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Abstract 

 

The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) 

- cells that can be differentiated into any cell type of the three germ layers - has provided a 40 

foundation for in vitro human disease modelling
1,2

, drug development
1,2

, and population 

genetics studies
3,4

. In the majority of instances, the expression levels of genes, plays a critical 

role in contributing to disease risk, or the ability to identify therapeutic targets. However, while 

the effect of the genetic background of cell lines has been shown to strongly influence gene 

expression, the effect has not been evaluated at the level of individual cells. Differences in the 45 

effect of genetic variation on the gene expression of different cell-types, would provide 

significant resolution for in vitro research using preprogramed cells. By bringing together single 

cell RNA sequencing
15–21

 and population genetics, we now have a framework in which to 

evaluate the cell-types specific effects of genetic variation on gene expression. Here, we 

performed single cell RNA-sequencing on 64,018 fibroblasts from 79 donors and we mapped 50 

expression quantitative trait loci (eQTL) at the level of individual cell types. We demonstrate 

that the large majority of eQTL detected in fibroblasts are specific to an individual sub-type of 

cells. To address if the allelic effects on gene expression are dynamic across cell re-

programming, we generated scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. 

We again identify highly cell type specific eQTL in iPSCs, and show that that the eQTL in 55 

fibroblasts are almost entirely disappear during reprogramming. This work provides an atlas of 

how genetic variation influences gene expression across cell subtypes, and provided evidence 

for patterns of genetic architecture that lead to cell-types specific eQTL effects. 

 

 60 

Introduction 

 

Mapping expression quantitative trait loci (eQTL) is a powerful method to study how common 

genetic variation between individuals influences gene expression
5,6

. To date, nearly all eQTL 

studies have been conducted while interrogating ‘bulk’ samples, where the RNA is collected 65 
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from millions of lysed cells, and therefore gene expression represents an average across all cells 

in a sample. However, even with ‘bulk’ RNA analyses, comparisons of eQTL identified from 

different tissues
7,8

, and cultured cell lines
9,10

 has revealed differences in both the presence, and 

the directions of allelic effects of eQTL
13,14

. In stem cell systems, single cell approaches have 

already revealed that cell cultures do not contain homogeneous cell types
60

, instead consisting 70 

of multiple cell types that have different transcriptional profiles. By harnessing technology and 

recent methods that enable high-throughput generation of single cell data using cell 

multiplexing across donors
22–24

, provides an experimental framework in which cell-type specific 

genetic effects on gene expression can be tested - permitting the identification of eQTL that are 

truly cell type specific, and that would otherwise be undetected by ‘bulk’ approaches. 75 

 

Previous studies have identified cell type specific eQTL using scRNA-seq which were 

unobservable in bulk RNA-sequence studies
25–29

. The first study to report this enhanced cell 

type specific eQTL detection from scRNA-seq investigated 92 genes measured in 1,440 single 

cells from lymphoblastoid cell lines in 15 individuals
27

. In the current study, we set out to 80 

understand the impact of single nucleotide polymorphisms (SNPs) - common genetic variants - 

on gene expression in fibroblast and reprogrammed iPSC cell types through eQTL mapping at 

the level of cell subpopulations. 

 

Results 85 

To identify cell-type specific eQTL in an unbiased manner, we generated scRNA-seq expression 

profiles of 83,985 cells - 64,018 cultured dermal fibroblasts, generated from skin biopsies from 

79 unrelated individuals, and 19,967 iPSCs reprogrammed from 31 of the dermal fibroblast lines 

(Figure 1A). After quality control, we used an unbiased approach to map cells to reference 

transcriptomes from the human primary cell atlas
30,31

, demonstrating that the majority of 90 

fibroblasts mapped to the fibroblast reference, while the majority of iPSCs mapped to the iPSC 

or embryonic stem cell references. We used an unsupervised clustering approach
32

 to identify 

six types of fibroblasts and four types of iPSCs (Figures 1B-C and S1). Fibroblast and iPSC types 

contained equal distributions of individual donors, pool batches and cell cycle states (Figures S2 
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and S3). Cell types of fibroblasts and iPSCs were classified based on the expression of key 95 

marker genes. For fibroblasts: TUBA1B
hi

/DCN
lo

; CD9
hi

/FTL
lo

; CD9
hi

/C1R
hi

; DCN
hi

/C1R
hi

; 

WISP2
hi

/THBS1
hi

; and TUBA1B
lo

/CD9
lo

.  And the iPSCs: FTL
hi

/ENO1
hi

; FTL
lo

/BST2
hi

; FTL
lo

/SNHG8
hi

; 

and FTL
hi

/ENO1
lo

. (Figures 1D-E, S4 and S5 and Tables S1 and S2). Further, pseudo-trajectory 

analysis demonstrated that the identified cell types were positions along a clear lineage 

trajectory for both fibroblast and iPSC types (Figure S6). 100 

 

We subsequently tested for cis-eQTL independently in each of the 10 cell types. We identified a 

total of 30,574 eQTL for 1,951 genes (FDR < 0.05) across all cell types - 29,800 eQTL for 1,877 

genes in fibroblast types and 774 cis-eQTL for 85 genes in iPSC types (Table S3 and S4). 

