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9 Abstract

10 We propose a Sparse-Group regularized Cox regression method to analyze large-scale, ultrahigh-
11 dimensional, and multi-response survival data efficiently. Our method has three key components:

12 1. A Sparse-Group penalty that encourages the coefficients to have small and overlapping sup-

13 port; 2. A variable screening procedure that minimizes the frequency of disk memory access

1 when the data does not fit in the RAM; 3. An accelerated proximal gradient method that opti-

15 mizes the regularized partial-likelihood function. To demonstrate the efficacy of our method, we

16 implemented the proposed algorithm for human genetics data and applied it to 16 time-to-event

17 phenotypes from the UK Biobank.

+ 1 Introduction

1w Large scale, ultrahigh-dimensional datasets with numerous time-to-event responses have become in-
20 creasingly prevalent in recent years. The UK Biobank dataset (Sudlow et al.|2015|) contains millions
2 of genetic variants and thousands of survival phenotypes from each of its over 500, 000 participants.
2 Such datasets pose statistical and computational challenges to classical survival models. The sta-
s tistical challenge lies in the high-dimensionality. When the number of predictors is larger than the
2 number of observations, the association between the predictors and the response becomes uniden-
»  tifiable without addition assumptions. The computational challenge lies in the overall size of the
s dataset. Reading the feature matrix of the UK Biobank dataset into R requires more than 4 Terabytes
27 of memory, which is much larger than the RAM size of most computers. While memory mapping
s (Kane et al.|2013)) allows users to access out-of-memory data with ease, it requires lots of disk In-
2 put/Output operations, which is much slower than in-memory operation. This becomes even more
s problematic for iterative optimization algorithms that use the entire feature matrix every iteration.
s Moreover, to date, no approaches are able to handle the scale of the data for multiple responses, i.e.
3 more than one time-to-event outcome, which is of interest when considering time-to-event disease re-
33 sponses having shared genetic effects. Here, we present a multiresponse Cox model formulation with
u a fast sparse-group lasso solution implemented in a publicly available package Multi-snpnet-Cox,
s mrcox for short, available at https://github.com/rivas-lab/multisnpnet-Cox_v1|that operates
3 on top of PLINK2 binary file formats and integrates the C-index algorithm presented in |Li et al.
s (2020).
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s 1.1 Cox Proportional Hazard Model

Cox model (Cox|1972)) provides a flexible mathematical framework that describes the relationship be-
tween the predictors and a time-to-event response. For each individual we observe a triple {O, X, T'}.
X € R? are the features. O € {0,1} is the status indicator. If O = 1, then T is the actual time-
to-event. If O = 0, then we only know that the time-to-event is at least T'. The hazard function
according to the Cox model can be written as

h(t|X) = ho(t) exp(XTB),

where 3 € R? is the coefficients vector that measures the strength of association between X and the
response. This hazard function is equivalent to the cumulative distribution function:

P(T <t|lX)=1-—exp (— /Ot ho(s)eBTde> .

Here hg : Rt — RT is the baseline hazard function. In our applications we are interested in the
association between genetic variants and the response, so the baseline hazard function is a nuisance
variable. Fortunately we can estimate the parameters § without knowing the baseline hazard and
achieve almost the same estimation accuracy as when the baseline hazard is known. This is done by
maximizing the partial likelihood function (Cox!|{1972):

exp(X{ Br)
PL(B|Data) = .
(B|Data) i:£1 Zj:TjZTi exp(XjTﬁ)

» 1.2 Sparse-Group Lasso

w0 The Lasso method (Tibshirani||[1996) makes the assumption that only a small subset of predictors
a  are associated with the response. In other words, it assumes the model has a sparsity structure.
«2  This assumption makes Lasso very effective for high-dimensional data. A sparse solution can be
1 obtained by adding the penalty A||3||1 to the original objective function, for an appropriately chosen
« regularization parameter A > 0 (usually through cross validation).

