Statistical Pitfalls in Brain Age Analyses

Ellyn R. Butler¹, Andrew Chen², Rabie Ramadan⁵, Kosha Ruparel¹, Tyler M. Moore¹, Fengqing Zhang⁶, Haochang Shou², Ruben C. Gur¹, Thomas E. Nichols*⁵,⁶, and Russell T. Shinohara*²

¹Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
²Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
³Mathematics Department, Temple University, Philadelphia, PA, 19122, USA
⁴Department of Psychology, Drexel University, Philadelphia, PA, 19104, USA
⁵Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
⁶FMRIB, Wellcome Centre for Integrative Neuroimaging

Abstract

Over the past decade, there has been an abundance of research on the difference between age and age predicted using brain features, which is commonly referred to as the “brain age gap”. Researchers have identified that the brain age gap, as a residual, is dependent on age. As such, any group differences on the brain age gap could simply be due to group differences on age. To mitigate the brain age gap’s dependence on age, it has been proposed that age be regressed out of the brain age gap. If this modified brain age gap (MBAG) is treated as a corrected deviation from age, model accuracy statistics such as R^2 will be artificially inflated. Given the limitations of proposed brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation from normality.

Keywords: BrainAGE, brain age gap, age prediction, residual, deviation, development

Highlights:

• The brain age gap is a residual, and as such varies as a function of age.
• A recently proposed modification of the brain age gap, designed to mitigate the dependence on age, results in inflated model accuracy statistics.
• Given these limitations, we suggest that new methods should be developed to quantification deviation from normal developmental and aging trajectories.

All code can be found in https://github.com/PennBBL/brainAgeGapMistake.

Declarations of interest: none.

* Denotes co-senior authorship
+ Denotes corresponding author
E-mail address: russell.shinohara@pennmedicine.upenn.edu
Postal address: Blockley Hall, 2nd Floor, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104-6021
1 Introduction

In the past decade, there has been an explosion of research devoted to estimating individuals’ ages using features derived from magnetic resonance images (MRIs) of the brain (Franke & Gaser, 2019). From studies using diffusion-weighted features to complex functional connectivity metrics, the literature is extensive (Cole, 2020; Li, Satterthwaite, & Fan, 2018; Lin et al., 2016; Irimia, Torgerson, Goh, & Van Horn, 2015; Erus et al., 2015). While age is easily measured through more conventional means, assessing the appearance of the brain with respect to the natural patterns of development and aging provides a framework for dimension reduction; from hundreds of thousands to millions of MRI measurements, these models aim to provide the apparent age of the brain for each subject as a convenient summary measure. The predicted age from these models has been coined “brain age”, and the difference between age and brain age is typically referred to as the “brain age gap”.

Brain age gap analysis was developed to address two major challenges in neuroscience and medicine: high-dimensionality, and individual risk assessment. Neuroimaging data are high dimensional, with the average T1-weighted scan containing approximately 1,200,000 voxels of brain tissue (Cosgrove, Mazure, & Staley, 2007). Importantly, different parts of the brain follow a variety of trajectories across the lifespan (Gennatas et al., 2017; Coupé, Catheline, Lanuza, & Manjón, 2017; Kennedy et al., 2015). Therefore, in order to better predict age, it is beneficial to use more brain features that complement each other (Varikuti et al., 2018). The main motivation, however, behind brain age gap analyses has been to develop a single number to represent an individual’s deviation from some normal trajectory (de Lange & Cole, 2020). This is an admirable goal, since deviating from a normal trajectory may be indicative of or predictive of debilitating disorders (Marquand, Rezek, Buitelaar, & Beckmann, 2016).

Researchers often test whether members of a group tend to have their age overestimated compared to a control group, striving to assess whether the disorder is associated with the brain aging prematurely or lagging behind. For instance, Chung et al. (2018) asked if those at clinical high risk for psychosis had a larger brain age gap than healthy controls, and Liem et al. (2017) asked if the brain age gap differed across groups with varying degrees of objective cognitive impairment. Typically, these models are developed using regression or machine learning in one dataset, and are evaluated in a test set. This process involves estimating model parameters on a random subset of participants, and then applying the fitted model to the left-out participants. They repeat this process until every participant has a predicted age. This helps to avoid some pitfalls of over-fitting, such as reporting an inflated model accuracy statistic.

