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Abstract9

We propose a Sparse-Group regularized Cox regression method to improve the prediction10

performance of large-scale and high-dimensional survival data with few observed events. Our11

approach is applicable when there is one or more other survival responses that 1. has a large12

number of observed events; 2. share a common set of associated predictors with the rare event13

response. This scenario is common in the UK Biobank (Sudlow et al. 2015) dataset where14

records for a large number of common and rare diseases of the same set of individuals are avail-15

able. By analyzing these responses together, we hope to achieve higher prediction performance16

than when they are analyzed individually. To make this approach practical for large-scale data,17

we developed an accelerated proximal gradient optimization algorithm as well as a screening18

procedure inspired by Qian et al. (2019). We provide a software implementation of the proposed19

method and demonstrate its efficacy through simulations and applications to UK Biobank data.20

21

Cox proportional hazard model; Sparse-Group Lasso; Multi-response regression.22

1 Introduction23

1.1 Cox Proportional Hazard Model24

Cox model (Cox 1972) provides a flexible mathematical framework that describes the relationship be-
tween the predictors and a time-to-event response. For each individual we observe a triple {O,X, T},
where X ∈ Rd are the features and O ∈ {0, 1} is a status indicator. If O = 1, then T is the actual
time-to-event. If O = 0, then we only know that the time-to-event is at least T . The hazard function
according to the Cox model can be written as

h(t|X) = h0(t) exp(XTβ),

where β ∈ Rd is the coefficients vector that measures the strength of association between X and the
response. This hazard function is equivalent to the cumulative distribution function:

P (T ≤ t|X) = 1− exp

(
−
∫ t

0

h0(s)eβ
TXds

)
.
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Here h0 : R+ 7→ R+ is the baseline hazard function. In our applications we are interested in the25

relationship between the features and the responses, so the baseline hazard function is a nuisance26

variable. We can estimate the parameters β directly without knowing the baseline hazard by maxi-27

mizing the log partial likelihood function (Cox 1972):28

l(β|Data) = log

[ ∏
i:Oi=1

exp(XT
i βk)∑

j:Tj≥Ti exp(XT
j β)

]

=
n∑
i=1

Oi

XT
i β − log

 ∑
j:Tj≥Ti

exp(XT
j β)


When the number of observed events is small relative to n, estimating β becomes challenging. This29

could happen, for example, when the time-to-event response is the age of diagnosis of a rare disease.30

In particular, if Oi are i.i.d Bernoulli random variables with probability p, then the information31

matrix is proportional to p and thus the asymptotic variance of the maximum partial likelihood32

estimate is inversely proportional to p.33

34

We evaluate a fitted survival model using the concordance index, or the C-index. For a param-35

eter estimate β̂, the C-index is defined as36

C(β̂) =

∑n
i=1Oi[|{j : β̂TXi > β̂TXj}|+ |{j : β̂TXi = β̂TXj}|/2]∑n

i=1Oi|{j : Tj > Ti}|
. (1)

For more details on C-index, see Harrell et al. (1982), Li et al. (2020).37

1.2 Sparse-Group Lasso38

The Lasso method (Tibshirani 1996) makes the assumption that only a small subset of predictors are39

associated with the response. In other words, it assumes that β has only a small number of non-zero40

entries. A sparse solution can be obtained by optimizing an L1-regularized objective function.41

42

Sparse-Group Lasso (Simon et al. 2013) assumes not only that many individual elements of β are43

0, but also that many groups of variables have coefficients 0 simultaneously. For example, in a44

single-response Cox model with d-dimensional features, if groups of variables G = {g : g ⊆ [d]}45

are believed to have sparse-group structure, then the sparse-group Lasso minimizes the following46

objective function:47

−
n∑
i=1

Oi

XT
i β − log

 ∑
j:Tj≥Ti

exp(XT
j β)

+ λ‖β‖1 +
∑
g∈G

λg‖βg‖2. (2)

2 Methods48

2.1 Preliminaries49

In this section we define the notations and the key model assumptions that we will use in the50

subsequent sections. For an integer n, define [n] = {1, 2, · · · , n} and define x+ = max{x, 0} for all51

x ∈ R.52

We analyze K ≥ 1 time-to-event responses on n individuals. For example, the responses could
be time from birth to K different diseases. The data we observed are in the format:

D = {Xi, T
1
i , · · · , TKi , O1

i , · · · , OKi }ni=1.