Assessing the overlap of eQTL and eGenes, revealed that the majority of cis-eQTL are 105 

predominantly cell type specific, with 82.4% of the eGenes (65.4% of the cis-eQTL) identified in 

only one fibroblast type (Figures 2A-B and S7A) and 97.6% of the eGenes (99.6% of the cis-

eQTL) identified in only one iPSC type (Figure S7B-C). Cell-type ubiquitous (shared across cell 

sub-types) were rare, with eight eGenes with eQTL in all fibroblast types (Figures 2A, S7A, S8), 

and none across all iPSC types (Figure S7B). Looking across the cell reprogramming event, we 110 

observed a complete lack of shared eQTL between fibroblast and iPSCs. Only 11 genes had 

eQTL in both fibroblasts and iPSCs (Figure S7E), but none of those shared a common eSNP, or 

SNPs in linkage disequilibrium with one another (r
2
>0.2), indicating that their expression was 

likely associated with independent loci (Figures 2C, S9).  

 115 

We then investigated whether the eQTL identified in fibroblasts replicated in bulk RNA-

sequence data from the Genotype-Tissue Expression (GTEx, culture fibroblasts n=483)
33

. Only 

12% of the 29,800 eQTL identified in the six fibroblast types replicated (p<0.05/29,800) in GTEx, 

although they had a consistent shared direction of allelic effects. Given the high percentage of 

cell-type specific eQTL, one explanation for this observation is that bulk RNA approaches mask 120 

cell-type specific effects through averaged gene expression across cells. From this, we 

hypothesised that cell-type ubiquitous eQTL (from the single cell analysis) would have higher 

replication rates compared to cell-type specific eQTL. Testing for replication for eQTL that were 
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shared across multiple fibroblast cell types in the scRNA-seq, showed a highly significant 

difference compared with eQTLs that were significant in just one fibroblast type (p<2-308
 for 125 

eGenes and p=1
-108

 for eSNPs; Figures 2A and S7A). Further, we identified that the allelic effect 

size of the eGenes and eQTLs in GTEx cultured fibroblasts was positively correlated with the 

number of fibroblast types where those eGenes and eQTL were significant (Figure S10). These 

results indicate that eQTL mapping using bulk RNA-sequence data is likely not sensitive enough 

to identify fibroblast type-specific eQTL.  130 

 

Based on our initial observation of the specificity of cell type eQTL effects, we next sought to 

identify how different types of genetic architecture and gene expression patterns contributed 

to the cell-type specific effects in fibroblasts and iPSCs.  

 135 

One potential explanation for the cell type-specific eQTL detection, is that the gene is only 

expressed in one cell type, and therefore, we would not expect to observe an eQTL in the other 

cell types that where the gene isn’t expressed. To evaluate this, we correlated the expression of 

each gene that had a significant cell-type specific eQTL effect, with its expression levels in each 

of the other cell types. (Figure S11, S12). These results indicate that cell type-specific eQTL are 140 

not a function of cell type-specific gene expression, showing high levels of correlation in almost 

all instances. Another possible explanation for the cell type-specific eQTL is low statistical 

power to detect eQTL in multiple cell types. To assess this hypothesis, we implemented an 

empirical framework to test the rank of the test statistics for eGene SNP effects across the non-

significant cell types for each cell-type specific eQTL. In almost all instances we observed none, 145 

or very limited enrichment of the test statistic across cell types (Figure S12). In the instance 

where we identified significant enrichment, it existed between the CD9
hi

/FTL
lo

 and CD9
hi

/CLR
hi

 

fibroblast cell-types that are similar to one another (Figure 1). Therefore, we conclude that the 

majority of cell type-specific eQTL that we have identified were not a result of differences in 

gene expression or due to lack of statistical power. We next set out to interrogate eGenes that 150 

were in common between multiple cell types. 
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We identified 283 eGenes that were significant in multiple cell types, but which had different 

top eSNPs - 255 eGenes in at least two fibroblast types, no eGenes with different top eSNPs in 

two iPSC types and 11 eGenes with different top eSNPs in a fibroblast type and an iPSC type. In 155 

these instances, we considered two alternative hypotheses: 1) that there was one eQTL shared 

between cell types but that it was tagged by a different top eSNP in each cell type, or 2) that 

there were two independent cell type-specific eQTLs for the same gene. To address these 

hypotheses, we tested whether the top eSNP in a given cell type was still significantly 

associated with gene expression after correcting for the top eSNP in the other cell type. A 160 

significant association of the SNP with the eGene expression after correction for the other eSNP 

would indicate that the two eSNPs were not tagging the same eQTL and were, therefore, 

independent loci. The analysis identified that between 44.4% and 73.8% of these loci for a given 

fibroblast type were independent (Figure 3 and Table S5), and 100% of the eGenes shared 

between the fibroblast and iPSC types were also independent loci (Table S6). These results 165 

denote that many of the eGenes that were shared between multiple cell types, are in fact 

regulated by different loci, providing further support to our previous finding that the majority 

of eQTL are cell type-specific.  

 

Next, we investigated the 153 eGenes that shared at least one significant eSNP-eGene pair (i.e. 170 

same top eSNP) across multiple fibroblast types. We evaluated the potential interactions 

between cell type and eSNP, leading to difference magnitude of the allelic effect in different 

cell types by testing for a SNP-fibroblast cell type interaction for each of the 153 eSNP-eGene 

pairs. In cases where multiple eSNP-eGene pairs were significant for the same eGene across 

multiple cell types, we tested the eSNP-eGene pair with the largest beta difference between 175 

two fibroblast types. This analysis identified 64 (41.8%) significant eSNP-fibroblast type 

interactions (Table S7). This analysis identifies instances where there are eQTL that are 

ubiquitous, but whose alleleic effect significantly varies across cell types.  