45

s Sparse-Group Lasso (Simon et al.|[2013)) is a variation of Lasso. It assumes not only that many
« individual elements of 5 are 0, but also that within some predefined groups of variables, the corre-
s sponding parameters are 0 simultaneously. For a group g C {1,2,--- ,d} of variables that we believe
w  the coefficients are 0 together, we add an additional penalty Ag||3]|2-

» 2 Method

s 2.1 Preliminaries

In this section we define the notations and the key model assumptions that we will use in the sub-
sequent sections. For an integer n, define [n] = {1,2,--- ,n} and define ;. = max{z, 0} for all z € R.

We analyze K > 1 time-to-event responses on n individuals. For example, the responses could
be time from birth to K different diseases. The data we observed are in the format:

D:{XiaTilﬂ'” 7TiK70i1a"' 707{(}?:1-

»» Here X; € R? are ith individual’s features. Denote the full features matrix X = [X;, Xo, -, X,,]T €
s R4 Fork=1,---,K, OF = 1 implies that T is the true time of the event k for the ith individual,
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s« and Of = 0 implies that the true time of the event k is right-censored at Ti’f. We assume each response
s follows a Cox proportional hazard model:

hi(t]X) = ho i (t) exp(X 7T By). (1)

where hgj : RT — R* is the baseline hazard function of the kth response. Let

n
i=1

ss  be the number of observed event k.

57

s We make the assumption that not only S is sparse for all k € [K], but they also have a small
ss common support. That is {j € [p] : 8] # 0,k € [K]} is a small set relative to p. In human genetics
e applications, the first assumption means that each response is associated with a small set of genetic
e variants, and the second assumption implies that there are significant overlap among the genetic
e variants that are associated with each response. This belief translates to the following regularized
63 partial likelihood objective function:

K d
min S Y g vl | Y (X)) || A (I el ] @
Bi, Bk ng | . :
k=1 :0kF=1 JTF>TF Jj=1
Here the first term is the sum of the K negative log-partial-likelihood, normalized by the number
of observed events. The second term is the regularization. |[|37]1, ||37]]2 are the 1-norm and 2-
norm of the coefficients for the jth variable. That is, if we put all the parameters into a matrix
B = [B1,B2, -+, Br] € R™E then 7 is the jth row of B and f is the kth column. Note that
when « = 0, the objective function decouples for each gy and they can be optimized separately. In
our implementation we solve a slightly more general problem:

K

d
5, D > | Do B Xitlog | Y0 exn(BIX) | | A D wi(I18 1+ ollFl) | ¢
P k=R ok FTE>TE =1

6 Wwhere {wj}?zl are user provided penalty factor for each variables, which may be useful in the
e setting where protein-truncating or protein-altering variants should be prioritized (Rivas et al.|2015|
o DeBoever et al.|[2018). In our implementation, the hyperparameter « is fixed at K, and the
e solution is computed on a pre-defined sequence of A\: A\; > Ay > -+ > Ar. In our implementation,
6s A1 is chosen so that the parameters just become non-zero.

o 2.2 Variable Screening for Lasso Path

o Before explaining how we optimize the objective function , we first describe a variable screening
n  procedure that utilizes the sparsity structure of the solution to significantly reduce the number of
7 variables needed for fitting. The main advantage of variable screening is to decrease the frequency
7 of operations done on the full features matrix X. Our procedure is similar to the strong rule (Tib-
72 shirani et al.[2012)) and the Batch Screening Iterative Lasso (Qian et al.[2019).