In this article, we note that the brain age gap, and a recently proposed modified version of it, are not up to the task of quantifying deviation from a normal trajectory. The brain age gap is a residual. As such, it
is dependent on the outcome variable (i.e., age). Therefore, differences in the brain age gap between groups may be due to differences in the brain, or due to differences in the age distributions across groups (Smith, Vidaurre, Alfaro-Almagro, Nichols, & Miller, 2019; Liang, Zhang, & Niu, 2019; Le et al., 2018). A recently proposed solution to this problem — regressing the brain age gap on age and taking the residuals from this model as a modified brain age gap that is orthogonal to age — creates new problems. In particular, if this new residual is treated as a deviation from a subject’s age, which it is not, metrics of model accuracy will be severely inflated.

2 Known Limitations of the Brain Age Gap

Many brain age gap analyses have been based on the assumption that the difference between age and predicted age does not vary as a function of age; however, recently several groups have pointed out that this assumption is false (Smith et al., 2019; Liang et al., 2019; Le et al., 2018). Smith et al. (2019) pointed out an extreme case of this error: when age has truly no relationship with brain features, the difference between age and predicted age (“brain age gap”) is a deterministic function of age. Smith et al. (2019) note that any subsequent analyses studying the relationship between this gap and other metrics is equivalent to relating a linear transformation of age to other metrics.

To flesh out the gravity of this observation, consider an example: If age does not vary as a function of any of the brain parameters, all coefficients, aside from the intercept, will be close to zero with high probability, and the intercept will be close to the mean age of the training sample. Let A_i be the age of the ith subject, B_{ij} the jth brain feature for the ith subject, ϵ_i random error, and \bar{A} the mean age of the training sample. The brain age model is thus:

$$A_i = \beta_0 + \beta_1 B_{i1} + \beta_2 B_{i2} + \cdots + \beta_p B_{ip} + \epsilon_i \quad (1)$$

And the fitted values are:

$$\hat{A}_i = \hat{\beta}_0 + \hat{\beta}_1 B_{i1} + \hat{\beta}_2 B_{i2} + \cdots + \hat{\beta}_p B_{ip} \approx \bar{A} + 0 \times B_{i1} + 0 \times B_{i2} + \cdots + 0 \times B_{ip} = \bar{A}. \quad (2)$$

Suppose the mean age of the training sample is 10 years old. Every person will have an estimated age of 10, so their brain age gap, $A_i - \hat{A}_i$, will be $A_i - 10$. Thus, the brain age gaps are as follows: 15-year-olds have a brain age gap of 5, 10-year-olds have a brain age gap of 0, 5-year-olds have a brain age gap of -5, etc. Older participants are deterministically estimated as being younger than they are, and younger participants as older. The brain age gap is a residual, which by definition varies as a function of the outcome variable, in
this case age. If the brain features are linearly independent of age, then testing for differences in the brain
age gap is equivalent to testing, “Is the mean age of group A different from the mean age of group B?” When
testing for differences on the brain age gap in general, the question being asked is similar to “Controlling for
the brain features, is the mean age of group A different from the mean age of group B?” Since regression
on the residuals of a previous model is not equivalent to multiple regression, though, this description is not
quite correct (Chen, Hribar, & Melessa, 2018; Freckleton, 2002). Thus, interpretation of these residuals is
difficult.

Even if age varies as a function of the brain parameters, the predicted age for every subject will still be
shrunk towards the mean age of the training sample. This is referred to as regression towards the mean, and
was first documented by Sir Francis Galton in 1886 (Bland & Altman, 1994). As Liang et al. (2019) noted,
this phenomenon is a common feature of many good models. Therefore, older subjects will have positive
brain age gap estimates on average simply because they are older, while younger subjects will have negative
estimates on average.

