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Brain network hubs are both highly connected and
highly inter-connected, forming a critical communi-
cation backbone for coherent neural dynamics. The
mechanisms driving this organization are poorly un-
derstood. Using diffusion-weighted imaging in twins,
we identify a major role for genes, showing that
they preferentially influence connectivity strength
between network hubs of the human connectome.
Using transcriptomic atlas data, we show that con-
nected hubs demonstrate tight coupling of transcrip-
tional activity related to metabolic and cytoarchi-
tectonic similarity. Finally, comparing over thirteen
generative models of network growth, we show that
purely stochastic processes cannot explain the pre-
cise wiring patterns of hubs, and that model per-
formance can be improved by incorporating genetic
constraints. Our findings indicate that genes play a
strong and preferential role in shaping the function-
ally valuable, metabolically costly connections be-
tween connectome hubs.
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Introduction
Nervous systems are intricately connected networks with
complex wiring patterns that are neither completely ran-
dom nor completely ordered (1, 2). Numerous stud-
ies, conducted in species as diverse as the nematode
Caenorhabditis elegans, mouse, macaque, and human,
and at scales ranging from the cellular to the macro-
scopic, have shown that this complex organization is, in
part, attributable to a heterogeneous distribution of con-
nectivity across neural elements, such that a large frac-
tion of network connections is concentrated on a small
subset of network nodes called hubs (3–7). These hubs
are more strongly interconnected with each other than
expected by chance, forming a rich-club (3–5, 7) that
is topologically positioned to integrate functionally di-

verse neural systems and mediate a large proportion of
inter-regional communication (5, 8).
In human cortex, hubs are predominantly located in
multimodal association areas (6, 9) and are among the
most metabolically expensive elements of the connec-
tome (10), with rich-club connections between hubs ac-
counting for a disproportionate fraction of axonal wiring
costs (3–5, 7, 11). Association hubs of the human brain
also show marked inter-individual variability in connec-
tivity and function that relates to a diverse array of
behaviors (6, 12–14). These brain regions are dispro-
portionately expanded in individuals with larger brains
(15) and in human compared to non-human primates
(16). They also show greater topological centrality and
evolutionary divergence in the human connectome when
compared to chimpanzee (17). These findings support
the view that rapid expansion of multimodal association
hubs, and the costly, valuable rich-club connections be-
tween them, underlies the enhanced cognitive capacity
of humans compared to other species (18).
What influences the way in which hub regions connect
to each other? The rapid evolutionary expansion of net-
work hubs in humans, coupled with evidence supporting
the heritability of many different aspects of brain orga-
nization (19), suggests an important role for genes. In
the developing brain, neurons can innervate precise tar-
gets, even over long anatomical distances, by following
genetically regulated molecular cues (20, 21). However,
it is unknown whether genetic influences are preferen-
tially exerted across specific classes of connections, such
as the costly and functionally valuable links between net-
work hubs. Preliminary evidence from human twin re-
search suggests that certain properties of hub functional
connectivity are strongly heritable (22), and analyses of
C. elegans, mouse, and human data suggest that hub
connectivity is associated with a distinct transcriptional
signature related to metabolic function (7, 11, 23–25).
Alternatively, some have suggested that the protracted
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maturation of hub regions (16, 26, 27) may endow these
areas with enhanced plasticity (12), suggesting a promi-
nent role for environmental influences. Moreover, recent
computational models of whole-brain connectome wiring
suggest that it is possible to grow networks with com-
plex topological properties, including hubs, that mimic
actual brains using simple, stochastic wiring rules based
on geometric constraints (28–31) or trade-offs between
the wiring cost and functional value of a connection (32–
34). These findings imply that the emergence of network
hubs may not require precise genetic control and may
instead result from random processes shaped by generic
physical and/or functional properties.
Here, we use a multifaceted strategy to test between
these competing views and characterize genetic influ-
ences on hub connectivity of the human cortical con-
nectome. Using a connectome-wide heritability analysis
(Fig. 1A-B), we show that genetic influences on phe-
notypic variance in connectivity strength are not dis-
tributed homogeneously throughout the brain, but are
instead preferentially concentrated on links between net-
work hubs. Then, as previously demonstrated in C. ele-
gans (11) and mouse (7), we show that connected pairs
of hubs in the human brain exhibit tightly coupled gene
expression related to the metabolic demand and cytoar-
chitectonic similarity of these areas (Fig. 1C). Finally,
we use computational modeling to show that stochas-
tic network wiring models can indeed generate networks
with brain-like properties, but fail to capture the spatial
distribution of hub regions and, by extension, the pre-
cise pattern of wiring between network hubs. Moreover,
adding genetic constraints to the models can improve
their performance.
Collectively, these findings demonstrate a direct link be-
tween molecular function and the large-scale network
organization of the human connectome and highlight a
prominent role for genes in shaping the costly and func-
tionally valuable connections between network hubs.

Results
Using diffusion weighted imaging (DWI) data for 972
subjects acquired through the Human Connectome
Project (HCP) (36) we generate a representative group-
level connectivity matrix [see Online methods] contain-
ing 12 924 unique connections between 360 brain regions
defined by the HCPMMP1 atlas (37). This network con-
tains a set of highly connected regions, quantified using
the measure of node degree (k), which represent network
hubs and span sensorimotor, paracentral, mid-cingulate
(k > 105), insula, posterior cingulate, lateral parietal,
and dorsolateral prefrontal cortices (k > 145) (Fig. 2A).
As shown previously (5, 6, 8, 10), the network exhibits
rich-club organization, with hubs being more densely
and strongly interconnected than expected by chance
(Fig. S1). Rich-club connections also have higher aver-
age wiring cost and communicability (Fig. S1), indicat-
ing that they are among the most topologically central

and costly elements of the connectome.

Genetic influences on brain connectivity are concentrated
in the rich club. To investigate whether genes prefer-
entially influence certain classes of connections in the
human brain, we perform a connectome-wide heritabil-
ity analysis of twin data acquired through the Human
Connectome Project. For each of 234 monozygotic (MZ)
twins and their 69 non-twin siblings as well as 120 dizy-
gotic (DZ) twins and 48 of their non-twin siblings, we
reconstruct macroscale cortical connectomes using DWI
[see Online methods].
For each connection in the representative group con-
nectome, we use the classic ACTE model to estimate
the proportion of variance in connectivity strength that
is attributable to additive genetic factors (narrow-sense
heritability, denoted h2, see Online methods). Using
the average fractional anisotropy (FA) of each connect-
ing fiber bundle to quantify connectivity strength [see
Online methods], we observe a wide range of heritabil-
ity estimates across connections, spanning 0 to 0.99
(h2