2
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Here Xi ∈ Rd are ith individual’s features. Denote the full features matrix X = [X1, X2, · · · , Xn]T ∈53

Rn×d. For k = 1, · · · ,K, Oki = 1 implies that T ki is the true time until the event k and for the ith54

individual, and Oki = 0 implies that the true time until the event k is right-censored at T ki . We55

assume each response follows a Cox proportional hazard model:56

hk(t|X) = h0,k(t) exp(XTβk). (3)

where h0,k : R+ 7→ R+ is the baseline hazard function of the kth response. Let

nk =
n∑
i=1

Oki

be the number of observed event k.57

We make the assumption that not only βk is sparse for all k ∈ [K], but they also have a small58

common support. That is {j ∈ [d] : βjk 6= 0, k ∈ [K]} is a small set relative to d. In human59

genetics applications, the first assumption means that each response is associated with a small set60

of genetic variants, and the second assumption implies that there are significant overlap among the61

genetic variants that are associated with each response. This belief is the main driver for prediction62

performance improvements on rare diseases, and it translates to the following regularized partial63

likelihood objective function:64

min
β1,··· ,βK

K∑
k=1

1

nk

 ∑
i:Oki =1

−βTk Xi + log

 ∑
j:Tkj ≥Tki

exp(βTk Xj)

+ λ

 d∑
j=1

‖βj‖1 + α‖βj‖2

 . (4)

Here the first term is the sum of the K negative log-partial-likelihood, normalized by the number
of observed events. The second term is the regularization. ‖βj‖1, ‖βj‖2 are the 1-norm and 2-
norm of the coefficients for the jth variable. That is, if we put all the parameters into a matrix
B = [β1, β2, · · · , βK ] ∈ Rd×K , then βj is the jth row of B and βk is the kth column. Note that
when α = 0, the objective function decouples for each βk and they can be optimized separately. In
our implementation we solve a slightly more general problem:

min
β1,··· ,βK


K∑
k=1

1

nk

 ∑
i:Oki =1

−βTk Xi + log

 ∑
j:Tkj ≥Tki

exp(βTk Xj)

+ λ

 d∑
j=1

wj(‖βj‖1 + α‖βj‖2)

 ,

where {wj}dj=1 are user provided penalty factor for each variables, which may be useful in the set-65

ting where protein-truncating or protein-altering variants should be prioritized (Rivas et al. 2015,66

DeBoever et al. 2018). Just like in Yuan & Lin (2006), our implementation by default fixes α at67 √
K. The solution is computed on a pre-defined sequence of λs: λ1 > λ2 > · · · > λL, where λ1 is68

chosen so that the solution just become non-zero.69

70

To simplify the notation, for j ∈ [d] denote71

gj = gj(β1, · · · , βk) :=
∂

∂βj

K∑
k=1

1

nk

 ∑
i:Oki =1

−βTk Xi + log

 ∑
j:Tkj ≥Tki

exp(βTk Xj)

 . (5)

Here gj ∈ RK is the partial derivative of the smooth part of (4) with respect to the coefficients of
the variable j. Finally, let S1(·;λ) : RK 7→ RK be the element-wise soft-thresholding function:

S1(v;λ)k = sign(vk)(|vk| − λ)+ for all k ∈ [K].