It is important to note that regression towards the mean is not a failure, but a feature, of regression and
related methods. If there is any randomness in a process, observations will tend towards the mean of the
outcome variable rather than remain as extreme as they were upon initial sampling (Stigler, 1997). Regression
towards the mean is a feature of regression that is actively useful for prediction. Since age is known with
certainty, the notion of predicting it makes the construction of a residual awkward. Thus, as we continue to
use age prediction as a means to reduce dimensionality, it is important to understand the limitations of using
age as an outcome variable and subsequent associated analyses. Recognizing the dependence of the brain
age gap on age, researchers have begun to develop methods to mitigate the age-dependence of the brain age
gap (Beheshti, Nugent, Potvin, & Duchesne, 2019; Smith et al., 2019; Liang et al., 2019; Le et al., 2018).
Unfortunately, a misuse of residuals persists, resulting in a systematic overestimation of model accuracy.

3 Risks of Using a Modified Brain Age Gap

To mitigate the residuals’ dependence on age, researchers apply the following algorithm (Beheshti et al.,
2019; Smith et al., 2019; Liang et al., 2019; Chung et al., 2018) (see the appendix for details on Beheshti et
al. (2019)’s method). First, a training sample is used to estimate a mapping \(f(\cdot) \) from brain features to age.
Then, for a left out subject \(i \) with brain data \(B_{i1}, B_{i2}, \ldots, B_{ip} \), the predicted age (“brain age”) is estimated
as \(\hat{A}_i \):

\[
\hat{A}_i = \hat{f}(B_{i1}, B_{i2}, \ldots, B_{ip}).
\]
Then the ith subject’s brain age gap (BAG) is

$$\text{BAG}_i = A_i - \hat{A}_i.$$ \hfill (4)

Recognizing the brain age gap’s dependence on age, the researcher poses a linear model of the brain age gap on age:

$$\text{BAG}_i = \alpha + \gamma A_i + \delta_i$$ \hfill (5)

where estimated parameters $\hat{\alpha}$ and $\hat{\gamma}$ are found from a regression using training data. Thus, the effect of age is removed, producing the modified brain age gap (MBAG):

$$\text{MBAG}_i = \hat{\delta}_i = \text{BAG}_i - (\hat{\alpha} + \hat{\gamma} A_i),$$ \hfill (6)

which, as the residual from model (5), is approximately uncorrelated with age (only exactly uncorrelated if test data is used to estimate α and γ). Because MBAG has been interpreted as a corrected residual, MBAG is subtracted from (or added to; equivalent in correlation, see Supplement) age. This new variable is then referred to as the corrected predicted age: $\hat{A}^M_i = A_i - \text{MBAG}_i$. Because the researcher perceives this predicted age as corrected, they correlate it with age to assess their model’s ability to predict age. Since this version of predicted age is in no sense correct, it will be referred to as the modified predicted age.

MBAG is by no means a more accurate measure of the brain age gap. The brain age gap itself is more dependent on age the less the brain features are associated with age. Again, consider the extreme case where age is independent of the brain features. Then, the brain age gap is completely determined by age, as explained in the previous section. If MBAG is treated as an estimate of the deviation from age, the reported model accuracy (e.g., R^2) will always be inflated relative to the true model accuracy, and often drastically so. When age has no true dependence on the brain features, the population covariance between age and predicted age, \hat{A}_i, is zero. But when MBAG is treated as the deviation from age, $A_i - \text{MBAG}_i$, you will find age and modified predicted age, \hat{A}^M_i, have an approximately perfect correlation of 1.

In fact, the inflated correlation can be directly computed as a function of the correlation of age and predicted age $r_{\hat{A}^M \hat{A}}$ (see Supplement for derivations):
\[
\text{Corr}(A, \hat{A}^M) = \frac{\hat{\gamma}\text{Var}(A) + \text{Cov}(A, \hat{A})}{\sqrt{\text{Var}(A) \times \left(\text{Var}(\hat{A}) + \hat{\gamma}^2\text{Var}(A) + 2\hat{\gamma}\text{Cov}(A, \hat{A})\right)}}
\]

\[
= \left(1 + \frac{1}{r_{AA}\hat{\gamma} \sqrt{\frac{\text{Var}(A)}{\text{Var}(\hat{A})}} (1 - r_{AA})^2}\right)^{-1/2}
\]