mean = 0.45, h2
SD = 0.2). Non-trivial genetic influ-

ences, quantified using the A component of the ACTE
model, are observed for the majority of connections, with
the AE model showing the best fit for 86.7% of edges,
ACTE for 4.3%, and ACE for 1.3%. A total of 7.7% of
connections are influenced only by environmental factors
(CE model 6.8%, E model 0.9%). To examine whether
genetic influences are preferentially concentrated on spe-
cific types of inter-regional connections, we distinguish
between hub and nonhub regions, resulting in three pos-
sible types of connections: rich (hub-to-hub), feeder (be-
tween a hub and a nonhub), and peripheral (nonhub-to-
nonhub) links [see schematic in Fig. 1A, (38)]. We find
that mean heritability derived from the best-fitting bio-
metric model is highest for rich, intermediate for feeder,
and lowest for peripheral connections across nearly all
values of k (Fig. 2B–C). The increase in heritability
for rich links as a function of the hub-defining thresh-
old, k, indicates that genetic influences are, on average,
stronger for connections between the most highly con-
nected brain regions (see also Fig. 1D). The same pat-
tern is replicated when taking genetic parameters from
the full ACTE model, confirming that this result is not
an artefact of our model-selection procedure (Fig. S2B).
Contrasting with rich links between hubs, phenotypic
variance in peripheral connectivity (between nonhubs) is
predominantly influenced by unique environment (quan-
tified by the model parameter E, Fig. 2D), while com-
mon environmental influences are consistently low across
all link types (mean values 〈C〉 < 0.08 and 〈T 〉 < 0.02
across all k thresholds). Critically, we obtain similar
evidence of preferential genetic influences on hub con-
nectivity when using different methods for parcellating
or thresholding our connectomes (Fig. S3) or when eval-
uating connection strength based on the number of re-
constructed streamlines (streamline count, SC) between
regions (Fig. S2C,D).
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Fig. 1. Workflows used to characterize genetic influences on hub connectivity. (A) A schematic representation of the connectome showing different connection types
in the brain. Given a distinction between hub nodes (red outline) and nonhub nodes (grey outline), we can distinguish three classes of connections: rich links - connections
between two hubs (red); feeder links - connections between a hub and a nonhub (yellow); and peripheral links - connections between two nonhubs (blue). (B) Connectome-
wide heritability analysis. We use structural equation modeling to fit a classic ACTE biometric model to every connection within the brain, resulting in estimates of genetic and
environmental influences for each link. (C) Analysis of transcriptional coupling. (I) Each of 3702 tissue samples in the Allen Human Brain Atlas (AHBA) is mapped to a given
region in our brain parcellation. (II) Expression values are then subjected to a quality control and processing pipeline (35) to construct a region × gene matrix of expression
values. (III) We estimate correlated gene expression (CGE) between each pair of brain regions as the Pearson correlation between region-specific gene-expression profiles.
(IV) Inter-regional CGE is corrected for spatial autocorrelation of the expression data via regression of an exponential distance trend (35). (D) Schematic representation of
how values assigned to each edge are compared across connection types. We compare the mean of edge-level (pairwise) measures of heritability and CGE for rich, feeder,
and peripheral links across all possible hub-defining thresholds (horizontal axis). As k increases, the definition of a hub becomes more stringent and identifies the actual
hubs of the network. Thus, if a given effect is stronger for rich links, we expect the pairwise estimates to increase as a function of k, with the increase for rich links being
particularly large relative to feeder and peripheral links.

To investigate whether genetic influences are specific to
certain functional systems of the brain, we next cate-
gorize edges according to the major functional networks
that they connect, as defined using a network parcella-
tion (39) of the HCPMMP1 atlas (37) (Fig. 2E). Fig-
ure 2F shows the proportion of nodes with degree > k in
each functional network. High-degree nodes are present
in most networks until k ≈ 120, beyond which they
are predominantly found in multimodal association net-
works; namely, the fronto-parietal, cinguolo-opercular,
and default mode systems.

Across all 12 canonical functional networks, rich links
both within and between networks demonstrate signifi-
cantly higher heritability than other types of connections
(Fig. 2G-I, one-sided Welch’s t-test, comparing heritabil-
ity of rich vs feeder and rich vs peripheral connections,
all p < 1.9×10−12), indicating that the elevated genetic
influences observed for rich links cannot be explained
by the affiliation of hub nodes to any specific functional
network. Moreover, stronger heritability of rich links is
evident across different connection distances (Fig. S4A-
C), suggesting that preferential genetic influences on hub
connectivity cannot be explained simply by the longer
average distance of rich links (Fig. S1D). Other factors,

such as the number of outliers excluded from the analy-
sis (Fig. S4D-F) or differences in the phenotypic variance
of connectivity strength estimates across different edge
types (Fig. S4G-I), were also unable to account for the
increased heritability of rich links.
Together, these findings indicate that genetic influences
on phenotypic variance in connectivity strength are not
distributed homogeneously throughout the brain, nor
are they confined to specific functional networks or long
vs short-range connections. Instead, they are most
strongly concentrated on the connections between net-
work hubs. These hubs are distributed throughout the
cortex, with the most highly connected regions residing
in multimodal association networks.

Transcriptional coupling is elevated between connected
hubs. Next, we investigate the transcriptional corre-
lates of hub connectivity using data from the Allen Hu-
man Brain Atlas (AHBA) (40), focusing on expression
profiles of 10 027 genes surpassing our quality-control
criteria (35) within the 180 cortical regions of the left
hemisphere, where spatial coverage in the AHBA is most
comprehensive. Evaluating CGE across the full set of
genes allows us to quantify the global expression pat-
terns across the brain without restricting the analysis
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Fig. 2. Genetic influences on connectivity strength are preferentially concentrated on rich-club links. (A) Anatomical locations of hubs defined at different levels of k.
(B) The degree distribution of the representative group-level connectome. Mean genetic (C) and unique environmental (D) influences for rich (hub-hub), feeder (hub-nonhub),
peripheral (nonhub-nonhub) connections as a function of the hub-defining threshold, k. The mean of the corresponding measure across all network links is shown as a
dotted black line. Shaded area corresponds to the standard error of the mean, circles indicate a statistically significant increase of the measure in a given link type compared
to the rest of the network (one-sided Welch’s t-test, uncorrected p < 0.05). (E) Regional assignments to canonical functional network modules (39), represented using
color. (F) The proportion of nodes with degree > k in each functional network module as a function of k. (G) Distributions of heritability estimates across edges within
functionally defined networks (39): VIS1 – primary visual; VIS2 – secondary visual; SM – somatomotor; CO – cingulo-opecular; DAN – dorsal attention; LAN – language;
FPN – frontoparietal; AUD – auditory; DMN – default mode; PM – posterior multimodal; VM – ventral multimodal; OA – orbito-affective. Rich links within each module are
represented as black dots, as defined for k > 105. Heritability distributions for edges within (H) and between (I) functional modules across rich, feeder, and peripheral link
types for k > 105. Rich links show significantly higher heritability compared to both feeder and peripheral links, within and between functional modules (one-sided Welch’s
t-test, all p < 1.9×10−12).

to predefined gene categories. We secondarily test for
enrichment of certain classes of genes, as detailed be-
low. We quantify transcriptional coupling between dif-
ferent brain regions using spatially-corrected correlated
gene expression (CGE) (Fig. 1C, Fig. S5, see also Online
methods) and define inter-regional connectivity using a
binary group-representative matrix [see Online meth-
ods]. The spatial correction is important as prior studies
of C. elegans, mouse, and human nervous systems have
shown that, across the brain, CGE decays exponentially
as a function of distance (7, 11, 24, 41). Recent analy-
ses of the mesoscale connectome of the mouse (7) and
microscale (cellular) connectome of C. elegans (11) in-
dicate that, after considering this bulk trend, connected
pairs of hubs show the highest CGE, despite being sep-
arated by longer anatomical distances, on average, than
other neural elements.

Figures 3A–B show that the same effect is observed
in humans: CGE is highest for rich, intermediate for
feeder, and lowest for peripheral links. We obtain sim-
ilar results under different connectome processing op-
tions (Fig. S6), distance ranges (Fig. S7), and when

