295	
296	Acknowledgements
297	
298	We thank the Bloomington Drosophila Stock Center for fly stocks. This work was
299	supported by grants from National Key R&D Program of China (2019YFA0802400),

- 300 the National Natural Science Foundation of China (31970943 and 31622028), and the
- 301 Jiangsu Innovation and Entrepreneurship Team Program.

302

303

304 **References**

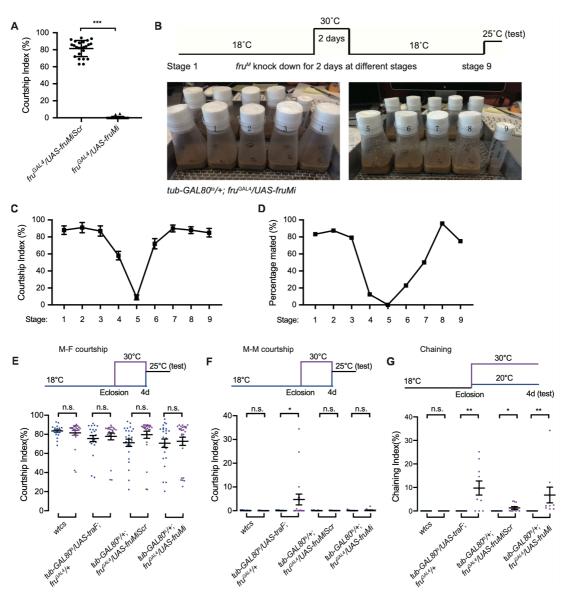
305

Anand, A., Villella, A., Ryner, L.C., Carlo, T., Goodwin, S.F., Song, H.J., Gailey, D.A.,
Morales, A., Hall, J.C., Baker, B.S., Taylor, B.J., 2001. Molecular genetic dissection
of the sex-specific and vital functions of the Drosophila melanogaster sex
determination gene fruitless. Genetics 158, 1569-1595.

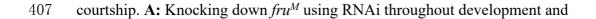
- Asahina, K., Watanabe, K., Duistermars, B.J., Hoopfer, E., Gonzalez, C.R.,
 Eyjolfsdottir, E.A., Perona, P., Anderson, D.J., 2014. Tachykinin-expressing neurons
- 312 control male-specific aggressive arousal in Drosophila. Cell 156, 221-235.
- Baker, B.S., Ridge, K.A., 1980. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics 94, 383-423.
- Baker, B.S., Taylor, B.J., Hall, J.C., 2001. Are Complex Behaviors Specified by
 Dedicated Regulatory Genes? Reasoning from Drosophila. Cell 105, 13-24.
- Belote, J.M., Baker, B.S., 1987. Sexual behavior: its genetic control during
 development and adulthood in Drosophila melanogaster. Proc Natl Acad Sci U S
 A 84, 8026-8030.
- Burtis, K.C., Baker, B.S., 1989. Drosophila doublesex gene controls somatic sexual
 differentiation by producing alternatively spliced mRNAs encoding related sex specific polypeptides. Cell 56, 997-1010.
- Cachero, S., Ostrovsky, A.D., Yu, J.Y., Dickson, B.J., Jefferis, G.S., 2010. Sexual
 dimorphism in the fly brain. Current biology : CB 20, 1589-1601.
- 325 Chen, D., Sitaraman, D., Chen, N., Jin, X., Han, C., Chen, J., Sun, M., Baker, B.S.,
- 326 Nitabach, M.N., Pan, Y., 2017. Genetic and neuronal mechanisms governing the
- 327 sex-specific interaction between sleep and sexual behaviors in Drosophila. Nature328 communications 8, 154.
- Demir, E., Dickson, B.J., 2005. fruitless splicing specifies male courtship behavior in
 Drosophila. Cell 121, 785-794.
- Dickson, B.J., 2008. Wired for sex: the neurobiology of Drosophila matingdecisions. Science 322, 904-909.
- 333 Grosjean, Y., Rytz, R., Farine, J.P., Abuin, L., Cortot, J., Jefferis, G.S., Benton, R., 2011.
- An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478, 236-240.
- Hueston, C.E., Olsen, D., Li, Q., Okuwa, S., Peng, B., Wu, J., Volkan, P.C., 2016.

Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the
Refinement and Maintenance of Fruitless Expression in Olfactory Receptor
Neurons. PLoS Biol 14, e1002443.

- Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., Yamamoto, D., 1996.
- 341 Sexual orientation in Drosophila is altered by the satori mutation in the sex-342 determination gene fruitless that encodes a zinc finger protein with a BTB domain.
- ³⁴³ Proceedings of the National Academy of Sciences 93, 9687-9692.
- Ito, H., Sato, K., Koganezawa, M., Ote, M., Matsumoto, K., Hama, C., Yamamoto,
- D., 2012. Fruitless recruits two antagonistic chromatin factors to establish single neuron sexual dimorphism. Cell 149, 1327-1338.
- Ito, H., Sato, K., Kondo, S., Ueda, R., Yamamoto, D., 2016. Fruitless Represses robo1
- 348 Transcription to Shape Male-Specific Neural Morphology and Behavior in349 Drosophila. Current biology : CB 26, 1532-1542.
- Kimura, K., Ote, M., Tazawa, T., Yamamoto, D., 2005. Fruitless specifies sexually
 dimorphic neural circuitry in the Drosophila brain. Nature 438, 229-233.
- Kimura, K.-i., Hachiya, T., Koganezawa, M., Tazawa, T., Yamamoto, D., 2008.
 Fruitless and Doublesex Coordinate to Generate Male-Specific Neurons that Can
 Initiate Courtship. Neuron 59, 759-769.
- Lee, G., Foss, M., Goodwin, S.F., Carlo, T., Taylor, B.J., Hall, J.C., 2000. Spatial, temporal, and sexually dimorphic expression patterns of thefruitless gene in theDrosophila central nervous system. Journal of Neurobiology 43, 404-426.
- Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., Baker, B.S., 2005. Malespecific fruitless specifies the neural substrates of Drosophila courtship behaviour.
 Nature 436, 395-400.
- McKeown, M., Belote, J.M., Boggs, R.T., 1988. Ectopic expression of the female
 transformer gene product leads to female differentiation of chromosomally male
 drosophila. Cell,53(6), 887–895.
- Meissner, G.W., Luo, S.D., Dias, B.G., Texada, M.J., Baker, B.S., 2016. Sex-specific regulation of Lgr3 in Drosophila neurons. Proc Natl Acad Sci U S A 113, E1256-1265.
- Mellert, D.J., Knapp, J.M., Manoli, D.S., Meissner, G.W., Baker, B.S., 2010. Midline
 crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex
 and the Roundabout receptors. Development 137, 323-332.
- Pan, Y., Baker, B.S., 2014. Genetic identification and separation of innate and
 experience-dependent courtship behaviors in Drosophila. Cell 156, 236-248.
- 372 Rideout, E.J., Dornan, A.J., Neville, M.C., Eadie, S., Goodwin, S.F., 2010. Control of
- 373 sexual differentiation and behavior by the doublesex gene in Drosophila374 melanogaster. Nat Neurosci 13, 458-466.
- Robinett, C.C., Vaughan, A.G., Knapp, J.M., Baker, B.S., 2010. Sex and the single cell. II. There is a time and place for sex. PLoS Biol 8, e1000365.
- 377 Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall,
- 378 J.C., Taylor, B.J., Wasserman, S.A., 1996. Control of male sexual behavior and