 

After identifying that the majority of eQTL are cell type-specific, and that the cell type can 180 

interact with the SNP locus to alter the allelic effect, we interrogated our results for loci that 
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were statistically significant across multiple analyses. We first asked whether any eGene was 

significant in all six fibroblast types and was also a significant interaction between cell type and 

eQTL, and identified the guanylate binding protein 3 (GBP3) locus that was significant in both 

tests (Figure 4A-B). The rs541032500-GBP3 locus has a significant eQTL in five of the six 185 

fibroblast cell types, and demonstrated a significant interaction with the cell type (p=1.5
-02

). 

Interestingly, GBP3 has been shown to be induced in fibroblasts by interferon treatment
34,35

. 

Our results indicate that the effect of interferon induction of GBP3 is likely to be mediated by 

the genotypes carries at the rs541032500 loci, and it’s magnitude vary based on the cell type 

context.  190 

 

Following this, we evaluated whether any of the differentially expressed genes (Figures 1C, S4 

and Table S1) also had a significant interaction with eQTL. From this we identified the copine 1 

(CPNE1) locus, which was significantly increased in the CD9
hi

/FTL
lo

 and the CD9
lo

/C1R
hi

 

fibroblast types, and significantly decreased in the WISP2
lo

/THBS1
hi

 and TUBA1B
lo

/CD9
lo 195 

fibroblast types (Figure 4C). In addition, the rs374587283-CPNE1 cis-eQTL was significant in five 

of the six fibroblast types (Figure 4D-E) and demonstrated a significant SNP-cell type interaction 

(p=4.9
-05

; Figure 4E).  

 

Finally, we investigated whether any of the eGenes had evidence for association with multiple 200 

independent loci using conditional association analysis (Methods). One example of this genetic 

architecture is the gem nuclear organelle associated protein 5 (GEMIN5) locus, which has three 

independent loci in three cell types - two fibroblast types and one iPSC type (Figure 4F-I). 

GEMIN5 was a significant eGene for the TUBA1B
hi

/DCN
lo 

fibroblast type, the CD9
hi

/C1R
hi

 

fibroblast type and the FTL
lo

/SNHG8
hi

 iPSC type. However, the top eSNP from each cell type for 205 

GEMIN5 are independent of one another. For example, the rs74656936-GEMIN5 eQTL was 

significant in the CD9
hi

/C1R
hi

 but not the TUBA1B
hi

/DCN
lo

 fibroblast cell types (Figure 4G). 

Meanwhile, the rs5635348-GEMIN5 eQTL was significant in the FTL
lo

/SNHG8
hi

 iPSC type but was 

not significant in either of the fibroblast types (Figure 4H). Finally, the rs12055298-GEMIN5 
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eQTL was significant in the TUBA1B
hi

/DCN
lo 

fibroblast type but not in the CD9
hi

/C1R
hi

 fibroblast 210 

type or the FTL
lo

/SNHG8
hi

 iPSC type (Figure 4I). 

 

We set out to identify and define the dynamics of eQTL in fibroblasts and fibroblast-derived 

iPSC cell types. Collectively, our results provide evidence that there is a high degree of cell type-

specific gene regulation that is not captured with bulk RNA-seq. Further, our results indicate 215 

that even when the same eGene is observed in different cell types, the allelic effect may be 

altered in different cell types, or may be regulated by different loci entirely. Our findings 

support previous reports that many cell type-specific eQTL are not detected using bulk RNA-

sequencing and that scRNA-seq can be utilised to enhance eQTL detection
36

.  

 220 

scRNA-seq provides a number of advantages over bulk RNA-sequencing for eQTL mapping. 

Specifically, scRNA-seq enables cell types to be identified in an unbiased manner before eQTL 

detection. Therefore, even cell types that have previously not been described or well 

characterised can be identified and separated for eQTL mapping, thereby decreasing the 

measurement noise that is introduced due to heterogeneity of cells in bulk RNA-sequence 225 

profiling. Furthermore, scRNA-seq enables the cells from multiple individuals to be pooled in a 

single experiment, thereby decreasing technical batch effects that can confound biological 

variation between individuals. Finally, this study has provided a map of eQTL in fibroblast and 

fibroblast-derived iPSC types that will be an important reference for future studies in iPSC-

derived cell types.   230 
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Methods 

 

Participant Recruitment and Ethics Approval  

Experimental work was approved by the Human Research Ethics committees of the Royal 

Victorian Eye and Ear Hospital (11/1031), University of Melbourne (1545394), University of 235 

Tasmania (H0014124) in accordance with the requirements of the National Health & Medical 

Research Council of Australia (NHMRC) and conformed with the Declaration of Helsinki
37

. 

 

Fibroblast culture 

Human skin punch biopsies were obtained from subjects over the age of 18 years. Fibroblasts 240 

were cultured in DMEM high glucose supplemented with 10% foetal bovine serum (FBS), L-

glutamine, penicillin (100 U/mL), streptomycin 100 (µg/mL) (all from Thermo Fisher Scientific, 

USA). All cell lines were mycoplasma-free (MycoAlert mycoplasma detection kit, Lonza, 

Switzerland).  