using connectivity data from an independent sample
(Fig. S8A). The consistency of this effect between hu-
man, mouse, and C. elegans [see Fig. S9 for comparison]
is striking given the large physiological differences be-
tween species, methods for connectome reconstruction
(DWI, viral tract tracing, electron microscopy), analy-
sis resolution [macroscale (mm to cm), mesoscale (µm
tomm), microscale (individual cells and synapses)], and
gene-expression assays (microarray, in situ hybridiza-
tion, curation of published reports).
As with heritability (Fig. 2C), higher CGE occurs
for connections between high-degree nodes distributed
across the brain; i.e., the effect is not confined to a single
functional network (Fig. 3C). Indeed, connected pairs of
hubs demonstrate higher CGE both within (Fig. 3D) and
between (Fig. 3E) functionally defined networks (one-
sided Welch’s t-test, comparing CGE of rich vs feeder
and rich vs peripheral connections, all p≤ 0.02).
Expression values in the AHBA are extracted from bulk
tissue samples, and thus agglomerate transcriptional in-
formation from many different cell types. It is there-
fore possible that inter-regional CGE may be related
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Fig. 3. Transcriptional coupling is elevated for connected brain network hubs. (A) The degree distribution of the representative group-level connectome of brain regions
in the left cortical hemisphere. Degree is computed from whole-brain connectivity. (B) Mean correlated gene expression (CGE) for rich (hub-hub), feeder (hub-nonhub),
peripheral (nonhub-nonhub) connections as a function of the degree threshold, k, used to define hubs. The mean CGE across all network links is shown as a dotted black
line. The shaded area corresponds to the standard error of the mean, circles indicate a statistically significant increase in CGE in a given link type compared to the rest
of the network (one-sided Welch’s t-test, uncorrected p < 0.05). CGE estimates are corrected for distance effects, as explained in the Online methods. (C) CGE within
functionally defined networks as in Fig. 2E. Black dots represent CGE values for rich links (k > 105). CGE values within (D) and between (E) functional modules in the
left hemisphere across different link types (rich, feeder, and peripheral). Inter-module rich links show significantly higher CGE compared to both feeder (one-sided Welch’s
t-test, p = 0.03) and peripheral links (p = 1.5×10−4). Within functional modules, rich links show higher CGE compared to peripheral (p = 1.2×10−4) but not to feeder
links (p = 0.5). (F) Gene contribution score t-statistic values (GCSt−stat) for cell-specific gene groups quantifying the contribution of individual genes towards increased
CGE for rich compared to peripheral links. Neuronal gene groups (excitatory – excitatory neurons; inhibitory – inhibitory neurons) are colored blue; glial gene groups (OPC
– oligodendrocyte progenitor cells, astroglia, endothelia – endothelial cells, microglia, oligodendrocytes) colored green; values for all other genes presented in light orange.
Oligodendrocyte-related genes show a statistically significant increase in GCC compared to all other genes (one-sided Welch’s t-test, p = 2× 10−11). (G) The degree
distribution of the representative group-level cortical connectome. (H) Mean microstructural profile covariance (MPC) for rich (hub–hub), feeder (hub–nonhub), peripheral
(nonhub–nonhub) connections as a function of degree threshold, k used to define hubs. The MPC across all network links is shown as a dotted black line. Shaded area
corresponds to the standard error of the mean, circles indicate a statistically significant increase in MPC in a given link type compared to the rest of the network (one-sided
Welch’s t-test, uncorrected p < 0.05). Inset near the degree distribution shows examples of the intermediate surfaces used to assay microstructure across the cortical depth.

to similarity in regional cellular composition [see also
(42)]. We thus repeated the CGE analysis, this time us-
ing only data from genes showing cell-specific expression
for seven canonical cell types: excitatory and inhibitory
neurons, oligodendrocyte progenitor cell, astroglia, en-
dothelial cells, microglia, and oligodendrocytes [see On-
line methods, (43–47)]. We find that all classes of cell-
specific genes exhibit an increase in CGE for rich links
relative to peripheral (Fig. S10), with oligodendrocyte-
related genes showing a significantly stronger contribu-
tion to elevated CGE between connected hubs (one-sided
Welch’s t-test, p = 2× 10−11, Fig. 3F) compared to all
other genes [see Online methods].

These findings suggest that connected hubs may have
higher cytoarchitectonic similarity than other pairs of
regions. Given that the CGE of cell-specific genes is a

relatively indirect marker of cytoarchitecture, we con-
ducted a more direct test of the hypothesis that con-
nected hubs have more similar cytoarchitecture using the
BigBrain atlas (48), which is a high-resolution Merker-
stained histological reconstruction of a post-mortem hu-
man brain that provides an opportunity to map regional
variations in cellular density as a function of cortical
depth. Following Paquola et al. (49), we estimate in-
tensity profiles across 16 equivolumetric surfaces placed
between the gray/white and pial boundaries of the cor-
tical ribbon and compute the inter-regional microstruc-
tural profile covariance (MPC) [see Online methods] as
a proxy for cytoarchitectonic similarity. Mirroring the
CGE and heritability findings, rich links exhibit elevated
MPC compared to feeder and peripheral edges (Fig. 3H).
These convergent MPC and cell-specific CGE results in-
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dicate that connected hubs have a more similar cytoar-
chitecture than other pairs of brain regions.
Finally, a gene set enrichment analysis of gene groups re-
lated to elevated CGE between hubs (Online methods)
identifies significant enrichment of 49 GO categories, no-
tably featuring genes related to oxidative metabolism,
ATP synthesis coupled electron transport, and mito-
chondrial function (pFDR < 0.05, Table S1) that mirror
those previously reported in the mouse brain (7). These
results suggest a close genetic link between hub connec-
tivity and metabolic function [for additional considera-
tions see (50) and Online methods].

Stochastic models of brain wiring do not capture the spatial
distribution of degree. The results above imply strong
genetic control of hub connectivity, which seems at
odds with recent modeling studies suggesting that sim-
ple stochastic wiring rules can generate networks with
complex, brain-like topologies, including heavy-tailed
degree distributions that signify the existence of hubs
(29, 30, 32, 33). Investigating variability in the binary
topology of connectivity–that is, the specific pattern of
wiring between regions–is challenging, as such variations
at the level of macroscale human connectomes are lim-
ited. It is thus possible that stochastic processes may
give rise to the basic binary topology of hub connectiv-
ity, with variations in connectivity strength subsequently
being influenced by genetic factors.
To investigate the role of stochastic processes in shaping
hub connectivity, we fitted 13 different generative models
of network wiring to the HCP connectome data. Under
each model, synthetic connectomes are generated using
probabilistic wiring rules. The models we consider here
have been explored extensively in prior work (33) and
have the general form:

θij = dηij× t
γ
ij , (1)

where θij is a score that weights the probability of con-
necting nodes i and j, dij is the Euclidean distance be-
tween node pairs, and tij is a topological property of an
edge that may confer functional value to the network.
Each of the 13 models substitutes a different topological
property for tij (definitions in Table 2). The exponents
η and γ are free parameters fitted to the data to op-
timally match the topological properties of the actual
human connectome, as defined using nodal distributions
of degree, clustering, and betweenness, and the edge-
level distribution of connection distances [(33), see On-
line methods].
In line with prior work (33), we find that models in which
connections form according to both spatial (wiring cost)
and topological rules can fit the distributions of empir-
ical network properties better than a model based on
wiring cost alone (i.e., the ‘sptl’ model), as shown in
Fig. 4A. The best-fitting model, ‘deg-avg’, modulates a
pure wiring cost term by favoring connectivity between
pairs of nodes that already have high average degree,

and shows a good fit to the data (i.e., all fits, indexed
by the Kolmogorov-Smirnov statistic, were KS < 0.21
[see Online methods for an extended discussion]).
Despite this adequate fit to four key network properties
of the human connectome (Figs. 4B–E), we find that
node degree in the empirical and model networks have
very different spatial distributions. As shown in Fig. 4F,
hubs in the empirical data are distributed throughout
the brain, whereas hubs in the network that demon-
strates the best fit to data across 130 000 model runs are
predominantly confined to temporal cortex. As a result,
the correlation between the degree sequences of the em-
pirical and model networks is very low (e.g., ρ=−0.05,
Fig. 4G). This low correlation is observed consistently
across all models (Fig. 4H), and even when we fit model
parameters to explicitly optimize the correlation be-
tween empirical and model degree degree sequences [see
Fig. S11, Online methods]; across 260 000 model runs,
the degree sequence correlation with the empirical data
never exceeds ρ= 0.3.
Together, these findings indicate that while stochastic
models of brain network wiring can capture the statis-
tical properties (node- and edge-level distributions) of
connectomes, they cannot reproduce the way in which
these properties are spatially embedded and thus do not
accurately replicate the precise pattern of wiring be-
tween connectome hubs.