3
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2.2 Optimization Method72

We use a Nesterov-accelerated (Nesterov 1983) proximal gradient method (Daubechies et al. 2004,73

Beck & Teboulle 2009) to optimize the objective function (4). Proximal gradient algorithm is74

particularly suitable when the objective function is the sum of a smooth function and a simple75

function. In our case the smooth function is the sum of the negative log-partial-likelihood functions,76

and the simple function is the regularization term. The algorithm alternates between two steps until77

convergence criteria is met:78

1. A gradient step that decreases the smooth part of the objective:

βj ← βj − tgj ,

where t is the step size that we determine using backtracking line search.79

2. A proximal step that keeps the regularization term small:

βj ← proxt(β
j).

Here the proximal operator proxt : RK 7→ RK is defined as

proxt(x) := arg min
z

1

2t
‖z − x‖22 + λ‖z‖1 + λα‖z‖2.

To simplify the notation we omit the dependency of proxt(x) on λ, α. Simple calculation shows
that

proxt(x) = S2(S1(x; tλ); tαλ).

where S2(·; tαλ) : RK 7→ RK is a group soft-thresholding operator:

S2(v; tαλ) =

{
0 if ‖v‖2 ≤ tαλ
v
‖v‖2 (‖v‖2 − tαλ) otherwise

.

We describe the optimization algorithm in pseudocode, including details about Nesterov acceleration80

and backtracking line search in algorithm 1.81

2.3 Variable Screening for Lasso Path82

In many of our applications the data is large-scale and high-dimensional. For example, the UK83

Biobank dataset (Sudlow et al. 2015) contains millions of genetic variants and over 500, 000 partici-84

pants. Reading the feature matrix of the UK Biobank dataset into R requires more than 4 terabytes85

of memory, which is much larger than the RAM size of most computers. While memory mapping86

(Kane et al. 2013) allows users to access out-of-memory data with ease, it requires lots of disk In-87

put/Output operations, which is much slower than in-memory operation. This becomes even more88

problematic for iterative optimization algorithms that use the entire feature matrix every iteration.89

90

To reduce the frequency of reading the full data matrix, here we derive a version of variable screening91

method following similar ideas of the strong rule (Tibshirani et al. 2012) and the Batch Screening92

Iterative Lasso (Qian et al. 2019).93

94

For each α > 0, v ∈ RK , define the α∗ norm of v to be95

‖v‖α∗ := sup{uT v : u ∈ RK , ‖u‖1 + α‖u‖2 ≤ 1}. (6)

We use the following results to get an optimality condition for the solutions β1, · · · , βK . The proofs96

are given in section 6.97

4
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Algorithm 1: Proximal Gradient Method for (4)

Set line search parameter η > 1;

Denote the parameter matrix B ∈ Rd×K . Initialize B(0);
Write the smooth part of the objective as:

f(B) =

K∑
k=1

1

nk

 ∑
i:Oki =1

−βTk Xi + log

 ∑
j:Tkj ≥Tki

exp(βTk Xj)

 .
Set iteration count i = 0; Set initial step-size t = 1; Set Nesterov weights w0, w1 = 1;
while B has not converged do

Nesterov acceleration: w1 ← (1 +
√

1 + 4w2
0)/2;

B(i+0.5) ← B(i) + (w0 − 1)(B(i) −B(i−1))/w1; w0 ← w1;

Compute the gradient gj = ∂
∂βj f(B(i+0.5)) for j ∈ [d];

Start backtracking line search:
repeat

B ← B(i+0.5) − t∇f(B(i+0.5));
Denote βj the jth row of B for j ∈ [d];
Apply proximal step: βj ← proxt(β

j) for j ∈ [d];

if f(B) ≤ f(B(i+0.5)) + 〈B −B(i+0.5),∇f(B(i+0.5))〉+ ‖B −B(i+0.5)‖22/(2t) then
break;

end
t← t/η;

until the break condition above is satisfied ;

B(i+1) ← B; i← i+ 1;
Check convergence based on objective value change or parameter change.

end

return B(i)

5
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Proposition 1. For any λ > 0, the gradients defined at (5) at the optimal solution to (4) satisfies:98