(7)

If \(\hat{\alpha}\) and \(\hat{\gamma}\) are estimated in the test set, equation (7) can be further simplified:

\[
\text{Corr}_{\text{test}}(A, \hat{A}^M) = \left(1 + \frac{\text{Var}(A)}{\text{Var}(\hat{A})} (1 - r_{AA}^2)\right)^{-1/2}.
\]

(8)

The equation can be simplified even further if \(\hat{A}\) is a linear estimator:

\[
\text{Corr}_{\text{test, linear}}(A, \hat{A}^M) = \left(1 + r_{AA}^2 (1 - r_{AA}^2)\right)^{-1/2}.
\]

(9)

To illustrate the inflated correlation effect and confirm that equation 7 is correct, a series of simulations were run to compare the transformations that researchers describe performing to the above equation using R version 3.6.2 (R Core Team, 2019). A training and a testing set of 10,000 samples were simulated from each of a series of bivariate normal distributions, where the true correlation between age and brain was varied between 0 and 1, with the correlation between age and the modified predicted age, \(\hat{A}_i^M\), in the test set being the key outcome measure recorded. All model parameters were estimated in a training set. Since there is only one brain feature, the correlation between age and predicted age is the same as the correlation between age and brain. Results using a single brain feature are detailed in Figure 1, which was made using the R package ‘ggplot2’ (Wickham, 2016). A single brain feature was used so as to have easy control over the correlation between age and predicted age, but note that this result generalizes to any number of brain features. For a set of correlations between 0 and 1, the correlation between age and the modified predicted age, \(\hat{A}_i^M\), was calculated using the theoretical formulation in (7) (black line), and the inflated correlation was obtained using the previously described transformations (pink dots). The identity line is displayed to aid in visualizing that the inflated correlation is larger than the true correlation. The simulations confirmed that the theoretical formulation in (7) is equivalent to the transformations researchers have described.
Figure 1: Inflated correlation, $\text{Corr}(A, \hat{A}^M)$, is a function of the true correlation, $\text{Corr}(A, \hat{A})$. The inflated correlation is the correlation between age and the modified predicted age. The true correlation is the correlation between age and predicted age. To illustrate that the series of transformations that researchers perform is equivalent to (7), correlations using both are plotted. r_{func} is using (7), and r_{trans} is using the series of transformations.

4 Conclusion

We have shown that predicted age estimates ("brain age") based on a regression adjustment of the brain age gap result in a correlation between a modified predicted age and age never falling much below 0.9 regardless of the original predicted age and age correlation. Further, the interpretability of MBAG itself is limited by the fact that it is a residual from a regression to remove the effects of age from a residual obtained through a regression to predict age. By virtue of these limitations, we suggest that the brain age gap and the modified version may not provide useful information about precocity or delay in brain development. In light of this, we suggest that methods be developed specifically to answer questions about similarity between brains of different age groups and diseased states.

Many other transformations have been developed to mitigate the downstream effects of BAG's dependence on age (de Lange & Cole, 2020). Some are not susceptible to the inflated correlation issue described in this work. Methods include scaling the predicted age by the slope and intercept from the regression of predicted age on age (see (5) in de Lange and Cole (2020)), and including age as a covariate when testing for group differences in BAG (Le et al., 2018). The former results in a new BAG estimate that is uncorrelated with age, and the latter ensures that any group differences found on BAG will be linearly independent of age. While de Lange and Cole (2020)'s Eqn. (5) results in a more variable version of BAG, it is inappropriate to judge the accuracy of the model of brain features regressed on age using a transformed residual, as has been argued for the modification critiqued in this work. The real question then becomes: to what extent do these methods quantify advanced or delayed brain development? This question warrants further theoretical investigation.
Future research should also determine appropriate analytic methods to answer whether the brains of patients with disorders are more similar to older healthy controls’ than age-matched healthy controls’ brains, and to evaluating the extent to which analyses of residuals as deviations from some trajectory exist in the literature. Thus far, we are aware of a similar trend of predicting age using genetic features in attempt to document differences in precocious and delayed genetic development (Sumner, Colich, Uddin, Armstrong, & McLaughlin, 2019; Wolf et al., 2018). In the meantime, while previous studies have suggested that the brain age gap be used as biomarker in clinical trials (Cole et al., 2018), our findings suggest that further methodological work and re-examination of the brain age framework are first warranted.