Genetically constrained models offer improved fits to topo-
logical and topographical properties of the connectome.
The limitations of stochastic models, coupled with our
evidence for a strong genetic influence on hub connectiv-
ity, raises the question of whether models that include
genetic information may show better performance than
models based on cost and/or topology alone. To address
this question, we focus on the best-fitting cost-topology
model, ‘deg-avg’, and examine its performance relative
to model variants that include a bias to form connections
between pairs of regions with high CGE affects. We fo-
cus specifically on CGE, given our evidence for elevated
CGE between pairs of hubs regions (Fig.3).
Figure 5 compares model fit statistics for the original
‘deg-avg’ model (denoted ‘ST’ in Fig.5A), and models in
which connections are formed according to CGE alone
(denoted ‘G’), wiring cost alone (denoted ‘S’), an inter-
play between CGE and wiring cost (denoted ‘SG’), and
an interplay between CGE and topological constraints,
as defined in the ‘deg-avg’ model (denoted ‘TG’). We
find that a model incorporating both topology and ge-
netic information, such that connections are favored be-
tween regions with both high average degree and high
CGE (‘TG’ model), shows the best fits, on average, to
network topology, even surpassing the ‘deg-avg’ (‘ST’)
model.
Moreover, the spatial distribution of hubs in the ‘TG’
model network demonstrating the best fit is more dis-
persed across the brain (Fig. 5F) compared to the clas-
sical ‘deg-avg’ model, resulting in a higher correlation
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Fig. 4. Generative brain network models do not reproduce the spatial distribution of brain network hubs. (A) Each distribution represents estimates of model fit, as
quantified by the maximum KS value of the top 100 networks (out of 10 000) produced by the model optimization procedure. The color of each box indicates conceptually
related models, as determined by the specific topology metric used in the model [see Table 2]. Models favoring homophilic connectivity between node pairs are shown in red,
those favoring clustering in orange, those based on degree in light blue, and a purely spatial model considering wiring costs alone is in dark blue. The specific wiring-rule
names are shown along the horizontal-axis, with formal definitions provided in Table 2. Cumulative distributions of: (B) node degree, k; (C) betweenness centrality, b; (D)
clustering coefficient, c; and (E) edge length, d, for the empirical connectome (darker line) and 100 runs (lighter lines) of the best-fitting ‘deg-avg’ model corresponding to
the data points shown in A. (F) Anatomical locations of hubs defined for a single hemisphere at selected k thresholds for the empirical data (top) and the single run of the
optimized ‘deg-avg’ generative model demonstrating the best model fit across 10 000 runs (bottom). (G) Correlation between the degree sequences of the empirical data
and the best-fitting generative model within a single hemisphere (Spearman’s ρ=−0.05). (H) The distribution of correlation values quantifying the relationship between left
hemisphere degree sequences of the empirical data and synthetic networks generated using the top 100 best-fitting parameter combinations for each of the 13 considered
models, corresponding to the data points shown in A.

between degree sequences of the empirical and model
networks (Fig. 5G). Overall, models including topology
and CGE or CGE alone demonstrate more positive de-
gree sequence correlations compared to models that do
not include CGE (Fig. 5H). Our findings thus indicate
that incorporation of genetic constraints into stochas-
tic models of the connectome can improve fits to both
network topology and spatial topography.

Discussion
The complex topology of neural networks is thought to
have been sculpted by competitive selection pressures to
minimize wiring costs and promote complex, adaptive
function (10, 51). Across diverse species, rich-club con-
nections between hubs are among the most costly and
topologically central links of the connectome (3–5, 7)
and thus play a major role in determining how cost–value
trade-offs are negotiated within a given nervous system.
Here, we combine a multifaceted genetic analysis with
mathematical modeling to examine the mechanisms that
shape hub connectivity of the human connectome. We
find that: (i) genetic influences on phenotypic variation
in connection strength are principally concentrated on
the rich links between hubs; (ii) connected hubs have
highly correlated gene expression patterns that are re-
lated to similarity in regional cytoarchitecture and en-
ergy metabolism; (iii) current stochastic models of net-
work growth cannot reproduce the spatial distribution of
hubs; and (iv) adding genetic constraints to these mod-
els can improve performance. Together, these findings
support a major role for genes in shaping the rich-club
organization of the brain.
Our connectome-wide heritability analysis presents evi-
dence for a non-uniform distribution of genetic influences

across the brain, characterized by a gradient in which
genetic influences are weak for peripheral connections
between nonhubs, intermediate for feeder connections
between hubs and nonhubs, and strongest for rich links
between hubs. Critically, this effect cannot be attributed
to connection distance or network affiliation, suggesting
some degree of specificity to hubs located throughout
the brain.
The most strongly connected hubs in our connectomes
were located in multimodal association networks, which
show disproportionate expansion in size and connectiv-
ity in human compared to nonhuman primates (16–18).
Given the high centrality and cost of these connections
[Fig. S1, (3–5, 7)], the preferential genetic influence on
rich-club connectivity that we observe supports the hy-
pothesis that natural selection favors wiring patterns
that provide high value for low cost and that selec-
tion pressures are strongly concentrated on the valuable,
costly links between hubs (2, 10). This view is also sup-
ported by recent evidence that genes demonstrating ac-
celerated divergence between humans and chimpanzees
show elevated expression in multimodal association net-
works (52).
In contrast to rich-club connectivity, phenotypic vari-
ance in peripheral connections between nonhubs is pri-
marily influenced by unique environment. Topologically
peripheral connections are more strongly conserved be-
tween human and chimpanzee connectomes (17). More-
over, the spatial topography and function of nonhub sen-
sory areas is highly consistent across primates, presum-
ably being specified early in development by evolutionar-
ily conserved transcriptional gradients (18). These con-
served gradients may couple with simple physical pro-
cesses to give rise to predominantly short-range connec-
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Fig. 5. Adding genetic constraints to generative models can improve fits to network topology and topography. (A) Each distribution represents estimates of model fit,
as quantified by the maximum KS value of the top 100 networks (out of 10 000) produced by the model optimization procedure. The color of each box indicates conceptually
related models, as determined by the specific metric used in the model: models favoring connectivity between regions with similar gene expression are in green, a model
based on degree and wiring cost is in light blue, and a purely spatial model considering wiring costs alone is in dark blue. ‘S’, ‘T’, ‘G’ stand for space (wiring cost), topology
and gene expression respectively. Cumulative distributions of: (B) node degree, k; (C) betweenness centrality, b; (D) clustering coefficient, c; and (E) edge length, d, for
the empirical connectome (darker line) and 100 runs (lighter lines) of the best-fitting ‘TG’ model corresponding to the data points shown in A. (F) Anatomical locations of
hubs defined for a single hemisphere at selected k thresholds for the empirical data (top) and the single run of the optimized ‘TG’ generative model demonstrating the
best model fit across 10 000 runs (bottom). These networks contain 177 regions (instead of 180 presented in Fig.4F) due to the limited coverage of gene expression data.
(G) Correlation between the degree sequences of the empirical data and the best-fitting generative model within a single hemisphere (Spearman’s ρ = 0.23). (H) The
distributions of correlation values quantifying the relationship between left hemisphere degree sequences of the empirical data and synthetic networks generated using the
top 100 best-fitting parameter combinations for each of the 6 considered models, corresponding to the data points shown in A.