75

7 To simplify the notation, for j € [d] denote

K

0 1
95 = 9j(Br,-++, Br) 1= 87612; Z —BF X; +log Z exp(B; X;) | | - (3)
k=1 * i:0F=1 G TF>TF
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7 Here g; € R¥ is the partial derivative of the smooth part of with respect to the coefficients of
s the variable j. For each a > 0,v € RX, define

lv]|ax := sup{uTv cu e RE, [lullr + af|ulls < 1} (4)

7 Here we use the following result to get an optimality condition for the solutions g1, -+, 8x. The
s proofs are given in the appendix.

s Proposition 1. For any A > 0, the gradient at the optimal solution to satisfies:

<\ if the optimal 37 =0 .
195 llax § — . ) , for all j € [d]. (5)
=\ if the optimal 57 # 0
82
8 This result motivates us to first fit a model (solving ) using a small number of variables whose

s gradient has the largest ax-norm, assuming the coefficients for the rest of the variables are all zero.
ss  Then to verify the validity of the assumption we check that ||g;|la+ < A for variables assumed to
s have zero coefficients. We refer to this step as KKT checking. Note that based on its definition ,
& it’s not clear how we can compute ||[v||o«. Here we give a more explicit characterization.

Proposition 2. Let Si(-;)\) : RX s RE be the element-wise soft-thresholding function:
S1(v; N = sign(vg)(Jug| — N+ for all k € [K]

Then ||v]|ax < A if and only if
110 V)l < oA

88

8 Using the above we can check if ||v]|qax < A quite easily and compute |[v||q« using binary search
w in O(Klog||v]|s) to any fixed precision (since ||v]ax < [|V]lco)-

91

o Now we are ready to state the overall structure of our algorithm. Suppose valid solutions for

3 A1,---,A; have been obtained. Next we do the following steps:

o« 1. (Screening) In the last iteration, we cache the full gradient {g’ ?:1 evaluated at the solution at
o A;. In the fitting step we include two types of variabels:

% e We include the ever-active variables A := {j € [d] : 37 # 0 for any previously obtained 3}.

o o Top M variables with the largest ||g;|lo« that are also not ever-active.
% We denote the set of variables used to fit (2]) as the strong set S C [d].

o 2. (Fitting) In this step, we solve the problem for the next few A\ using only variables in S,
100 assuming 3/ = 0 for all j ¢ S. The optimization algorithm used for fitting step is described in
101 the next section. To speed-up the computation we initilize the variables at the previous valid
102 solution (warm start).

s 3. (KKT Checking) After obtaining the solution from the fitting step. We compute the full
104 gradient. This is the only step we will need the full data matrix X. We check that the KKT
105 condition are satisfied for all variables. We go back to the screening step at the first A value
106 where the KKT condition fails. We also cache the full gradient at the last valid solutions for the
107 screening step.
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s 4. (Early Stopping) We keep a separate validation set to evaluate the current estimated param-

100 eters. We choose the optimal A as the one that gives the highest validation concordance index
110 (C-index) (Harrell et al.[1982] |Li et al.|2020). The optimal A might be different for different
1m responses. Once the validation C-index for response k starts to decrease we stop fitting that re-
112 sponse and freeze the value [ at its last iteration. Once the validation C-index starts to decrease
113 for all K responses. We stop the entire procedure.

msa  These steps are described in algorithm

uws 2.3  Optimization Method

s We use a Nesterov-accelerated (Nesterov|[1983) proximal gradient method (Daubechies et al.[[2004,
s |Beck & Teboulle| [2009)) to optimize the objective function . Proximal gradient algorithm is
us particularly suitable when the objective function is the sum of a smooth function and a simple
1o function. In our case the smooth function is the sum of the negative log-partial-likelihood functions,
120 and the simple function is the regularization term. The algorithm alternates between two steps until
121 convergence criteria is met:

1. A gradient step that tries to minimize the smooth part of the objective:
Bj — ﬂj - tgja
122 where t is the step size that we determine using backtracking line search.

2. A proximal step that tries to keep the regularization term small:

B proxt(ﬂj).