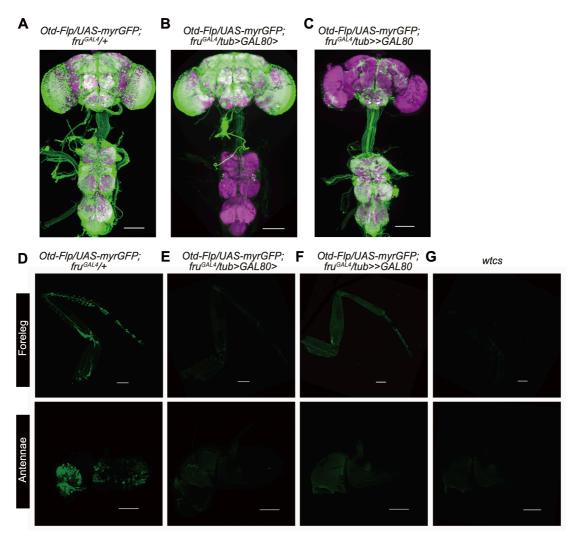

sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079-1089.

- Sato, K., Goto, J., Yamamoto, D., 2019a. Sex Mysteries of the Fly Courtship Master
 Regulator Fruitless. Front Behav Neurosci 13, 245.
- Sato, K., Ito, H., Yokoyama, A., Toba, G., Yamamoto, D., 2019b. Partial proteasomal
 degradation of Lola triggers the male-to-female switch of a dimorphic courtship
 circuit. Nature communications 10, 166.
- Sato, K., Yamamoto, D., 2020. The mode of action of Fruitless: Is it an easy matterto switch the sex? Genes Brain Behav 19, e12606.
- Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L., Dickson, B.J., 2005. Neural
 Circuitry that Governs Drosophila Male Courtship Behavior. Cell 121, 795-807.
- 389 Usui-Aoki, K., Ito, H., Ui-Tei, K., Takahashi, K., Lukacsovich, T., Awano, W., Nakata,
- H., Piao, Z.F., Nilsson, E.E., Tomida, J.-y., Yamamoto, D., 2000. Formation of the
- male-specific muscle in female Drosophila by ectopic fruitless expression. NatureCell Biology 2, 500-506.
- Villella, A., Gailey, D.A., Berwald, B., Ohshima, S., Barnes, P.T., Hall, J.C., 1997.
- Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 147, 1107-1130.
- 396 Yamamoto, D., Koganezawa, M., 2013. Genes and circuits of courtship behaviour397 in Drosophila males. Nature Reviews Neuroscience 14, 681-692.
- Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., Dickson, B.J., 2010. Cellular
 Organization of the Neural Circuit that Drives Drosophila Courtship Behavior.
 Current Biology 20, 1602-1614.
- 401


403 **Figure legends**

404

405


406 **Figure 1.** Distinct roles of fru^M during development and adulthood in regulating male

408 adulthood eliminated male courtship towards virgin females. n = 24 for each. ***p < 100

- 409 0.001, unpaired t-test. **B:** A schematic of genetic strategy to knock down fru^M at
- 410 different developmental stages for 2 days. Stages 1 to 9 refer to specific
- 411 developmental stages from embryos to adults with interval of 2 days. C and D:

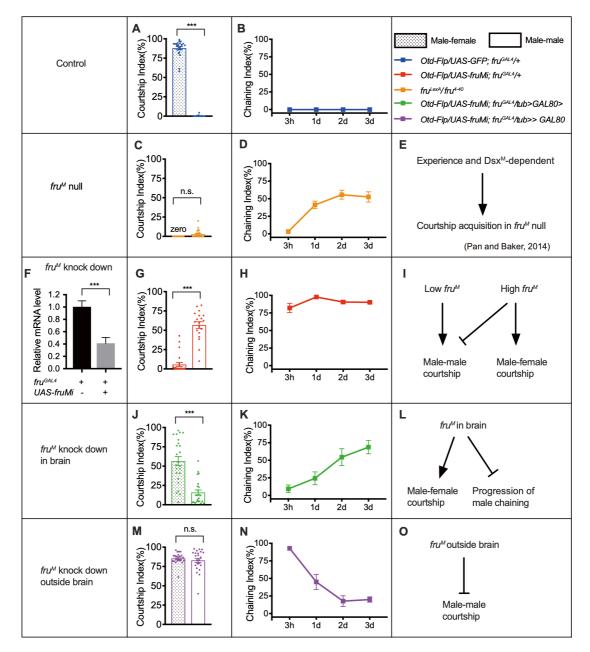
412	Courtship indices of males with fru^M knocked down at specific developmental stages
413	as indicated above towards virgin females. Males with fru^M knocked down at stage 5
414	for 2 days (a period of pupation from stage 5 to 6, see above picture) rarely courted
415	virgin females (C), and none successfully mated (D). Knocking down fru^M at stages
416	near 5 (e.g., stage 4 or 6) also partially impairs courtship and mating success.
417	Knocking down fru^M at stage 9 (adult) has no obvious effect on courtship and mating.
418	$n = 24$ for each. E-G: Knocking down fru^M specifically during adulthood slightly
419	increased male-male courtship behaviors. For male-female courtship (E), $n = 17, 26$,
420	23, 23, 24, 27, 24 and 28 respectively (from left to right), n.s., not significant,
421	unpaired t-test. For single-pair male-male courtship (F), $n = 18$ for each. n.s., not
422	significant, $*p < 0.05$, unpaired t-test. For male chaining among 8 males as a group
423	(G), $n = 8, 8, 8, 10, 8, 9, 8$ and 9 respectively (from left to right). n.s., not significant,
424	* $p < 0.05$, ** $p < 0.01$, Mann-Whitney test. Error bars indicate SEM.

426

427 **Figure 2.** Dividing fru^M expression into two complementary parts. A: Expression

428 pattern of the fru^{M} circuitry revealed by fru^{GAL4} driving UAS-myrGFP (green), co-

```
429 stained with nc82 (magenta). B and C: Genetic strategy to divide fru^{M} neurons (green)
```


```
430 into two parts. Scale bars above, 100\mum. D-G: Expression pattern of fru<sup>GAL4</sup> driving
```

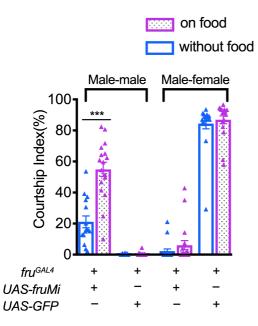
431 UAS-myrGFP (green) in forelegs (scale bars, 100 mm) and antennae (scale bars, 50

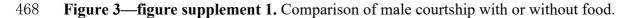
432 mm) in males with indicated genotypes. Representative of 5 samples each.

433

434

436

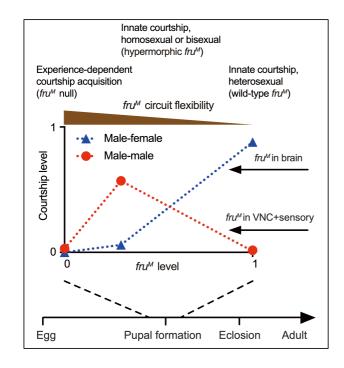

Figure 3. fru^{M} tunes functional flexibility of the fru^{M} circuitry. A and B: Wild-type males courted intensively towards virgin females (A, left bar), but rarely courted males (A, right bar) or displayed chaining behavior in groups of 8 males (B). n = 24, 24, 8 respectively. ***p < 0.001, unpaired t-test. C: fru^{LexA}/fru^{4-40} (fru^{M} null) males rarely courted either females or males. n = 24 for each. n.s., not significant, unpaired t-test. D: fru^{LexA}/fru^{4-40} males did not show chaining behavior after 3-hr grouphousing, but developed intensive chaining behavior after1-3 days. n = 8. E: A