tivity between topologically peripheral pairs of regions
(31, 53). Subsequent modifications to peripheral connec-
tivity may be driven by activity-dependent mechanisms,
resulting in a greater environmental influence on pheno-
typic variance in connection strength.
It has been proposed that evolutionary expansion of
multimodal hubs untethers these regions from transcrip-
tional anchors in sensory areas, resulting in distinc-
tive, non-canonical anatomical and functional properties
(18). Our findings suggest that, despite this putative
untethering, genes still play an important role in shap-
ing phenotypic variance of hub connectivity. This result
aligns with evidence that non-conserved network prop-
erties reflect evolutionary innovations that are driven by
structural variation of DNA, yielding greater phenotypic
variation within a species (12) and higher trait heritabil-
ity when compared to more strongly conserved proper-
ties (54).
In addition to being highly heritable, pairs of connected
hubs also show the highest levels of transcriptional cou-
pling, as previously observed in the mesoscale mouse
connectome (7) and cellular connectome of C. elegans
(11) [see Fig. S9]. In C. elegans this result is not ex-
plained by the developmental proximity (i.e., similarity
in neuron birth time or cell lineage distance), neuro-
chemical identity, or anatomical position of neuron pairs,
but is instead related to the functional identity of hub
neurons, which tend to be command interneurons. Our
analysis of cell-specific genes suggests a similar result
at the regional level in humans, as rich-link CGE was
elevated for gene markers of seven different cell types
suggesting that network hubs have enhanced similarity
in regional cytoarchitecture. This conclusion was sup-
ported by our MPC analysis of the BigBrain atlas. Our

results align with the structural model of cortical con-
nectivity, in which regions with similar cytoarchitecture
are more likely to connect with each other, even over
long distances (55). More specifically, our findings sug-
gest that hub areas are the most similar in their cellular
composition, and that this similarity may play a critical
role in how genes preferentially sculpt long-range inter-
connectivity between hubs.
We also show that current stochastic models of network
growth, despite capturing key statistical network prop-
erties of the connectome, do not reproduce the spatial
locations of network hubs. Indeed, while the actual hubs
of the human brain have a widespread anatomical distri-
bution, hubs in the best-fitting (deg-avg) model network
are concentrated around centrally located regions. In
line with this result, recent work has shown that cost-
neutral randomizations, in which connections are pro-
gressively randomized while preserving total wiring cost
and the existence (but not position) of hubs, almost al-
ways degrade the functional complexity of the network,
disconnect high-cost hubs, and lead to a distinct hub
topography in which the most highly connected nodes
cluster near the centre of the brain (56). These findings
suggest that actual brains are very close to optimally
balancing wiring cost with topological complexity, and
that hub connectivity plays a critical role in determining
how this balance is realized [see also (57)].
Notably, we find that incorporating genetic constraints
into the models improves their capacity to reproduce
both network topology and the spatial topography of
hubs. While there is still room for considerable fur-
ther improvement, our findings indicate that combin-
ing topological, genetic, and possibly spatial information
may offer a fruitful way forward for generative models
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of the human connectome. Indeed, some models sug-
gest that random growth of connections, when coupled
with changes in brain geometry and heterochronicity of
connection formation across regions, can yield brain-
like networks with realistic features (29), including con-
nectivity between regions with similar cytoarchitecture
(58, 59). Although genes likely influence heterochronous
development, future work extending such models so that
they can be directly fitted to empirical data in humans,
and considering which genes may be most relevant in
shaping network wiring, will be important for delineat-
ing the precise roles of genetic, environmental, stochas-
tic, and physical mechanisms in shaping connectome ar-
chitecture.

Online methods
Code for reproducing the results presented here is available at
github https://github.com/BMHLab/GeneticBrainHubs. Data are
available from an associated figshare repository.

Imaging data acquisition. We examined DWI data from two
independent cohorts. The first was obtained from the Human
Connectome Project [HCP, (36)]. We used the minimally pro-
cessed DWI and structural data from the HCP for 972 par-
ticipants (age mean ± standard deviation: 28.7± 3.7, 522 fe-
males), including a cohort of MZ and DZ twin pairs together
with their non-twin siblings (more details presented in Online
methods). Data were acquired on a customized Siemens 3T
“Connectome Skyra” scanner at Washington University in St
Louis, Missouri, USA using a multi-shell protocol for the DWI:
1.25mm3 isotropic voxels, repetition time (TR) = 5520ms, echo
time (TE) = 89.5ms, field-of-view (FOV) of 210 × 180mm,
270 directions with b = 1000, 2000, 3000 s/mm2 (90 per b value),
and 18 b = 0 volumes. Structural T1-weighted data were collected
using 0.7mm3 isotropic voxels, TR = 2400ms, TE = 2.14ms,
FOV of 224 × 224mm. The full details can be found elsewhere
(60).
The second DWI dataset came from individuals recruited as part of
ongoing research conducted at Monash University. This Monash
sample was used for replication of the CGE analysis, and com-
prised 439 participants with MRI data obtained on a Siemens
Skyra 3T scanner at Monash Biomedical Imaging in Clayton, Vic-
toria, Australia using the following parameters: 2.5mm3 voxel
size, TR = 8800ms, TE = 110ms, FOV of 240 × 240mm, 60
directions with b = 3000 s/mm2 and seven b = 0 volumes. In ad-
dition, a single b = 0 s/mm2 was obtained with the reverse-phase
encoding so distortion correction could be performed. T1-weighted
structural scans were acquired using: 1mm3 isotropic voxels, TR
= 2300ms, TE = 2.07ms, FOV of 256 × 256mm. Data for 15
subjects were excluded due to: low connectome density (n = 10,
connectome density more than 3 standard deviations lower than
the mean) or issues with cortical surface segmentation (n= 5), re-
sulting in a final sample of 424 participants (age mean ± standard
deviation: 23.5±5.3, 190 females).

Image pre-processing. HCP DWI data were processed ac-
cording to the HCP minimal preprocessing pipeline, which in-
cluded normalization of mean b0 image across diffusion acqui-
sitions, and correction for EPI susceptibility and signal out-
liers, eddy-current-induced distortions, slice dropouts, gradient-
nonlinearities and subject motion. T1-weighted data were cor-
rected for gradient and readout distortions prior to being processed
with Freesurfer [full details can be found in (60)].
Pre-processing for T1-weighted structural images in the Monash
Sample consisted of visual screening for gross artefacts followed by
the reconstruction of the grey/white matter interface and the pial
surface using FreeSurfer v5.3.0 software. Surface reconstructions
for each subject were visually inspected, with manual corrections
performed as required to generate accurate surface models (60).

Distortions in the Monash DWI data were corrected with TOPUP
in FSL, using the forward and reverse phase-encoded b= 0 images
to estimate the susceptibility-induced off-resonance field (61, 62).
We corrected for eddy-current distortions, volume-to-volume head
motion, within-volume head motion, and signal outliers using
eddy tool in FSL [version 5.0.11; (63–65)]. This implementation
of EDDY significantly mitigates motion-related contamination of
DWI connectivity estimates (66). DWI data were subsequently
corrected for B1 field inhomogeneities using FAST in FSL (62, 67).