 245 

Generation and maintenance of iPSCs 

Human iPSCs were reprogrammed from fibroblast cultures by nucleofection (Amaxa
TM

 

Nucleofector
TM

) of episomal vectors expressing OCT-4, SOX2, KLF4, L-MYC, LIN28 and shRNA 

against p53
38

, in feeder- and serum-free conditions using TeSR
TM

-E7
TM 

medium (STEMCELL 

Technologies, Canada) and selected by sorting with anti-human TRA-1-60 Microbeads using a 250 

MultiMACS (Miltenyi, Germany) as described by Crombie et al
39 and Daniszewski et al40

. Cells 

were maintained on vitronectin XF
TM

 (STEMCELL Technologies
TM

) -coated plates using TeSR
TM

-

E8
TM

 (Stem Cell Technologies). At passage eight, cells were assessed for quality control as 

described previously
40

.  

 255 

iPSC quality control 

Pluripotency was assessed by immunochemistry for expression of OCT3/4 (sc-5279, Santa Cruz 

Biotechnology, USA) and TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific). Copy number 

variation (CNV) analysis of original fibroblasts and iPSCs was performed using Illumina 
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HumanCore Beadchip arrays with PennCNV
41,42

 and QuantiSNP
42

 with default parameter 260 

settings. Chromosomal aberrations were deemed to involve ≥ 20 contiguous SNPs or a genomic 

region spanning ≥ 1MB 
41,42

. The B allele frequency (BAF) and the log R ratio (LRR) were 

extracted from GenomeStudio (Illumina, USA) for representation. 

 

Generating the single cell RNA-sequence data  265 

Viable cells were sorted on a BD Influx cell sorter (Becton-Dickinson) using Propidium Iodide 

into Dulbecco's phosphate buffered saline (PBS) + 0.1% bovine serum albumin and retained on 

ice. Sorted cells were counted and assessed for viability with Trypan Blue using a Countess 

automated counter (Invitrogen), and then resuspended at a concentration of 800-1000 cells/µL 

(8 x 10
5
 to 1 x 10

6
 cells/mL). Final cell viability estimates ranged between 92-96%.  270 

 

Single cell suspensions were loaded onto 10X Genomics Single Cell 3' Chips along with the 

reverse transcription (RT) mastermix as per the manufacturer's protocol for the Chromium 

Single Cell 3' Library (10X Genomics; PN-120233), to generate single cell gel beads in emulsion 

(GEMs). Reverse transcription was performed using a C1000 Touch Thermal Cycler with a Deep 275 

Well Reaction Module (Bio-Rad) as follows: 55
o
C for 2h; 85

o
C for 5min; hold 4

o
C. cDNA was 

recovered and purified with DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; Cat# 

37002D) and SPRIselect beads (Beckman Coulter; Cat# B23318). Purified cDNA was amplified as 

follows: 98
o
C for 3min; 12x (98

o
C for 15s, 67

o
C for 20s, 72

o
C for 60s); 72

o
C for 60s; hold 4

o
C. 

Amplified cDNA was purified using SPRIselect beads and sheared to approximately 200bp with a 280 

Covaris S2 instrument (Covaris) using the manufacturer’s recommended parameters. 

Sequencing libraries were generated with unique sample indices (SI) for each chromium 

reaction. Libraries were multiplexed, and sequenced on an Illumina NextSeq 500 (NextSeq 

control software v2.0.2/Real Time Analysis v2.4.11) using a 150-cycle NextSeq 500/550 High 

Output Reagent Kit v2 (Illumina, FC-404-2002) in standalone mode as follows: 98 bp (Read 1), 285 

14 bp (I7 Index), 8 bp (I5 Index), and 10 bp (Read 2). 

 

scRNA-seq Cellranger Processing 
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Processing of the sequencing data into transcript count tables was performed using the Cell 

Ranger Single Cell Software Suite by 10X Genomics (http://10xgenomics.com/). Raw base call 290 

files from the NextSeq 500 sequencer were demultiplexed, using the cellranger mkfastq 

pipeline, into sample-specific FASTQ files. These FASTQ files were then processed with the 

cellranger count pipeline where each sample was processed independently. First, cellranger 

count used STAR to align cDNA reads to the hg19 human reference transcriptome, which 

accompanied the Cell Ranger Single Cell Software Suite
43

. We note that, since the expression 295 

data is limited to the 3’ end of a gene and we used gene-level annotations, differences between 

reference versions, such as GRCh38, are unlikely to significantly alter conclusions. Aligned reads 

were filtered for valid cell barcodes and unique molecular identifiers (UMI) and observed cell 

barcodes were retained if they were 1-Hamming-distance away from an entry in a whitelist of 

known barcodes. UMIs were retained if they were not homopolymers and had a quality score > 300 

10 (90% base accuracy). Cellranger count corrected mismatched barcodes if the base mismatch 

was due to sequencing error, determined by the quality of the mismatched base pair and the 

overall distribution of barcode counts. A UMI was corrected to another, more prolific UMI if it 

was 1-Hamming-distance away and it shared the same cell barcode and gene. Cellranger count 

examined the distribution of UMI counts for each unique cell barcode in the sample and 305 

selected cell barcodes with UMI counts that fell within the 99th percentile of the range defined 

by the estimated cell count value. The default estimated cell count value of 3,000 was used for 

this experiment. Counts that fell within an order of magnitude of the 99th percentile were also 

retained. The resulting analysis files for each sample were then aggregated using the cellranger 

aggr pipeline, which performed a between-sample normalisation step and merged all samples 310 

into one. Post-aggregation, the count data was processed and analysed using a comprehensive 

pipeline assembled and optimised in-house as described below.  