5 Acknowledgements

E.R.B. conceptualized the work, wrote derivations, and wrote the manuscript. A.C., T.E.N., and R.T.S. wrote derivations, and provided feedback on the framing of the work. R.R., F.Z. and H.S. provided statistical insights and edited the manuscript. K.R., T.M.M., and R.C.G. provided inspiration for, and assisted in the framing of the work. We thank members of the Brain Behavior Laboratory and attendees of Data Club for their questions and feedback.

Funding: This work was supported by the National Institute of Mental Health grant numbers MH107235, MH117014, MH119219, and MH123550; and National Institute of Neurological Disorders and Stroke grant numbers NS060910 and NS112274.
References

Beheshti et al. (2019) correlation

Beheshti et al. (2019) suggest subtracting $\hat{\alpha} + \hat{\gamma}A_i$ from \hat{A}_i, and calling this new value the corrected predicted age:

$$\text{Corr}(A, \hat{A} - (\hat{\alpha} + \hat{\gamma}A)) = \text{Corr}(A, \hat{A} - \hat{\gamma}A)$$

$$= \frac{\text{Cov}(A, \hat{A} - \hat{\gamma}A)}{\sqrt{\text{Var}(A) \times \text{Var}(\hat{A} - \hat{\gamma}A)}}$$

$$= \frac{-\hat{\gamma}\text{Var}(A) + \text{Cov}(A, \hat{A})}{\sqrt{\text{Var}(A) \times \left(\text{Var}(\hat{A}) + \hat{\gamma}^2\text{Var}(A) - 2\hat{\gamma}\text{Cov}(A, \hat{A})\right)}}.$$

They found that this new predicted age was more highly correlated with age than the predicted age using only brain features, and presented this as evidence that their method is superior to Cole et al. (2018)’s method. They could not have done this transformation, though, because it does not match their reported results. For instance, if they had done this transformation, they would have found that the true R^2 of .38 ($R \approx .616$) maps to a new R^2 of approximately .194. Instead they reported an inflated R^2 of .88, which is what they would have found if they had added \hat{BAG}_i to \hat{A}_i. Adding \hat{BAG}_i to \hat{A}_i is equivalent to subtracting \hat{MBAG}_i from \hat{A}_i:

$$\hat{BAG}_i + \hat{A}_i = \hat{\alpha} + \hat{\gamma}A_i + \hat{A}_i$$

$$= A_i - BAG_i + (\hat{\alpha} + \hat{\gamma}A_i)$$

$$= A_i - MBAG_i,$$

which suggests that they actually performed a transformation that is equivalent to Eqn. (7). If Beheshti et al. (2019) implemented their method as stated, they would have found that the correlation after their adjustment dramatically underestimates of the true correlation (see Figure 2).

Adding and subtracting MBAG from age results in the same inflated correlation with age

Modified predicted age has been calculated in the literature as either $\hat{MBAG}_i = A_i - BAG_i$ or $\hat{MBAG}_i = A_i + BAG_i$. In both cases, the main results from the paper applies since the correlation between age and
Figure 2: Correlation as a result of Beheshti et al. (2019)’s reported transformation is a function of the true correlation. The Beheshti correlation is the correlation between age and predicted age minus predicted BAG. To illustrate what correlation would be obtained if the reported transformations were used, correlations using both the transformation and the equivalent function are plotted. r_{func} is using (10), and r_{trans} is using the series of transformations.
the modified predicted age using either formula is the same. We have that

\[
\text{Corr}(A, A - \text{MBAG}) = \frac{\text{Var}(A) - \text{Cov}(A, \text{MBAG})}{\sqrt{\text{Var}(A) \times (\text{Var}(A) + \text{Var}(\text{MBAG}) - 2 \times \text{Cov}(A, \text{MBAG}))}}
\]