Connectome reconstruction. For both the HCP and Monash
datasets, network nodes for each individual were defined using a
recently-developed, data-driven group average HCPMMP1 parcel-
lation of the cortex into 360 regions [180 per hemisphere, (37)]. An
advantage of this parcellation is that it uses diverse structural and
functional information to derive a consensus partition of the cortex
into different areas. Each region has also been assigned to a dis-
tinct canonical functional network (39), allowing us to examine re-
sults in relation to the organization of these classic systems. How-
ever, the resulting areas can vary considerably in size, which can
affect regional connectivity estimates since larger regions are able
to accommodate more connections. To ensure that our results were
not driven by the use of this specific parcellation, we replicated
our main findings using a random cortical parcellation consisting
of 500 approximately equally sized regions [250 per hemisphere,
generated using the approach described in (68); code available at
https://github.com/miykael/parcellation_fragmenter]. This
offers a stringent test of the generalizability of our findings, as
the parcellations vary in terms of both method for construction
(data-driven vs random) and resolution (360 vs 500 nodes).
We focus our analysis on cortical connectivity for simplicity, as
we know of no unified parcellation of cortical and subcortical ar-
eas, positional differences between cortex and subcortex can affect
DWI connectivity estimates, and there are major differences be-
tween cortical and subcortical patterns of gene expression in the
AHBA data that can be difficult to appropriately accommodate
(35).
Subsequent processing of the DWI data for both the HCP and
Monash data was performed using the MRtrix3 (69) and FMRIB
Software Library (70). Tractography was conducted in each partic-
ipant’s T1 space using second order integration over fibre orienta-
tion distributions (iFOD2) (71). To further improve the biological
accuracy of the structural networks, we also applied Anatomically
Constrained Tractography (ACT), which uses a tissue segmenta-
tion of the brain into cortical grey matter, subcortical grey matter,
white matter, and cerebrospinal fluid to ensure that streamlines
are beginning, traversing, and terminating in anatomically plausi-
ble locations (72). Tissue types were determined using FSL soft-
ware (70). A total of 10 million streamlines were generated on
a probabilistic basis using a dynamic seeding approach that eval-
uates the relative difference between the estimated and current
reconstruction fibre density and preferentially samples from areas
of insufficient density (73). This method helps mitigate biases re-
lated to poor reconstruction of tracts from certain parts of the
brain due to insufficient seeding. The resulting tractogram was
then combined with the cortical parcellation for each subject to
produce a network map of white matter connectivity. Streamline
termination points were assigned to the closest region within a
5mm radius.
Connection weights were quantified using both streamline count
(number of streamlines connecting two regions, SC) and the mean
fractional anisotropy (FA) of voxels traversed by streamlines con-
necting two regions, which is commonly used as a marker of white
matter microstructure. We focused on SC and FA as measures
of connectivity strength because they are the most widely used
in the literature, but note that they can be influenced by numer-
ous factors that are not directly related to physiological measures
of communication capacity between two regions (74). Moreover,
while diffusion tractography remains the only available tool for
in vivo connectivity mapping in humans, tractography algorithms
can vary in their specificity and sensitivity for tract reconstruction
(75, 76). To mitigate these effects, our data processing pipeline
has been designed to limit contributions from spurious streamlines
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(72) and head motion (66). While the accuracy of all tractogra-
phy methods remains an open challenge for the field (77), we note
that any errors in tract reconstruction should reduce our chances
of identifying stronger genetic effects for rich links through a herit-
bility analysis, since noisy connectivity values will inflate estimates
of the E parameter (which also accounts for measurement error)
in our biometric models, and rich links tend to be long-range con-
nections, which are more prone to tractography errors (78). Our
findings may thus provide a conservative estimate of genetic influ-
ences on hub connectivity.

Connectome thresholding. As connectomes are estimated
with some degree of noise, it is common practice to threshold
weak or inconsistent edges to focus on connections that can be
more reliably estimated (79). We therefore selected edges that
were: i) present in at least 30% of subjects; and ii) were amongst
the τ% strongest edges (based on the median streamline count)
to achieve a desired connectome density. We note that multiple
other thresholding approaches are available (79–81), and there is
no consensus as to which works best for different datasets. Since
the desired connection density is arbitrary, we examined our main
results across a range of densities: τ = 15%,20%,25% for 360 re-
gion parcellation and τ = 5%,10%,15% for the higher resolution
parcellation of 500 regions. We note that the actual connection
density of the human connectome remains unknown, and we chose
these thresholds to span a range commonly studied in the litera-
ture.
The connection matrix resulting from our thresholding procedure
was then used as a binary mask for selecting edges for the heritabil-
ity, gene expression analyses and generative modeling. This mask-
ing procedure thus restricted individual variability in the binary
topology of connectomes across individuals (indeed, in healthy in-
dividuals such topology should be highly conserved). For heri-
tability analysis we used this group-representative connectome as
a mask to extract FA-based connection weights and also repeated
the analysis using streamline count as a measure of connection
strength.

Rich-club organization. The connectivity of each region
(node) in a network can be quantified by counting the number
of connections to which it is attached. This measure is known as
node degree. At a particular degree threshold, k, nodes can be la-
belled as hubs (degree >k) or nonhubs (degree ≤ k), subsequently
classifying all connections within the network as ‘rich’ (connec-
tion between two hubs), ‘feeder’ (connection between a hub and
a nonhub), and ‘peripheral’ (connection between two nonhubs)
[see, Fig. 1A, (5)]. To quantify the inter-connectivity between hub
regions within a binary brain connectivity network, we used the
topological rich-club coefficient φ(k):

φ(k) =
2E>k

N>k(N>k−1)
, (2)

where N>k is the number of nodes with degree >k, and E>k is the
number of edges between nodes with degree > k (82). Therefore,
the rich-club coefficient quantifies the density of the subgraph com-
prising nodes with degree higher than the hub-defining threshold
k.
Since nodes with higher degree make more connections, and can
thus be expected to have a higher connection density compared
to other nodes, we compared the φ(k) of the empirical network to
the mean value across a 1000 randomized null networks, φrand(k),
generated by rewiring the edges of the empirical network while
retaining the same degree sequence, using the randmio_und func-
tion from the Brain Connectivity Toolbox (83), rewiring each edge
50 times per null network. This randomization method is com-
monly used in the literature (3–5, 7). Alternative approaches that
preserve both the degree sequence and connectome wiring cost
(56, 84, 85) can be used to test rich-club organization in relation
to geometric influences on connectome organization.
To assess whether the connections between high-degree nodes were
also more likely to have stronger connection weights than expected
by chance, we evaluated the weighted rich-club coefficient (86):

φw(k) =
W>k∑E>k

l=1 wrank
l

, (3)

where W>k is the sum of weights in the sub-graph with degree
higher than k, and the denominator is the total sum of l strongest
weights in the network. As a null model for the weighted rich-club
coefficient, we separate the definitions of weighted and topologi-
cal rich-club coefficients by randomly reassigning weights within
the network while preserving the binary topology (87) (instead of
rewiring the links).
In both binary and weighted cases, we computed the normalized
rich-club coefficient φnorm(k) as the ratio between the rich-club
coefficient in the empirical network and the mean rich-club coeffi-
cient in the set of the corresponding randomized networks:

Φnorm(k) =
φ(k)

〈φrand(k)〉
. (4)

Values of Φnorm > 1 indicate rich-club organization, where high-
degree nodes are more densely interconnected (in a case of the
topological rich-club) or have higher weights (in a case of the
weighted rich-club) than be expected by chance. The statistical
significance of the result is assessed by computing a p-value di-
rectly from the empirical null distribution of the 1000 randomized
networks, φrand(k), as a permutation test (5). We note that in all
our analyses, we estimated node degree using SC-weighted con-
nectomes. Where indicated, FA-weighted connectomes were used
in analyses of connectivity weights.

Communicability. We investigated the topological centrality of
rich links using a measure called communicability (88), estimated
across a range of degree thresholds. The communicability, Cij ,
between a pair of nodes i and j, is calculated by accounting for
all possible paths of length l between the nodes, weighted as 1/l!,
so that shorter paths make a stronger contribution to the overall
score. The communicability, Cij , for a binary matrix A is formally
defined as:

Cij =
∞∑
l=0

(Al)ij
l!

= (eA)ij . (5)

In a weighted network, communicability ,Cwij , is defined using a
weighted adjacency matrix W :

Cwij = (eS
− 1

2 WS
− 1

2 )ij , (6)

where S−
1
2 is the diagonal matrix with elements 1√

si
and si is the

strength of node i. We estimated the mean binary and weighted
communicability for rich links, as a function of the hub-defining
threshold k, to evaluate whether rich links are topologically cen-
tral within the human connectome (Figs. S1E,F). An advantage
of communicability is that, unlike classic measures of centrality,
it does not assume that information is routed exclusively along
shortest paths in the network, which is likely to be an inappropri-
ate assumption for brain networks (2, 89).

Heritability analysis. The HCP diffusion imaging dataset in-
cludes 117 pairs of genetically confirmed monozygotic (MZ) twin
pairs together with 69 of their non-twin siblings, as well as 60
dizygotic (DZ) same-sex twin pairs and 48 of their non-twin sib-
lings. For each twin pair with more than one non-twin sibling, we
selected one sibling at random (demographic details summarized
in the Table 1). Only twin pairs where both twins had genetically-
verified zygosity were included in the heritability analysis.