 

To pre-process the mapped data, we constructed a cell quality matrix based on the following 

data types: library size (total mapped reads), the total number of genes detected, percent of 315 

reads mapped to mitochondrial genes, and percent of reads mapped to ribosomal genes 

(Figure S13). Cells that had any of the four parameter measurements that were greater than 3x 
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median absolute deviation (MAD) of all cells were considered outliers and removed from 

subsequent analysis. In addition, we applied two thresholds to remove cells with mitochondrial 

reads above 20% or ribosomal reads above 50%. To exclude genes that were potentially 320 

detected from random noise, we removed genes that were detected in fewer than 1% of all 

cells. These quality control filters resulted in consistent total reads per individual and per pool 

in both fibroblasts and iPSCs (Figure S14). Before normalisation, abundantly expressed 

ribosomal genes and mitochondrial genes were discarded to minimise the influence of those 

genes in driving clustering and differential expression analysis.  325 

 

Demultiplexing  

We adapted the Demuxlet method to our 10x scRNAseq data.
28

 The likelihood that a cell 

originated from a sample is the cumulative likelihood of single nucleotide polymorphism 

genotypes identified in each cell. We calculated posterior probability of a genotype g identified 330 

for a cell based on scRNA-seq data given the DNA data from the imputed BeadChip genotypes. 

Since the single cell SNP genotype data is sparse, to increase the coverage of SNPs called from 

scRNA-seq data that are in the SNP genotype data, we imputation SNP genotypes using the 

haplotype reference panel. We applied an ensemble approach using the outputs from pre-

imputed genotype data, imputed genotype likelihood data, and impute genotype dosage data, 335 

increased the singlet probabilities from Demuxlet (Figure S15). The ensemble approach enabled 

the unique donor assignment of 90.6% of all cells, with high confidence to each sample, where 

demuxlet predicted no ambiguously assigned droplets. Of note, 100% of the cells before 

Demuxlet were identified in cellranger pipeline as a singlet. Demuxlet identified 90.6% of all 

cellranger singlet cells as ‘real’ single cells. Therefore, these cells were ascertained as singlets. 340 

To recover the cell assignment to the remaining 9.4% cell ranger singlets, predicted as doublets 

by Demuxlet, we utilised gene expression matrix to model cell doublets, using a simulation-

based approach
44

. For each cell that was identified as both a singlet by demuxlet and the 

doublet expression simulation, was assigned to a donor based on the highest likelihood 

probability from demuxlet. 345 
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Normalisation 

Normalisation was conducted at four levels: between samples within a pool, between pools, 

between cells, and between clusters. The between-pool normalisation followed the 

subsampling strategy in the cellranger pipeline, where the reads, genes and cells were 350 

randomly subsampled following subsampling rates determined by the total read per sample 

and binomial distribution.
45

 Four pools were randomly multiplexed into one sequencing lane. 

For cell-to-cell normalisation, a cell-pooling strategy was applied to circumvent the zero-

inflation issue, as described by Lun et al.
46

 Between pool normalisation followed Combat 

parametric empirical Bayesian strategy. To select the normalisation strategy, we compared 355 

results from using Combat, RUV and SCRAN methods by using k-BET batch-effect scores
32

. We 

found that a combination of SCRAN normalisation followed by Combat was superior in reducing 

batch effects compared to other methods, consistent with the results reported by Buttner and 

colleagues
32

. Prior to eQTL analysis, the mean expression of each gene per individual per cell 

subpopulation was computed and Z-transformed for eQTL mapping.  360 

 

Imputation and Quality control of genotype data 

The 79 cell lines were genotyped by Infinium HumanCore-24 v1.1 BeadChip assay (Illumina). 

GenomeStudioTM V2.0 (Illumina) was used for SNP genotype calling of the BeadChip data (total 

306,670 SNPs for one assay). The full genotype report files were reformatted into Plink map, 365 

fam, and lgen files and were then converted into variant calling format (vcf) using custom shell 

scripts and Plink2
47

. Plink2-converted files contained predicted reference and alternative alleles 

with no information for homozygous genotypes, which were fixed using the GenomeStudio 

report file and a custom script. For each sorted, indexed vcf file (separated by chromosomes), a 

strand fixing step was performed using bcf fixref function
48

. Prior to imputation, Eagle V.2.3.5 370 

was used for haplotype phasing the strand-fixed genotype vcf files
49

. The phased data were 

imputed based on the 1000 genome phase 3 reference panel (2,535 samples) using the 

minimac3 program in the Michigan Imputation server
50

.  
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SingleR
30

 was used to map single cell transcriptomes against 713 reference transcriptomes. 