‖gj‖α∗
{
≤ λ if the optimal βj = 0

= λ if the optimal βj 6= 0
for all j ∈ [d]. (7)

99

This result motivates us to first fit a model (solving (4)) using a small number of variables whose100

gradient has the largest α∗ norm, assuming the coefficients for the rest of the variables are all zero.101

Then to verify the validity of the assumption we check that ‖gj‖α∗ ≤ λ for variables assumed to102

have zero coefficients. We refer to this step as KKT checking. Note that based on its definition (6),103

it’s not clear how we can compute ‖v‖α∗ . Here we give a more explicit characterization.104

Proposition 2. ‖v‖α∗ ≤ λ if and only if ‖S1(v;λ)‖2 ≤ αλ.105

Using the above we can check if ‖v‖α∗ ≤ λ quite easily and compute ‖v‖α∗ using binary search106

in O(K log ‖v‖∞) to any fixed precision (since ‖v‖α∗ ≤ ‖v‖∞).107

108

Now we are ready to state the overall structure of our algorithm with variable screening. Sup-109

pose valid solutions for λ1, · · · , λl have been obtained. Next we follow these steps:110

1. (Screening) In the last iteration, we cache the full gradient {gj}dj=1 evaluated at the solution111

at λl. In the fitting step we include two types of variables:112

• We include the ever-active variablesA := {j ∈ [d] : β̂j 6= 0 for any previously obtained β̂}.113

• Top M variables with the largest ‖gj‖α∗ that are also not ever-active.114

We denote the set of variables used to fit (4) as the strong set S ⊆ [d].115

2. (Fitting) In this step, we solve the problem (4) for the next few λs using only variables in S,116

assuming βj = 0 for all j 6∈ S. This is done using proximal gradient descent (algorithm 1).117

To speed-up the computation we initialize the variables at the previous valid solution (warm118

start).119

3. (KKT Checking) After obtaining the solution from the fitting step. We compute the full120

gradient. This is the only step we will need the full data matrix X. We check if the KKT121

conditions (7) are satisfied for all variables then go back to the screening step at the first λ122

value where the KKT condition fails. We also cache the full gradient at the last valid solutions123

for the screening step.124

4. (Early Stopping) We keep a separate validation set to evaluate the current estimated pa-125

rameters. We choose the optimal λ as the one that gives the highest validation C-index. The126

optimal λ might be different for different responses. In this paper we focus only on the predic-127

tion accuracy of one rare event, so it is reasonable to stop when the validation C-index of this128

response starts to decrease, regardless if the optimal λ for other responses has been reached.129

These steps are described in algorithm 2.130

2.4 Software131

We implemented the proximal gradient method in section 2.1 as an R package, available at https:132

//github.com/rivas-lab/multisnpnet-Cox. In this package we also implement the screening pro-133

cedure described in this section for genetics data in Plink2 format (Chang et al. 2014).134

135
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Algorithm 2: Iterative Screening for Lasso Path

Initialize ever active set A(0) = ∅ and construct the regularization parameters λ1, · · · , λL;

Initialize a short list of initial regularization parameters Λ(0) = {λ1, · · · , λL(0)};
Initialize the parameters β̂

(0)
1 , · · · , β̂(0)

K = 0; Set the iteration counter i = 0;

while β̂(λL) not computed do
Set v to be the largest number such that the solutions for λ1, · · · , λv are obtained;
Screening:
Compute (or use the cached) full gradient (5) g1, · · · , gd at the last solutions.

