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crosslinking (from 1.1 kcal·mol-1 to 2.7 kcal·mol-1), and driving then the kinetic balance towards 
the inhibition side. 

The proposed covalent inhibition mechanism is consistent with the incorporation of three 
more nucleotides after incorporation of Remdesivir to RNA9 and agrees with a myriad of 
indirect evidences other than the delay inhibitory properties of Remdesivir. For example, 
mutational analysis shows that Ser861 has a crucial role in R-induced inhibition of RdRp.40 
Furthermore, large and systematic efforts to substitute the nitrile group by less problematic 
substituents (the nitrile group appears as a “probably undesired” consequence of the 
Remdesivir synthetic pathway) resulted in molecules with a lower inhibitory profile.47 Finally, 
Pinner reaction has not been described for RdRp, but has been experimentally validated for 
many several nitrile-containing drugs designed to inhibit cysteine or serine proteases.48,49 
Altogether, results strongly suggest that Remdesivir inhibits SARS-CoV-2 by a covalent 
mechanism. 

 

 

Fig. 4 Remdesivir forms a covalent complex with RdRp of SARS-CoV-2. A Free energy profile 
for the attack of Ser861 to the C atom of nitrile group of Remdesivir (see the bidimensional PES 
in Supplementary Fig. 11). B Scheme representing the concerted TS where nucleophilic attack 
of Ser861 occurs at the same time that a water mediated proton transfer to the nitrile group of 
Remdesivir. Distances included in the definition of the Reaction Coordinate (s) are shown.  C 
Active site insight of Reactant state. Distances involved in the reaction are shown as dotted 
lines with its average value in Å.  D Active site insight of the the TS. E Active site insight of the 
covalent complex formed by Remdesivir and RdRp.   
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Mutational analysis of SARS-CoV-2 RNA-pol agrees with the proposed reaction mechanisms. 
Thousands of SARS-CoV-2 viruses have been sequenced, showing that RdRp accumulates a 
non-negligible number of mutations, which lead to viable virus, i.e., to active RdRp. We should 
then check whether some of these mutations invalidate our reaction mechanism. As shown in 
Supplementary Fig. 12, this is not the case, missense variant leading to amino-acid changes are 
typically mild according to BLOSUM80 matrices and are located in loops on the surface of the 
protein (Supplementary Fig. 12 A). Particularly, the active site and the exit tunnel are very well 
conserved during the viral evolution (see Supplementary Fig. 12 B, C). Moreover, virus has not 
explored yet mutational landscape in the region of the Ser861 (see Supplementary Fig. 12 D). 

Remdesivir is not likely to affect human RNA polymerases. Remdesivir enters in human cells 
and is transformed into RTP also by human enzymes. Considering the similarity in the 
mechanism of reaction of SARS-CoV-2 RdRp and human polymerases we could expect 
Remdesivir being incorporated into RNA, which could rise to inhibition of the human enzyme 
with toxic consequences. To check this possibility we explored the extension of the nascent 
RNA along the exit channel to trace close interactions between the nitrile group and serine or 
cysteine residues in the two crystallized human RNA polymerases (RNA polymerase50 and 
human RNA polymerase II51). We did not find any of these residues in the expected 
displacement path of Remdesivir once incorporated into the nascent RNA (see Supplementary 
Fig. 13). In other words, no significant inhibition of the human polymerases is expected. Note 
that this explains the reduced toxicity of Remdesivir in humans.52,53 

Inhibition mechanism can be common to other viruses. Ser861 is highly conserved in other 
CoVs RdRps (see Supplementary Fig. 14), placing a constant position in an alpha helix that 
adopts a highly conserved 3D arrangement (compare SARS-CoV-2 and SARS-CoV 
structures)12,14,39,40,54 and this position is well preserved in those cases for which CoV RdRps 
structure is available. This would suggest that Remdesivir might be effective against many 
other CoV RdRps.  The mechanism of inhibition of other distant RNA-viruses (Marburg virus, 
Ebola, Hepatitis C and many others) might be similar, but needs to be elucidated. It is tempting 
to believe that enzymes evolved to discriminate between DNA (2’deoxyribose) and RNA 
(ribose) might be decorated with a large number of serine, tyrosine or threonine in the exit 
channel, suggesting a general delay inhibitory mechanism like that suggested here. Note that 
this would agree with the delayed inhibition of Ebola RdRp by Remdesivir.55 The lack of 
structural information and the poor sequence similarity between the RdRps precludes to 
confirm this hypothesis. 

 

CONCLUSIONS 

SARS-CoV-2 RdRp is a protein common to other coronaviruses, but showing little homology 
out of the family. As CoVs are just a few thousand years old, the protein has had a limited 
evolutionary period and we could expect low efficiency. However, our calculations show that it 
has a well refined reaction site able to select the entering nucleotide and to catalyze its 
addition to a nascent RNA. The viral enzyme follows a mechanism that is similar to that of 
bacterial or eukaryotic polymerases with the transferred phosphate being stabilized by 2 Mg2+ 
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ions exquisitely coordinated by acidic residues of the catalytic site, while the phosphates of the 
incoming nucleotide being stabilized by a network of basic residues. 

Our simulations very clearly suggest that RTP is not inhibiting the active site by competing with 
ATP at the catalytic site, but that it is incorporated into the nascent RNA in front of a uridine. 
The resulting duplex does not show dramatic structural changes which would hinder 
displacement of the nascent duplex along the exit channel. In fact, analysis of the 
displacement of the RNA-containing Remdesivir along the exit tunnel fail to detect points of 
steric clashes, but show the spontaneous formation of a catalytical arrangement that justifies a 
Pinner reaction (between the nitrile group of Remdesivir and Ser681), leading to the formation 
of a protein-RNA covalent bond. However, we cannot determine whether this inhibition will be 
reversible or not, as inspection of the free energy curve (Fig. 4D) and the behavior of similar 
inhibitors49 for other proteins suggest that it may display slow reversibility.49,56 This potential 
reversibility combined with the kinetic competition between crosslinking and polymerization 
might explain the unusual inhibitory properties of Remdesivir. Results presented here open 
then the possibility to design better inhibitors of CoVs RdRps and to a rethinking on the use of 
covalent inhibitors of pathological proteins. 
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