Then, we combined all cells from the fibroblasts and iPSCs pools separately. Using these two 

merged datasets, we normalised and clustered cells, ensuring the clustering was not affected 

by pool-specific data processing. We performed clustering using the SCORE method to identify 

subpopulations of cells
51

. Clustree
52

 was used to display the cluster stability at different 380 

resolutions (Figure S16). To visualise cell distributions, we used non-linear Uniform Manifold 

Approximation and Projection (UMAP) dimensionality reduction
53

. Cyclone
54

 was used to 

estimate cell cycle stages of each cell. Pseudo-trajectory analysis was carried out with slingshot 

55
 using the UMAP cell projections. 

 385 

eQTL association analysis 

To study specific regulation effects of genomic variance to gene expression, we performed 

statistical analysis of the association between genotypes of single nucleotide polymorphisms 

and single-cell gene expression for 79 fibroblast cell lines and 31 iPSC cell lines generated from 

the same individuals. We filtered for common SNPs (minor allele frequency > 0.05) that were 390 

within +/- 1 Mb of an expressed gene (detected in > 1% of the cells), resulting in 5,368,223 SNPs 

and 9,796 genes for the fibroblasts, and 4,508,778 and 10,899 genes for the iPSCs. SNP 

genotypes were recoded as 0, 1, or copies of the reference allele. eQTL mapping was 

performed for each subpopulation identified by the clustering analysis. Cis-eQTLs (SNP < 1 Mb) 

were detected using a linear model implemented in the MatrixEQTL R software with study-wide 395 

FDR lower than 5%
56

.  

 

Differential Expression 

We used edgeR
57,58

 to identify differentially expressed genes between each cell type compared 

with the other cell types combined (i.e. each fibroblast type compared to the other five 400 

fibroblast types and each iPSC type compared to the other three iPSC types). Differentially 

expressed genes were detected using the gene-wise negative binomial generalised model with 

a quasi-likelihood test. Detection rate and pool batches were included as covariates following 
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the recommendations of Soneson and Robinson
36

. Heatmaps and upset plots were generated 

using ComplexHeatmap
59

 in R. Heatmaps were created with scaled, normalised data. 405 

 

Independent eQTL analysis 

Given an eGene that was significant in a pair of cell types (a and b), the top eSNPs from each 

cell type (Sa and Sb) were tested for independency with relation to eGene expression. 

Accordingly, the top eSNP (Sb) in cell type b was regressed from the linear model for the 410 

association of the top eSNP, Sa, for cell type a with gene expression of the eGene (Ga) in cell 

type a. 

 

Ga ~ 50 + 51Sa + 52Sb + W 

 415 

eSNPs were deemed independent if the association between Sa and Ga was significant following 

regression of Sb in the linear model. 

 

Interaction eQTL analysis 

Given an eGene that was significant in at least two cell types, the eSNP with the largest 420 

difference between their beta allelic effects between any two clusters was used to test for cell 

type interaction. Two models were fit for gene expression G, with SNP S and cell type C. The 

first model (1) was a normal linear model and the second model (2) included an interaction 

term. An interaction was considered significant if an anova comparing the two models was 

significant. 425 

 

1)   G ~ 50 + 51S + 52C + W 

2)   G ~ 50 + 51S + 52C + 53SC + W 

 

eGene correlation 430 

The expression of eGenes that were unique to a given cell type were correlated with their 

expression in the other cell types using a Pearson correlation test. 
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eGene enrichment 

eGenes from a specific cell type were tested for enrichment in the other cell types. eGenes 435 

were ranked based on the lowest P-value for each eGene. An expected distribution of mean 

rank scores were generated from 10,000 permutations of randomly selected genes (selecting 

the same number of genes as eGenes). The mean rank of the eGenes in the testing cell types 

were then tested for significance with a t-test. 

 440 

GTEx comparison 

Gene Tissue Expression (GTEx)
33

 database version seven results were downloaded on 6 July, 

2019. The cultured fibroblast cell eQTL were compared with the fibroblast cell type eQTL results 

to identify common and unique results. 

 445 
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Tables 

 

Table 1: Summary of fibroblast type cis-eQTL. The median number of cells per individuals, the 

number of significant eSNPs detected, the number of significant eGenes detected and the 450 

number of unique eGenes per cell type are enumerated. 

 

 

 

  455 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgments  

 

 

Funding 

This work was supported by grants from the National Health and Medical Research Council 460 

(NHMRC) project grant (APP1143163) and Australian Research Council discovery project 

(DP180101405). J.E.P. is supported by an NHMRC Investigator grant (APP1175781). A.W.H. is 

supported by an NHMRC Senior Research Fellowship (APP1154389). AP is supported by an 

Australian Research Council Future Fellowship (AP, FT140100047), and MD by an International 

Postgraduate Research Scholarship & Research Training Program Scholarship. NJP is supported 465 

by a Fellowship from the Australian Heart Foundation (101889). This work is also supported by 

a special initiative from the Australian Research Council (SR1101002). 

 

  

The Joan and Peter Clemenger Foundation, the Ophthalmic Research Institute of Australia, 470 

Stem Cells Australia – the Australian Research Council Special Research Initiative in Stem Cell 

Science, the University of Melbourne and Operational Infrastructure Support from the Victorian 

Government. The Centre for Eye Research Australia and the Florey Institute of Neuroscience 

and Mental Health acknowledges the strong support from the Victorian Government and in 

particular the funding from the Operational Infrastructure Support Grant. 475 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


 

References 480 
 
 

1. Rowe, R. G. & Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug 

discovery. Nat. Rev. Genet. 20, 377–388 (2019). 