Set E(i)M to be the M variables in [d] \ A(i) with the largest ‖gj‖α∗;
Set S(i) = A(i) ∪ E(i)M . This will be the variables used in the fitting step;
Fitting:
for λ ∈ Λ(i) do

Obtain parameter estimates by solving (4) using only variables in S(i);
The optimization algorithm is described in algorithm 2;

Coefficients for variables not in S(i) are set to be zero.;

end
Checking:
Compute the full gradients g1(λ), · · · , gd(λ) at solutions obtained with regularization
parameters λ ∈ Λ(i);

Find the smallest λ ∈ Λ(k) such that the KKT condition (7) is satisfied:

λ
(i)

= min

{
λ ∈ Λ(i) : max

j∈[d]\S(i)
‖gj(λ)‖α∗ < λ

}

Update ever active set A(i+1) = A(i) ∪ {j : β̂j(λ
(i)

) 6= 0} ;

Update Λ(i+1) = {λ ∈ Λ(i) : λ < λ
(i)}. Extend Λ(i+1) if it is too short.;

For λ ∈ {λ ∈ Λ(i) : λ ≥ λ(i)}, we obtain valid solutions; Set i = i+ 1;

end

return β̂(λ1), · · · , β̂(λL)

7
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Figure 1: Absolute improvements in test C-index of the rare event response when two responses are
trained together. p1 is the proportion of uncensored events of the first response. p2 (rare) is the
proportion of uncensored events of the second response. The true coefficients have exactly the same
support.

The major computational bottleneck in the proximal gradient method are matrix-matrix multiplica-136

tions. These operations have high arithmetic intensity and are particularly suitable for GPU accel-137

eration. Therefore we also provide a GPU implementation of algorithm 1 on CUDA-enabled device,138

available at https://github.com/rivas-lab/multisnpnet-Cox_gpu. With n = d = 10000,K =139

20, the GPU implementation achieves almost 10× speedup in solving a path of 50 λs (9.7 seconds vs140

92 seconds) on a Tesla V100 GPU than the CPU implementation on an Intel Xeon 6528R processor141

with 28 threads, accelerated using Intel’s Math Kernel Library.142

3 Simulations143

In this section we compare the performance of the proposed approach against a simple Lasso,144

where multiple responses are fitted independently. Here we simulate two responses (K = 2),145

n = 400, d = 5000, the entries of the predictor matrix are i.i.d random signs {−1, 1} with prob-146

ability 0.5 each, and the time-to-event responses are exponential distributed with rate exp(XT
i β),147

which satisfies proportional hazard. The parameters β1, β2 have a common support of size 35. We148

use a large (5000 samples) and uncensored validation set to select the optimal λ. α is fixed at
√

2.149

The parameter estimate corresponding to the best λ is then evaluated at a large, uncensored test150

set. We use the C-index as both the validation and test metric. The censoring for both responses151

are randomly chosen and independent from everything else. The simulations are done for multiple152

combinations of censoring proportions, each repeated 100 times. Here we report the improvement153

in C-index of the response with rare events. See Figure 1.154

155

The assumption that the coefficients for different responses have the same support can come from156

domain knowledge (such as biology). In practice this is usually not exactly satisfied. Here we use157

simulation to examine the robustness of our approach. The setup is the same as the previous sim-158

ulations, except now the overlap of the support might be smaller than 35 (the number of non-zero159

entries of β1, β2). See the left panel of Figure 2.160

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.06.21.163675doi: bioRxiv preprint 

https://github.com/rivas-lab/multisnpnet-Cox_gpu
https://doi.org/10.1101/2020.06.21.163675
http://creativecommons.org/licenses/by/4.0/


●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.00

0.05

0255075100
Support overlap percentage

Te
st

 C
−

In
de

x 
Im

pr
ov

em
en

t

improved

●

●

FALSE

TRUE

●
●

●●
●●

●●
●

●

●
●

●
●●●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0255075100
Support overlap percentage

Te
st

 C
−

In
de

x 
Im

pr
ov

em
en

t

improved

●

●

FALSE

TRUE

Figure 2: Absolute improvements in Test C-index of the rare event response when two responses are
trained together. 60% of the events for the first response are uncensored, and 5% of the events for
the second are uncensored. The horizontal axis is the overlap proportion of the support of β1 and β2,
in other words |{i ∈ [p] : βi1 6= 0, βi2 6= 0}| ·100/35. The left panel shows the result when α is fixed at√

2, and λ is selected from a large uncensored validation set. The right panel shows the result when
α is selected between {0,

√
2} using a small validation set of size 200 with 5% uncensored second

event. The whiskers indicates 95% confidence intervals.