\[
= \frac{\text{Var}(A)}{\sqrt{\text{Var}(A)^2 + \text{Var}(A)\text{Var}(\text{MBAG})}}
\]

\[
\text{Corr}(A, A + \text{MBAG}) = \frac{\text{Var}(A) + \text{Cov}(A, \text{MBAG})}{\sqrt{\text{Var}(A) \times (\text{Var}(A) + \text{Var}(\text{MBAG}) + 2 \times \text{Cov}(A, \text{MBAG}))}}
\]

\[
= \frac{\text{Var}(A)}{\sqrt{\text{Var}(A)^2 + \text{Var}(A)\text{Var}(\text{MBAG})}}
\]

\[
= \text{Corr}(A, A - \text{MBAG})
\]

which follows from the fact that \(\text{MBAG}_i\) is a residual from regression of \(\text{BAG}_i\) on \(A_i\) and thus \(\text{MBAG}_i\) is orthogonal to \(A_i\) or equivalently, \(\text{Cov}(A, \text{MBAG}) = 0\). Note that this result is only approximate when the regression of \(\text{BAG}\) on age is done in the training set.
Derivation of Equation (7)

\[
\text{Corr}(A, \hat{A}^M) = \text{Corr}(A, A - \text{MBAG})
\]

\[
= \text{Corr}(A, A - \text{BAG} + (\hat{\alpha} + \hat{\gamma}A))
\]

\[
= \text{Corr}(A, \hat{A} + \hat{\alpha} + \hat{\gamma}A)
\]

\[
= \frac{\text{Cov}(A, \hat{A} + \hat{\alpha} + \hat{\gamma}A)}{\sqrt{\text{Var}(A) \times \text{Var}(\hat{A} + \hat{\alpha} + \hat{\gamma}A)}}
\]

\[
= \frac{\hat{\gamma} \sqrt{\text{Var}(A) + \text{Cov}(A, \hat{A})}}{\sqrt{\text{Var}(A) \times \left(\text{Var}(\hat{A}) + \hat{\gamma}^2 \text{Var}(A) + 2\hat{\gamma} \text{Cov}(A, \hat{A})\right)}}
\]

\[
= \frac{\hat{\gamma} \sqrt{\frac{\text{Var}(A)}{\text{Var}(A) \times \text{Var}(\hat{A})}} + \frac{\text{Cov}(A, \hat{A})}{\sqrt{\text{Var}(A) \times \text{Var}(\hat{A})}}}{1 - \hat{\gamma}^2 \text{Var}(A) + 2\hat{\gamma} \sqrt{\text{Var}(A)}}
\]

\[
= \left(1 + \frac{1}{\left(\frac{r_{A\hat{A}} + \hat{\gamma} \sqrt{\text{Var}(A)}}{\text{Var}(A)}\right)^2 (1 - r_{A\hat{A}})^2}^{-1/2}
\]

\[
= \frac{\hat{\gamma} \sqrt{\frac{\text{Var}(A)}{\text{Var}(A) \times \text{Var}(\hat{A})}}} + \frac{\text{Cov}(A, \hat{A})}{\sqrt{\text{Var}(A) \times \text{Var}(\hat{A})}}}{1 - \hat{\gamma}^2 \text{Var}(A) + 2\hat{\gamma} \sqrt{\text{Var}(A)}}
\]
Derivations of Equations (8) and (9)

The following derivation involves the algebraic manipulation of the sample estimates and not expectations. Assuming that the linear regression of BAG on age has been estimated with the testing data, then

\[
MBAG = BAG - H_A BAG
= A - \hat{A} - H_A (A - \hat{A})
= -\hat{A} + H_A \hat{A}
= -R_A \hat{A}
\]

where \(H_A = A (A^T A)^{-1} A^T \) is the hat matrix for the regression on age, \(A = [1 \ A] \), and \(R_A = I - H_A \) is the corresponding residual forming matrix.