Here the proximal operator prox, : RX s R¥ is defined as
1 2
prox,(x) := arg min §||z —z||5 + Allz]l1 + Ae]z]]2.
z

To simplify the notation we omit the dependency of prox;(x) on A, «. Simple calculation shows
that
prox,(x) = So(S1(z;tN); tal).

where Sy(-;ta)) : RE s RE is a group soft-thresholding operator:

0 if ||v]]2 < taA
So(v;tad) = - .
2( ) {w”uz(”M —ta)) otherwise
123 We describe the optimization algorithm in psuedocode, including details about Nesterov acceleration
124 and backtracking line search in algorithm

» 3 Application to 16 time-to-event responses in UK Biobank

126 We applied the proposed method to 16 time-to-event responses described in table The 16 phe-
127 notypes are first occurrences from UK Biobank (Category 2404) corresponding to Endocrine, nutri-
128 tional and metabolic diseases. The responses were coded with time of event equal to the age of the
1o individual at first occurrence and the status of the individual as censored if the individual has either
130 died without any coding of the disease or the individual does not have a code for the disease at the
1 latest data refresh.
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Algorithm 1: Iterative Screening for Lasso Path

Initialize ever active set A©) =@ ;

Construct the regularization parameters Ay, -+, Ap;
Initialize a short list of initial regularization parameters A(®) = {M, A Aro b
Initialize the parameters B%O), S A;?) = 0;

Set the iteration counter i = 0;
while 3(\L) not computed do

Set v to be the largest number such that the solutions for A = Ay, --- , A, have been
obtained;

Screening:

Compute (or use the cached) full gradient g1, ,9g4- These gradients are evaluated
at B, B,

Set 51(\? to be the M variables in [d] \ .A®) with the largest ||g;||ax;
Set S = AWy 51(\2). This will be the variables used in the fitting step;
Fitting:
for A € A®) do
Obtain parameter estimates by solving using only variables in S*;
The optimization algorithm is described in algorithm 2;
Coefficients for variables not in S are set to be zero.;
end
Checking:
Compute the full gradients g1 (\),- - , ga(\) at solutions obtained with regularization
parameters A\ € A(®);
Find the smallest A € A®) such that the KKT condition is satisfied:

N . ;
X = AeAD i(A a*</\}
in { s [l OV
Update ever active set A+ = A® U {j: 57 (X(i)) # 0} ;
Update At = {\ e A : )\ < X(l)}. Extend ACHY if it is too short.;

For A€ (A€ AW : )\ > X(Z)}, we obtain valid solutions;
Set i =1+ 1;

end

return B(\y), -+, B(\L)
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Algorithm 2: Proximal Gradient Method for

Let S C [d] be the set of variables we use to optimize . B9 is assumed to be 0 for j € S;
Let p = |S| be the number of variables that are assumed to be non-zero;

Set line search parameter n > 1;

Write the parameter matrix B € RP*X. The rows of B are 3/ for j € S;

Write the smooth part of the objective as:

B =S| S g xites | Y esp(BTX)

n
k=1 i:0F=1 JTE>TE

Initialize B(®) at a user-specified value, or set B(®) = 0;
Set iteration count ¢ = 0;
Set initial step-size t = 1;
Set Nestrov weights wq, wy = 1;
while B has not converged do
Nesterov acceleration: wy + (1 + /1 + 4wd)/2;
BUH0-5) « B() 4 (wy — 1)(B® — BE=1) /ay;
W < Wi,
Compute the gradient g;:

gj = % (B(i+0'5)), for j € S.
Start backtracking line search:

repeat

B « B(i+05) _ tvf(B(i+0.5));

Denote 3/ the jth row of B for j € S;

Apply proximal step: 37 < prox,(8?) for j € S;

if f(B) < f(BUH09) 4 (B — BUH09), ¥ f(BEH09) 4 B — BEH9|3/(20) then
‘ break;

end

t <+ t/n;

until Appropriate step-size t obtained;

BUHD + B;

11+ 1;