2. Karagiannis, P. et al. Induced Pluripotent Stem Cells and Their Use in Human Models of 485 

Disease and Development. Physiol. Rev. 99, 79–114 (2019). 

3. Warren, C. R. & Cowan, C. A. Humanity in a Dish: Population Genetics with iPSCs. Trends 

in Cell Biology vol. 28 46–57 (2018). 

4. Yamasaki, A. E., Panopoulos, A. D. & Belmonte, J. C. I. Understanding the genetics behind 

complex human disease with large-scale iPSC collections. Genome Biol. 18, 135 (2017). 490 

5. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Reviews 

Genetics vol. 7 862–872 (2006). 

6. Nica, A. C. & Dermitzakis, E. T. Expression quantitative trait loci: present and future. 

Philosophical Transactions of the Royal Society B: Biological Sciences vol. 368 20120362 

(2013). 495 

7. Hormozdiari, F. et al. Leveraging molecular quantitative trait loci to understand the genetic 

architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018). 

8. Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform 

complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018). 

9. Ding, J. et al. Gene expression in skin and lymphoblastoid cells: Refined statistical method 500 

reveals extensive overlap in cis-eQTL signals. Am. J. Hum. Genet. 87, 779–789 (2010). 

10. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression 

variation with RNA sequencing. Nature 464, 768–772 (2010). 

11. Schmiedel, B. J. et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene 

Expression. Cell 175, 1701–1715.e16 (2018). 505 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


12. Kasela, S. et al. Pathogenic implications for autoimmune mechanisms derived by 

comparative eQTL analysis of CD4 versus CD8 T cells. PLOS Genetics vol. 13 e1006643 

(2017). 

13. Fu, J. et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic 

variation of gene expression. PLoS Genet. 8, e1002431 (2012). 510 

14. Consortium, G. & GTEx Consortium. Genetic effects on gene expression across human 

tissues. Nature vol. 550 204–213 (2017). 

15. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 

171–181 (2014). 

16. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 515 

377–382 (2009). 

17. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly 

multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011). 

18. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual 

circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012). 520 

19. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by 

multiplexed linear amplification. Cell Rep. 2, 666–673 (2012). 

20. Islam, S. et al. Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. 

Nature Protocols vol. 7 813–828 (2012). 

21. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. 525 

Nat. Methods 10, 1096–1098 (2013). 

22. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in 

health and in asthma. Nat. Med. 25, 1153–1163 (2019). 

23. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular 

targets of kidney disease. Science 360, 758–763 (2018). 530 

24. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


Nature 572, 199–204 (2019). 

25. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals 

dynamic genetic effects on gene expression. doi:10.1101/630996. 

26. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-535 

eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018). 

27. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked 

in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013). 

28. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic 

variation. Nat. Biotechnol. 36, 89–94 (2018). 540 

29. Sarkar, A. K. et al. Discovery and characterization of variance QTLs in human induced 

pluripotent stem cells. PLoS Genet. 15, e1008045 (2019). 

30. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a 

transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019). 

31. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas 545 

of human primary cells: inference of gene function from coexpression networks. BMC 

Genomics 14, 632 (2013). 

32. Büttner, M., Miao, Z., Alexander Wolf, F., Teichmann, S. A. & Theis, F. J. Assessment of 

batch-correction methods for scRNA-seq data with a new test metric. bioRxiv 200345 

(2017) doi:10.1101/200345. 550 

33. Carithers, L. J. et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: 

The GTEx Project. Biopreserv. Biobank. 13, 311–319 (2015). 

34. Cheng, Y. S., Colonno, R. J. & Yin, F. H. Interferon induction of fibroblast proteins with 

guanylate binding activity. J. Biol. Chem. 258, 7746–7750 (1983). 

35. Gupta, S. L., Rubin, B. Y. & Holmes, S. L. Interferon action: induction of specific proteins in 555 

mouse and human cells by homologous interferons. Proc. Natl. Acad. Sci. U. S. A. 76, 

4817–4821 (1979). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


36. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential 

expression analysis. Nat. Methods 15, 255–261 (2018). 

37. McCaughey, T. et al. An Interactive Multimedia Approach to Improving Informed Consent 560 

for Induced Pluripotent Stem Cell Research. Cell Stem Cell 18, 307–308 (2016). 

38. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature 

Methods vol. 8 409–412 (2011). 

39. Crombie, D. E. et al. Development of a Modular Automated System for Maintenance and 

Differentiation of Adherent Human Pluripotent Stem Cells. SLAS Discov 22, 1016–1025 565 

(2017). 

40. Daniszewski, M. et al. Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs 

Cultured in Different Commercial Media. iScience 7, 30–39 (2018). 

41. Colella, S. et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and 

accurately map copy number variation using SNP genotyping data. Nucleic Acids Research 570 

vol. 35 2013–2025 (2007). 

42. Wang, K. et al. PennCNV: An integrated hidden Markov model designed for high-resolution 

copy number variation detection in whole-genome SNP genotyping data. Genome 

Research vol. 17 1665–1674 (2007). 

43. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 575 

44. Dahlin, J. S. et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories and 

defects in Kit mutant mice. Blood 131, e1–e11 (2018). 

45. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. 

Commun. 8, 14049 (2017). 

46. Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA 580 

sequencing data with many zero counts. Genome Biol. 17, 75 (2016). 

47. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 

datasets. Gigascience 4, 7 (2015). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


48. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and 

population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–585 

2993 (2011). 

49. Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK 

Biobank cohort. Nat. Genet. 48, 811–816 (2016). 

50. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 

1284–1287 (2016). 590 

51. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of 

single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). 

52. Zappia, L. & Oshlack, A. Clustering trees: a visualisation for evaluating clusterings at 

multiple resolutions. doi:10.1101/274035. 

53. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. 595 

Biotechnol. (2018) doi:10.1038/nbt.4314. 

54. Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell 

transcriptome data. Methods 85, 54–61 (2015). 

55. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell 

transcriptomics. BMC Genomics 19, 477 (2018). 600 

56. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. 

Bioinformatics 28, 1353–1358 (2012). 

57. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 

(2010). 605 

58. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor 

RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–

4297 (2012). 

59. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). 610 

60. Nguyen, Q., et al. Single-cell RNA-seq of human induced pluripotent stem cells reveals 

cellular heterogeneity and cell state transitions between subpopulations. Genome Research 

28, 1053-1066 (2018). 

 

 615 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.21.163766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163766
http://creativecommons.org/licenses/by-nc/4.0/


Single cell eQTL analysis identifies cell-type specific genetic control of gene expression in 

fibroblasts and reprogrammed induced pluripotent stem cells 
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Figure 1: Fibroblast and iPSC Cluster Characterization. A) This study used skin biopsies to 
generate fibroblasts from 79 healthy volunteers and reprogrammed them into induced 
pluripotent stem cell (iPSC) lines for 31 of the original 79 individuals. B) Six fibroblast subtypes 
were identified from the transcriptional profiles of 64,018 single fibroblast cells. C) The top 20 
differentially expressed genes from each fibroblast subtype demonstrate a continuum of 
expression across the six fibroblast subtypes. D) Four iPSC subtypes were identified from 
19,967 single iPSCs. E) The top 20 differentially expressed genes from each iPSC subtype. 
*Indicates the genes used to name each subtype. 
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Figure 2: Identification of single 
cell eQTL in fibroblast and iPSC 
subtypes. A) The majority of 
single cell (sc) eGenes in 
fibroblasts are subtype-specific. 
Further, the single cell eGenes 
that were detected in two or more 
fibroblast subtypes were 
significantly more likely to be 
detected as eQTL in bulk 
fibroblast RNA-sequence data 
from the gene tissue expression 
(GTEx) database (P=0, Cochran-
Armitage Test). B) The total 
number of eGenes and percent 
that are also observed in other 
fibroblast subtypes further shows 
that most eGenes are unique to a 
given subtype. C) None of the 
single cell eGenes-eSNP pairs 
that were observed in fibroblasts 
were observed in the iPSC 
subtypes that were generated 
from the same individuals.  
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Figure 3: eGene Comparison across Fibroblast subtypes. A) The correlation of fibroblast 
eGenes from subtype 1 (x-axis) with fibroblast eGenes from subtype 2 (y-axis) demonstrates 
that eGenes are similarly expressed across all fibroblast subtypes. B) eGenes that were shared 
between at least two fibroblast subtypes were tested for independence. The top eSNP for 
eGenes that were shared between two fibroblast subtypes was regressed from the other 
subtype in order to test if those were independent eSNP loci. Many (40-73%) of the fibroblast 
top eSNPs remained significant after regression of the top eSNP from another fibroblast 
subtype.  
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Figure 4: Examples of eQTL identified in fibroblast and iPSC subtypes. A) The GBP3 gene 
was the only eGene that was significant in all fibroblast subtypes and also B) demonstrated an 
interaction between the fibroblast subtypes and the eQTL. C) CPNE1 was differentially 
expressed across the fibroblast subtypes and D) was a significant eGene in five of the six 
fibroblast subtypes. E) Further, the rs3474587283-CPNE1 eQTL demonstrated striking subtype 
by SNP interaction. E) The GEMIN5 gene was an eGene in two fibroblast subtypes and one 
iPSC subtype the top eSNPs were different in each subtype. The CD9hi/C1Rhi fibroblast subtype 
eQTL was 3’ of the GEMIN5 gene, the GAPDHhi/SNHG8hi iPSC subtype eQTL was 5’ of the 
GEMIN5 gene and the TUBA1Bhi/DCNlo fibroblast subtype was further 5’ of the GEMIN5 gene. 
All three loci were independent of one another (P < 0.05). F) The top eSNP (rs74656936) for the 
GEMIN5 gene in the CD9hi/C1Rh fibroblast subtype was not significant in the TUBA1Bhi/DCNlo 

fibroblast subtype and the rs74656936 was not frequent enough in the iPSC lines to be 
analyzed. G) The top eSNP (rs56353548) for the GEMIN5 gene in the GAPDHhi/SNHG8hi iPSC 
subtype was not significant in either the CD9hi/C1Rhi fibroblast subtype or the TUBA1Bhi/DCNlo 

fibroblast subtype. H) The top eSNP (rs12055298) for the GEMIN5 gene in the TUBA1Bhi/DCNlo 

fibroblast subtype was not significant in the CD9hi/C1Rh fibroblast subtype or the 
GAPDHhi/SNHG8hi iPSC subtype. *P < 0.05; **P < 0.01; ***P < 0.001; NS=non-significant. 
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