Table 1. Demographic data for twin groups and their non-twin siblings. MZ –
monozygotic twins, DZ – dizygotic twins. Age is displayed in years: mean± SD.

Zygosity Number of subjects Sex (F/M) Age
MZ twins 117 pairs 69/48 29.3±3.3
MZ non-twin siblings 69 34/35 29.1±4.2
DZ twins 60 pairs 33/27 28.8±3.5
DZ non-twin siblings 48 24/24 29.1±4.0
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Heritability analysis relies on the assumption that both shared ge-
netic factors and common environment contribute to phenotypic
similarity between twins within a pair, whereas unique environ-
mental factors and non-shared genetic effects contribute to the dif-
ferences observed between them. In the classical twin design, MZ
twins are assumed to be genetically identical whereas DZ twins on
average share half of their DNA, which is similar to non-twin sib-
lings. Structural equation modeling can thus be used to decompose
phenotypic variance and covariance in any particular trait into ad-
ditive genetic (A), common environmental (C), and unique envi-
ronmental (E) influences. Considering that twins raised together
might have experienced a more similar environment compared to
their non-twin siblings, including a set of non-twin siblings into the
analysis allows us to separate the common environmental contri-
butions into twin-specific (T) and twin non-specific (C) common
environmental factors.
We used the binary group-representative cortical connectome
mask described above to extract FA-weighted edges and applied
standard structural equation modeling (SEM) to every connec-
tion in the connectome using OpenMx software (90, 91) in R. The
analysis reported in the main text was performed on the 360 re-
gion (37) cortical connectome at 20% density (12 924 unique con-
nections) using FA as a connection weight. The analyses were
subsequently reproduced using SC (Fig. S2C,D) and at different
connectome densities (Fig. S3A-C) and using a higher resolution
500-region random cortical parcellation at 5%, 10% and 15% den-
sities (Fig. S3D–F).
A range of biometric models – ACTE, ACE, AE, CE, E – were
fitted to each edge defined by the group connectome mask in or-
der to find connection-specific maximum likelihood estimates of
additive genetic (A), twin-specific common environmental (T),
twin non-specific common environmental (C) and unique envi-
ronment (E) factors, using age and sex as covariates. Outly-
ing connection weights for each analysis were removed using the
boxplot function in R by keeping data points (w) in a range
Q1− 1.5× IQR < w < Q3 + 1.5× IQR where Q1 and Q3 are the
first and third quartiles respectively and IQR is the interquartile
range. The Akaike information criterion (AIC) (92) was used to
compare the goodness of fit of all tested models in order to find the
most parsimonious model. For each edge, the model with the low-
est AIC was selected. Consequently, the narrow-sense heritability
(the proportion of variance attributable to additive genetic fac-
tors, referred to as heritability) was estimated for each connection
using the best-fitting model. We also show heritability results us-
ing parameter estimates from the full ACTE model to ensure that
our findings cannot be explained by our model selection proce-
dure (Fig. S2B) and verify that outlier exclusion did not affect
our findings (Fig. S4D-F).

Gene expression data. We used brain-wide gene expression
data from the Allen Human Brain Atlas (AHBA), which consists
of microarray expression measures in 3702 spatially distinct tis-
sue samples taken from six neurotypical postmortem adult brains
(40). Different brain regions were sampled across each of the six
AHBA donors to maximise spatial coverage, resulting in approx-
imately 400–500 tissue samples in each brain. The samples were
distributed across cortical, subcortical, brainstem and cerebellar
regions, measuring the expression levels of 58 692 probes quantify-
ing the transcriptional activity of 20 737 genes. Considering that
only two out of six brains were sampled from both left and right
hemispheres whereas the other four brains had samples collected
only from the left hemisphere, we focused our analyses on the left
cortex only.
The pre-processing procedures applied to the data are outlined
below and the choices detailed in (35). Briefly, probe-to-gene an-
notations were first updated using the Re-Annotator toolbox (93)
resulting in the selection of 45 821 probes corresponding to the
total of 20 232 genes. Second, tissue samples annotated to the
brainstem and cerebellum were removed. Then, intensity-based
filtering (35) was applied in order to exclude probes that do not
exceed background noise in more than 50% of samples, excluding
13 844 probes corresponding to 4486 unique genes. Afterwards, a
representative probe for each gene was selected based on the high-

est correlation to RNA sequencing data in two of the six brains
(94). Gene expression samples were assigned to regions-of-interest
by generating donor-specific grey matter parcellations and assign-
ing samples located within 2mm of the parcellation voxels. To
increase the accuracy of assigning samples to regions, the sam-
ples were first divided into four separate groups based on their
location: hemisphere (left/right) and structure assignment (cor-
tex/subcortex), so samples listed as coming from the left cortical
hemisphere in the AHBA ontology are only mapped to left corti-
cal voxels of the parcellation (applying a 2mm distance threshold,
almost 90% of all cortical and subcortical samples were assigned
to a non-zero voxel of the parcellation). Then, samples assigned
to the subcortical regions as well as the right hemisphere were
removed. Finally, gene-expression measures within a given brain
were normalized first by applying a scaled robust sigmoid normal-
ization for every sample across genes and then for every gene across
samples in order to evaluate the relative expression of each gene
across regions, while controlling for donor-specific differences in
gene expression [see (35) for a validation]. Normalized expression
measures in samples assigned to the same region were averaged
within each donor brain and aggregated into a region by gene ×
matrix consisting of expression measures for 10 027 genes over 180
(left hemisphere, HCP parcellation) and 250 regions (left hemi-
sphere of the random parcellation), respectively.
Distances between region pairs that were subsequently used to
account for the spatial effects on transcriptional coupling were es-
timated on the cortical surface (pial) using the annotation files
for each parcellation mapped onto the spherical representation of
the fsaverage cortical surface. First, all the vertices that cor-
respond to a particular region of interest in the spherical rep-
resentation were identified and their centroid coordinates were
calculated. Then the centroid coordinates were mapped to the
fsaverage cortical surface and the distances between each pair of
regions were calculated using the toolbox fast_marching_toolbox
in MATLAB.

Transcriptional coupling. The result of the above mapping of
AHBA data was an expression profile for each brain region, quan-
tifying transcriptional activity across 10 027 genes. We used these
profiles to quantify transcriptional coupling, or correlated gene ex-
pression (CGE), between every pair of regions. We defined CGE
as the Pearson correlation between the normalized expression mea-
sures of the genes available after pre-processing (n = 10027). As
shown in Fig. S5A and described in (35), CGE exhibits a strong
spatial autocorrelation that can be approximated as an exponen-
tial relationship with separation distance, , such that regions lo-
cated in close proximity to each other share more similar gene
expression. To investigate whether CGE differs between differ-
ent topological classes of connections beyond any low-order spa-
tial effect, we need to ensure that the distance between regions
alone is not informative of their CGE. Otherwise, any similarity
between region pairs will be driven by a mixture of two factors:
the CGE signature that is reflective of the spatial gradient and
CGE signature that corresponds to the edge-specific properties.
To account for the low-order spatial effect we fitted an expo-
nential function with form r(d) = Ae−d/n +B. The parameters
A= 0.64, B =−0.19 and n= 90.4 capture the trend well, allowing
us to retain the residuals for further analysis (Fig. S5B), defined as
ĈGEij =CGEij−r(dij). These distance-corrected residual CGE
values were used in all CGE analyses.
To evaluate transcriptional coupling for different connection types,
for every edge within the connectivity matrix, we assigned a
distance-corrected CGE measure. At each degree threshold, k,
for defining hubs (nodes with degree> k), we then computed the
average CGE of rich, feeder, and peripheral links. Significant in-
creases in the CGE for a given link type compared to the rest of the
network were evaluated using a one-sided Welch’s t-test (p< 0.05).