444	summary of courtship acquisition independent of fru^M . F: RNAi against fru^M
445	efficiently decreased but not fully eliminated fru^M expression. $n = 3$. *** $p < 0.001$,
446	Mann-Whitney U test. G: Knocking down fru^M in all fru^{GAL4} neurons generated males
447	that have reversed sexual orientation such that they rarely courted females but
448	intensively courted males. $n = 24$ and 19 respectively. *** $p < 0.001$, unpaired t-test.
449	H : Males with fru^M knocked down in all fru^{GAL4} neurons showed intensive chaining
450	behavior at all time points (from 3 hours to 3 days upon group-housing). $n = 7$. I:
451	Distinct roles of low fru^M (RNAi) and high fru^M (wild-type) in regulating male-male
452	and male-female courtship. J: Males with fru^M knocked down in fru^{GAL4} neurons in
453	the brain had a lower level of courtship towards females, but their sexual orientation
454	
404	was not changed. $n = 24$ and 23 respectively. *** $p < 0.001$, unpaired t-test. K: Males
455	was not changed. $n = 24$ and 23 respectively. *** $p < 0.001$, unpaired t-test. K : Males with <i>fru^M</i> knocked down in <i>fru^{GAL4}</i> neurons in brain showed low male chaining
455	with fru^M knocked down in fru^{GAL4} neurons in brain showed low male chaining
455 456	with fru^M knocked down in fru^{GAL4} neurons in brain showed low male chaining behavior initially but increasing levels of chaining behavior over 1-3 days. $n = 6$. L: A
455 456 457	with fru^M knocked down in fru^{GAL4} neurons in brain showed low male chaining behavior initially but increasing levels of chaining behavior over 1-3 days. $n = 6$. L: A summary of the role of fru^M in brain in promoting male-female courtship and
455 456 457 458	with fru^{M} knocked down in fru^{GAL4} neurons in brain showed low male chaining behavior initially but increasing levels of chaining behavior over 1-3 days. $n = 6$. L: A summary of the role of fru^{M} in brain in promoting male-female courtship and suppressing the experience-dependent acquisition or progression of male chaining
455 456 457 458 459	with fru^{M} knocked down in fru^{GAL4} neurons in brain showed low male chaining behavior initially but increasing levels of chaining behavior over 1-3 days. $n = 6$. L: A summary of the role of fru^{M} in brain in promoting male-female courtship and suppressing the experience-dependent acquisition or progression of male chaining behavior. M : Males with fru^{M} knocked down in fru^{GAL4} neurons outside brain
455 456 457 458 459 460	with fru^{M} knocked down in fru^{GAL4} neurons in brain showed low male chaining behavior initially but increasing levels of chaining behavior over 1-3 days. $n = 6$. L: A summary of the role of fru^{M} in brain in promoting male-female courtship and suppressing the experience-dependent acquisition or progression of male chaining behavior. M: Males with fru^{M} knocked down in fru^{GAL4} neurons outside brain generated bisexual males that have intensive male-female and male-male courtship. n

464 of fru^{M} outside brain in suppressing male-male courtship behavior. Error bars indicate

465 SEM.

466



469 Male-male courtship in fru^{M} knocked down males is higher in the presence of food. n

- 470 = 15, 17, 15, 18, 18, 18, 18 and 18 from left to right respectively. ***p < 0.001,
- 471 unpaired t-test. Error bars indicate SEM.

472

473

Figure 4. A summary of fru^M function in male courtship. Firstly, fru^M is largely 474 required during a specific developmental period for courtship, and plays a minor role 475 during adulthood; secondly, the sex circuitry without fru^M or with different levels of 476 477 fru^{M} has different properties such that males would have experience-dependent courtship acquisition, or innate courtship but with different sexual orientation. Such 478 479 flexibility of the sex circuitry is tuned by different fru^M expression. Red circles and 480 blue triangles represent corresponding *fru^M* levels and courtship levels (red: malemale courtship; blue: male-female courtship). 481 482 483 484