Check convergence based on objective value change or parameter change.

end

return B®
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13 Overall, we find that multiSnpnet-Cox is able to improve prediction across a large number of
13 diseases (in the application in this study 16, Table . The sparse solution for the 16 responses
13 range from hundreds to tens of thousands of active variables (Figure . In addition, analogous to
135 our proposal in |Qian et al.| (2020), there is an alternative way to find a low-rank coefficient profile
16 for regression. Instead of pursing to solve a non-convex problem directly, we can follow a two-stage
w7 procedure: 1) solve a full-rank regression, and 2) conduct SVD of the resulting coeflicient matrix
18 and use its rank approximation as our final estimator. We referred to this approach as the lazy
139 evaluation model and similarly present the decomposition of multiSnpnet-Cox model coefficients in
w Figure 2] for other hypothyroidism. From the biplot we find that several of the genetic effects are
m  shared with 130706, corresponding to insulin-dependent diabetes mellitus, and orthogonal to genetic
12 effects for 130736, corresponding to ovarian dysfunction.

143 For an individual with genotype x, we define the Polygenic Hazard Score (PHS) to be BTz,
s where B is the fitted regression coefficients obtained from multiSnpnet-Cox. We assess the predictive
us power of PHS on survival time using the individuals in the held out test set. We applied a couple
s of procedures to give a high level overview of the results. First, we assessed whether the PHS was
wr  significantly associated to the time to event data in the held out test set (so that we obtained a
us  P-value for each UK Biobank first occurrence code indicated in Table . Second, we computed the
1w Hazards Ratio (HR) for the different thresholded percentiles (top 1%, 5%, 10%, and bottom 10%
10 compared to the 40-60%) of X B . The Kaplan-Meier curves, representing the proportion of disease
151 events at different age of an individual are shown in Figure 3] Here, we applied multiSnpnet-Cox
12 to tens of responses, but we anticipate that given the computational complexity of the algorithm it
153 should easily handle hundreds if not thousands of responses simultaneously, with the main limiting
14 factor being the number of active variables chosen.

s 4  Discussion

156 ' The main computational bottleneck of our algorithm are matrix-matrix multiplications, which in-
157 clude in-memory multiplications in the proximal gradient step, and out-memory multiplications in
158 the KKT checking step. We plan to utilize GPUs to accelerate these operations since they are par-
159 ticularly suitable for dense matrix multiplications. The challenge here is the limited GPU memory.
1o When the matrices needed for the proximal step do not fit in GPU memory, frequent communica-
161 tion between the system memory and the GPU memory could significantly slow down the algorithm.
12 While advances in hardware (multiple GPUs, fast communication networks) can partially solve this
163 problem, we hope to find algorithms that minimize slow communications. In our current imple-
1« mentation we use single precision floating point number for KKT checking. We plan to use single
165 precision floating point number for all GPU operations.

166

w7 In our Sparse-Group penalty, the groups are defined as the effect of the same predictor on all
16 the responses. In practice it is often useful to define more general groups (e.g. genetic variants that
160 are known to affect a biological mechanism that are associated with some responses). While general
o  grouping does not change our algorithm by much, it could potentially introduce irregular memory
1 access pattern, which could hurt performance. In future works, we hope to develop methods for this
12 more general setting.

173

s Finally, we freeze the parameters for a response when its coefficients start to overfitting. This
s proves to be quite effective in preventing irrelevant variables from entering the model, which helps
s both speed and validation metrics of the other responses. However, this step is not mathematically
w7 well-justified. In particular, the proximal operator changes whenever we constrain some parameters
s to stay at its previous value. We hope to resolve this issue in future works.
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Figure 1: Lasso Path for a few responses. The top axis shows the number of active variables in the
model corresponding to the lambda index (bottom). At each lambda the C index for the validation