We first note that

\[
\text{Cov}(A, \hat{A}^M) = \text{Cov}(A, A - MBAG)
= \text{Cov}(A, A + R_A \hat{A})
= \text{Var}(A) + \text{Cov}(A, R_A \hat{A})
= \text{Var}(A)
\]

where the last equality holds due to the orthogonality of \(A \) and \(R_A \).

Then, consider:

\[
\text{Var}(\hat{A}^M) = \text{Var}(A - MBAG)
= \text{Var}(A + R_A \hat{A})
= \text{Var}(\hat{A}) \left\{ \frac{\text{Var}(A)}{\text{Var}(A)} + \frac{\text{Var}(R_A \hat{A})}{\text{Var}(A)} \right\}
= \text{Var}(\hat{A}) \left\{ \frac{\text{Var}(A)}{\text{Var}(A)} + (1 - r_{A\hat{A}}^2) \right\}.
\]

Then, Eqn. (8) is found as
Corr(A, \hat{A}^M) = \frac{\text{Var}(A)}{\sqrt{\text{Var}(A)\text{Var}(\hat{A}^M)}}

= \frac{\text{Var}(A)}{\sqrt{\text{Var}(A)\text{Var}(\hat{A})\left[\frac{\text{Var}(A)}{\text{Var}(A)} + (1 - r_{A\hat{A}}^2)\right]}}

= \left[\frac{\text{Var}(\hat{A})}{\text{Var}(A)}\left\{\frac{\text{Var}(A)}{\text{Var}(A)} + (1 - r_{A\hat{A}}^2)\right\}\right]^{-1/2}

= \left\{1 + \frac{\text{Var}(\hat{A})}{\text{Var}(A)}(1 - r_{A\hat{A}}^2)\right\}^{-1/2}.

For insight on the Var(\hat{A})/Var(A) term, note that shrinkage will generally mean this term is less than one. Moreover, if \hat{A} were found with a linear regression on the testing data, i.e. \hat{A} = X(X^TX)^{-1}X^TA where X are brain features, then this ratio is exactly the squared correlation,

\frac{\text{Var}(\hat{A})}{\text{Var}(A)} = r_{A\hat{A}}^2,

producing Eqn. (9).

In this setting, when both brain age and MBAG are determined from testing data linear regression, the correlation of A and \hat{A}^M can never fall below \frac{1}{\sqrt{1 + 0.5^2 + (1 - 0.5^2)}} \approx 0.9177. Of course, in practice, held-out training data is used to learn the brain-age relationship, so a regression prediction would instead have the form \hat{A} = X(X^TX)^{-1}X^Tin\text{A}_{in}, where X_{in} and A_{in} are held-in training data, but Var(\hat{A})/Var(A) \approx r_{A\hat{A}}^2 still provides a useful starting point for exploring the parameters in the expression for Corr(A, \hat{A}^M).

Finally, note that the equality of Var(\hat{A})/Var(A) and r_{A\hat{A}}^2 holds not just for linear regression, but any linear estimator. Specifically, if there exists an idempotent \text{H}_X (\text{H}_X^2 = \text{I}, \text{H}_X^T = \text{H}_X) such that \text{I}^T\text{H}_X = \text{I} and \hat{A} = \text{H}_X A, then
\[
\frac{\operatorname{Var}(\hat{A})}{\operatorname{Var}(A)} = \frac{\operatorname{Var}(H_X A)}{\operatorname{Var}(A)} = \frac{(H_X A)^T / N - (1^T H_X A / N)^2}{\operatorname{Var}(A)} = \frac{A^T H_X A / N - (1^T A / N)(1^T H_X A / N)}{\operatorname{Var}(A)} = \frac{\operatorname{Cov}(A, H_X A)}{\operatorname{Var}(A)} = \frac{\operatorname{Cov}(A, \hat{A})}{\operatorname{Var}(A)} = \sqrt{\frac{\operatorname{Var}(\hat{A})}{\operatorname{Var}(A)}} r_{\hat{A} \hat{A}}.
\]

And thus
\[
\frac{\operatorname{Var}(\hat{A})}{\operatorname{Var}(A)} = r_{\hat{A} \hat{A}}^2.
\]