161

We can see that, when the support overlap percentage is less than around 40% the prediction162

performance actually becomes worse when the two responses are trained together. One solution to163

this problem is to also treat α as a hyperparameter and use the validation set to determine it. For164

large data set having a two-dimensional hyperparameter could be quite cumbersome. In our simu-165

lation and real data application, we only choose α from two values {0,
√
K}, although in principle166

one can use a large set of α candidates at a higher computational cost. The right panel of Figure 2167

shows the C-index improvements when we use a small validation set to determine whether α should168

be 0 or
√
K. All other settings are the same as above.169

170

4 Application to UK Biobank Data171

In this section we apply the proposed method to UK Biobank data. We focus on thyroiditis, which172

has 808 observed events in the study population (337, 129 white British participants). We randomly173

assign 70% of the samples to the training set, 10% to the validation set, and 20% to the test set. The174

predictors here are ∼ 1 million genetic variants, as well as 11 covariates (sex, and 10 principal com-175

ponents of the genetic variants). We first fit a baseline model using only the 11 covariates, without176

using any genetic variants. This gives a baseline test C-index at 0.649. We then fit a single-response177

Lasso Cox regression, where λ is selected using based on the validation C-index. At the best λ value,178

the test C-index is 0.679. To apply our approach, we pair thyroiditis with 6 other more common179

endocrine diseases that we believe share common genetic factors with thyroiditis. These diseases180

are listed in the table below. Here we report the test C-indices when thyroiditis is paired with181

one other disease and when all 7 responses are trained together. We also report the test C-indices182
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when we use the validation set to determine both the optimal λ and whether to set α = 0 or α =
√
K.183

184

Table 1 shows clear increase in prediction performance on thyroiditis when all 7 responses are185

trained together, and when thyroiditis is paired with thyrotoxicosis only. On the other hand, all186

multi-response solutions have test C-index comparable with the single response solution.187

Paired response(s) Test C-index Test C-index (validate α)
thyroiditis (single response) 0.679 -
other hypothyroidism 0.682 0.682
other non-toxic goitre 0.681 0.679
thyrotoxicosis (hyperthyroidism) 0.686 0.686
other disorders of thyroid 0.679 0.679
insulin-dependent diabetes mellitus 0.683 0.683
non-insulin-dependent diabetes mellitus 0.679 0.679
all 7 responses trained together 0.688 0.688

Table 1: Test C-index of thyroiditis when this response is paired with other ones. The second column
is obtained when α is fixed at

√
K (which is 1 in the first row,

√
7 in the last row, and

√
2 in the rest).

The third column is obtained when we use the validation set to choose α between 0 (single-response)
and
√
K. Improved C-indices are given in boldface. Baseline test C-index of thyroiditis, when only

the 11 covariates are used for fitting, is 0.649.

5 Conclusion and Discussion188

We developed a regularized regression method for multiple survival responses. This method is par-189

ticularly suitable when we can pair a response with few observed events with others having a larger190

number of events, such that these responses have a same set of useful predictors. We demonstrate191

the improvements in the prediction accuracy for the rare events responses through simulation and192

real data applications. We also provide efficient implementation for the proposed method.193

194

Here are two directions for future studies. When there are more than two responses, the relationship195

between the prediction performance and the degree of overlapping in the coefficients support is yet196

to be understood. On the practical side, it is reasonable to have different types of models (not197

just Cox model), or even different response types (such as binary or count) to boost the accuracy198

of survival analysis on rare events. In principle the same type of regularization could still be applied.199

200

For the GPU implementation, one challenge is the limited amount of memory available on GPUs.201