(red) and training set (aqua).
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Figure 2: Five principal components of the estimated parameter matrix B. The components are
selected using trait squared cosine score described in Tanigawa et al.[(2019), for the response 130696
(other hypothyroidism). These principal components (components 1, 3, 2, 4, and 8) are identified
from an SVD of coefficient matrix B = UDV7 estimated using multisnpnet-Cox and shown as a
series of biplots. In each panel, principal components of genetic variants (rows of UD) are shown
in blue as scatter plot using the main axis and singular vectors of traits (rows of V) are shown in
red dots with lines using the secondary axis, for the identified key components. The five traits and
responses with the largest distance from the center of origin are annotated with their name. Table
provides the mapping of phenotype IDs to description.
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Kaplan-Meier curve for 130688 : other disorders involving the immune mechanism
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Figure 3: Kaplan-Meier curves for percentiles of Polygenic Hazard Scores for variants selected by
multiSnpnet-Cox, in the held out test set (green - top 1%, purple - top 5%, blue - top 10%, red
- 40-60%, and brown - bottom 10%; ticks represent censored observations. Curves for (top left)
other disorders involving the immune mechanism, (top right) other hypothyroidism, (bottom left)
thyrotoxicosis [hyperthyroidism], and (bottom right) insulin-dependent diabetes mellitus are shown.
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= D Appendix

» 5.1 Proof of Proposition

24 We show a slightly more general result from convex analysis. Let f : RX +— R be continuously
s differentiable, convex, and bounded from below. Let || - | be a norm on R¥, and | - ||. be its
236 corresponding dual norm. Let A > 0, and set

¥ := argmin f(x) + A||z]] (6)

27 We will show that
<\ ifz*=0
Vx|« ~ .
19 £l {:A e 0

2 It is clear that @ is equivalent to the constrained optimization problem

min f(x) + A||y|| such that z = y. (8)
T,y
29 The Lagrangian is
L(z,y,2) = f(z) + Ayl + 2" (y — 2). (9)
x0 The Lagrangian dual is
g(2) :=1inf L(x,y, 2) = inf \||y|| + 27y + inf f(z) — 27, (10)
T,y Y T

21 Using the definition of dual norm, when ||z]|. > A, the infimum of the first term above is —oo, and
22 when ||z|[. < A, the infimum is 0. Therefore

—00 if ||z]l« > A
= 11
9(2) {infm flo)—z2Tx  if 2]« <A (1)

23 Therefore the dual solution z* := argmax, g(z) must satisfy [|z]l« < A\. Now we go back to the
24 Lagrangian. Since the primal objective is convex and Slaters condition holds, the solution to the
s primal problem can be obtained through minimizing

L(x,y,2") = f(2) + Ayl + 2" (y — ). (12)
26 which implies that, at the optimal 2* we must have V f(a*) = 2*, so
IVF @)l = |27l < A, and A|2*|| + Vf(z*) 2" =0 (13)
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ar If 2* = 0, then the second equality is already satisfied, so we only need ||V f(z*)||. < A. If z* # 0,
2s  then by Holder’s inequality

M| = [V f(2*) 2" < |V (@)l < M, (14)

20 5o we must have |V f(z*)|l. = A. Proposition [1|is a direct consequence of this result.

x» 5.2 Proof of Proposition

1 We prove the claim for A = 1. The regularization term can be written as

lully + allulls = sup vTu+ sup viu= sup vTu (15)

o1 lloo <1 lvafl2<a veBy
22 where 3} is the unit dual ball

B ={v € RE . lv1]loo <1} @ {va € RE . [lvz]l2 < a}. (16)

53 That is ||v||a+ < 1 if and only if v € B, which by definition means that v = vy + vy for some

30 ||v1]leo < 1, |J2]l2 < @. We must have (and it is sufficient to have)

inf flv—wv1]2 <a. (17)
llv1lleo <1

25 The infimum on the left-hand side is achieved when v; = v — S;(v, 1), which proves the claim.
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