In modern computer clusters it is common to have machines with hundreds of Gigabytes of system202

memory, but most GPUs have less than 32GB of memory. In our implementation we use single pre-203

cision floating point numbers to store the data matrix, which alleviates memory burden by a factor204

of two. However, for UK Biobank scale data this is still sometimes insufficient. For example, when205

the number of participants in the training data is 250, 000, we are only able to fit a model with up206

to 32, 000 variables on a Tesla V100. One possible solution is to use multiple GPUs, but inter-GPU207

communication might become the bottleneck. For genetics data, another solution is to utilize their208

2-bit representation, which can significantly reduce memory requirement (2 bits per entry vs 32).209

We leave these ideas for future studies.210
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6 Proof of Propositions211

6.1 Proof of Proposition 1212

We show a slightly more general result from convex analysis. Let f : RK 7→ R be continuously213

differentiable, convex, and bounded from below. Let ‖ · ‖ be a norm on RK , and ‖ · ‖∗ be its214

corresponding dual norm. Let λ > 0, and set215

x∗ := arg min
x

f(x) + λ‖x‖ (8)

We will show that216

‖∇f(x∗)‖∗

{
≤ λ if x∗ = 0

= λ if x∗ 6= 0
. (9)

It is clear that (8) is equivalent to the constrained optimization problem217

min
x,y

f(x) + λ‖y‖ such that x = y. (10)

The Lagrangian is218

L(x, y, z) = f(x) + λ‖y‖+ zT (y − x). (11)

The Lagrangian dual is219

g(z) := inf
x,y
L(x, y, z) = inf

y
λ‖y‖+ zT y + inf

x
f(x)− zTx. (12)

Using the definition of dual norm, when ‖z‖∗ > λ, the infimum of the first term above is −∞, and220

when ‖z‖∗ ≤ λ, the infimum is 0. Therefore221

g(z) =

{
−∞ if ‖z‖∗ > λ

infx f(x)− zTx if ‖z‖∗ ≤ λ
(13)

Therefore the dual solution z∗ := arg maxz g(z) must satisfy ‖z‖∗ ≤ λ. Now we go back to the222

Lagrangian. Since the primal objective is convex and Slaters condition holds, the solution to the223

primal problem can be obtained through minimizing224

L(x, y, z∗) = f(x) + λ‖y‖+ z∗T (y − x). (14)

which implies that, at the optimal x∗ we must have ∇f(x∗) = z∗, so225

‖∇f(x∗)‖∗ = ‖z∗‖∗ ≤ λ, and λ‖x∗‖+∇f(x∗)
T
x∗ = 0 (15)

If x∗ = 0, then the second equality is already satisfied, so we only need ‖∇f(x∗)‖∗ ≤ λ. If x∗ 6= 0,226

then by Holder’s inequality227

λ‖x∗‖ = |∇f(x∗)
T
x∗| ≤ ‖∇f(x∗)‖∗‖x∗‖ ≤ λ‖x∗‖, (16)

so we must have ‖∇f(x∗)‖∗ = λ. Proposition 1 is a direct consequence of this result.228

6.2 Proof of Proposition 2229

We prove the claim for λ = 1. The regularization term can be written as230

‖u‖1 + α‖u‖2 = sup
‖v1‖∞≤1

vT1 u+ sup
‖v2‖2≤α

vT2 u = sup
v∈B∗α

vTu (17)

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.06.21.163675doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163675
http://creativecommons.org/licenses/by/4.0/


where B∗α is the unit dual ball231

B∗α := {v1 ∈ RK : ‖v1‖∞ ≤ 1} ⊕ {v2 ∈ RK : ‖v2‖2 ≤ α}. (18)

That is ‖v‖α∗ ≤ 1 if and only if v ∈ B∗α, which by definition means that v = v1 + v2 for some232

‖v1‖∞ ≤ 1, ‖v2‖2 ≤ α. We must have (and it is sufficient to have)233

inf
‖v1‖∞<1

‖v − v1‖2 ≤ α. (19)

The infimum on the left-hand side is achieved when v1 = v − S1(v, 1), which proves the claim.234
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