Gene contribution score. To determine which functional gene
groups contribute the most to any observed differences in CGE
across different link types in the brain, we quantified the degree
to which each gene contributes to the overall CGE between a pair
of regions, following prior work (7):
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ĈGEij =CGEij−r(dij) =
1
N

N∑
a=1

[g̃ai g̃
a
j −r(dij)] =

1
N

N∑
a=1

GCSaij ,

(7)
where N is the number of genes (N = 10027), g̃ai g̃

a
j the product

of the z-score normalized expression values for gene a in regions i
and j, and r(dij) is the previously defined spatial autocorrelation
effect approximated as an exponential line (Fig. S5). Therefore,
the gene contribution score between a pair of regions i and j for
gene a was defined as GCSaij = g̃ai g̃

a
j − r(dij).

We then assigned each gene a t-statistic quantifying the increase
in GCS for rich compared to peripheral links (GCSt−stat), as these
two groups constitute the most distinct link types. A high value in-
dicates increased CGE in rich compared to peripheral links. These
t-statistic measures were used in the enrichment analyses as gene
scores for determining whether any functional gene groups made
a stronger contribution to CGE than others.

Cell-specific genes. Given that the AHBA assays gene expres-
sion using bulk tissue samples, it is possible that regional varia-
tions in cellular architecture drive differences in CGE between dif-
ferent link types. To test this hypothesis, we conducted a second
CGE analysis focused on subsets of genes that have previously
been identified as cell-specific markers. The set of cell-specific
genes was compiled based on data from five different single-cell
studies that used postmortem cortical samples of human post-
natal subjects. Genes identified in each study as a cell-specific
marker or as specifically enriched within a cell type were aggre-
gated into study-specific lists (44–47). In the case of (43) where
the normalized gene expression values were available for each cell
type, we identified enriched genes as those with an average Frag-
ments per kilobase million, FPKM> 5 and at least a four-fold en-
richment over other cell types, as per authors recommendations.
We then assigned genes within each of the resulting study-specific
gene lists to one of seven canonical cell classes: astroglia, endothe-
lial cells, excitatory neurons, inhibitory neurons, oligodendrocytes,
and oligodendrocyte progenitor cell restricting each cell-class list
to only contain genes unique to that class.

Gene-set enrichment analysis using gene score resampling.
Gene-set enrichment analyses assess whether any functionally re-
lated groups of genes, annotated using Gene Ontology (GO), are
associated with a selected phenotype. Every gene in our sample
(n = 10027 genes) was assigned a t-statistic score quantifying its
contribution towards the increase in GCS for rich links relative to
peripheral (GCSt−stat). Using these scores, we determined which
specific functional groups of genes contribute to the observed in-
crease in correlated gene expression. Functional gene group anal-
ysis was performed using version 3.1.2 of ErmineJ software (95).
Gene ontology (96) annotations were obtained from GEMMA
(97) as Generic_human_ensemblIds_noParents.an.txt on Decem-
ber 9, 2019. Gene Ontology terms and definitions were ac-
quired from the archive.geneontology.org/latest-termdb/go_
daily-termdb.rdf-xml.gz on January 13 2020. We performed
gene score resampling (GSR) analysis on the GCSt−stat scores
testing the biological process GO categories with 5 to 100 genes
available using the mean t-statistic score across genes to summa-
rize the GO category and applying full resampling with 106 it-
erations. The resulting p-values were corrected across 6201 GO
categories, controlling the false discovery rate (FDR) at 0.05 us-
ing the method of Benjamini and Hochberg (98).
Recent work indicates that the default null models used in such
analyses are insufficiently constrained for spatially embedded tran-
scriptomic atlas data (50). This problem can lead to inflated signif-
icance for some GO categories when testing for spatial correlations
between regional variations in gene expression patterns and mea-
sures of brain structure or function. The extent to which this prob-
lem generalizes to phenotypes defined for pairs of regions, such as
the connectivity metrics considered here, is unclear. We nonethe-
less suggest caution in interpreting the findings of this analysis,
as appropriate null models for the analysis of pairwise phenotypes

have not yet been developed. We report the enrichment findings
to test for consistency with prior findings in the mouse (7).

Microstructural profiles. Our CGE analysis of cell-specific
genes indicated that connected hubs have more similar cellular
composition than other region pairs. To independently verify
this result, we estimated the microstructural profile covariance
(MPC) between each pair of regions using the BigBrain atlas,
which is a Merker-stained 3D volumetric histological reconstruc-
tion of a human brain (48, 49). MPC was estimated using methods
described in [(49), see https://github.com/MICA-MNI/micaopen/
tree/master/MPC]. In brief, the MPC procedure involved con-
structing 16 equivolumetric surfaces between the pial and white
matter boundaries, followed by systematic sampling of the inten-
sity values along these surfaces at 163 842 matched vertices per
hemisphere. The intensity profiles, reflecting depth-wise changes
in cellular density and soma size, were corrected for the midsur-
face y-coordinate to account for an anterior–posterior increase in
intensity values across the BigBrain related to coronal slicing and
reconstruction. Standardized residual intensity profiles were aver-
aged within areas of the HCPMMP1 (n = 360) (37) and random
(n = 500) parcellations. We quantified cytoarchitectural similar-
ity between cortical areas by correlating areal intensity profiles
(covarying for cortex-wide mean intensity profile), thresholding to
retain only positive values (r > 0) and applying a log transforma-
tion, resulting in the measure of microstructural profile covariance
(MPC) (49). We repeated the same analysis using the 500-region
random parcellation.
Notably, this analysis did not replicate the elevated MPC for
rich links seen with the HCPMMP1 atlas (compare Fig. 3H with
Fig. S8B). This discrepancy likely reflects the fact that the HCP-
MMP1 parcellation more closely approximates boundaries be-
tween functional zones of the cortex, as it is based on a fusion
of multimodal imaging data (37). The random parcellation makes
no attempt to capture such boundaries and may blur different
cytoarchitectonic regions within the same network node, thus re-
sulting in noisier MPC estimates. In this way, the MPC results
appear to depend on accurate approximation of cytoarchitectonic
boundaries in cortex.

Models of brain network wiring. To evaluate the role of
stochastic processes in shaping connectome architecture, we eval-
uated a series of generative models of network wiring that have
the general form:

θij = dηij × t
γ
ij , (8)

where θij is a score that weights the probability of connecting
nodes i and j, dij is the Euclidean distance between nodes i and
j, and tij is some topological property of nodes i and j or an edge
between them. This topological term modulates the probabilities
of forming an edge along with wiring cost (operationalized as dij).
Numerous topological properties have been evaluated for tij in
past work (32, 33), and we consider these same models here. A
summary is provided in Table 2.

c is the local clustering coefficient, k represents node degree, A
- adjacency matrix and Ni\j - neighbors of the node i excluding
node j. The exponents, η and γ, act as weights on the distance
and topological terms, respectively (32, 33). At each iteration,
the computed connection score, θij , is used to calculate the prob-
ability of a given edge, (i, j), being formed in that iteration, as
Pij = θij/Θ, where Θ is the sum of θij over all edges that have
not yet been formed. Thus, at a given iteration, the model cal-
culates the probability of each edge forming based on its distance
and the current value of its topological term, tij . This topological
value is recalculated at each iteration. Edges are added itera-
tively until the total number of edges is equal to the number of
edges in the empirical connectome. Due to computational bur-
den, and in line with prior analyses (33), we fitted models to a
single (left) hemisphere connectome defined using the HCPMMP1
(37) parcellation, containing 5025 unique edges (20% whole cortex
connectome density).
As per prior work (33), we quantified model performance using
the Kolmogorov-Smirnov (KS) statistic. The KS statistic quanti-
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Table 2. A list of topological terms, tij , used in the generative models [see Eq. 8].

Name tij
clu-avg ci

2 + cj
2

clu-diff |ci− cj |
clu-max max[ci, cj ]
clu-min min[ci, cj ]
clu-prod cicj

deg-avg ki
2 + kj

2
deg-diff |ki−kj |
deg-max max[ki,kj ]
deg-min min[ki,kj ]
deg-prod kikj

matching |Ni\j∩Nj\i|
|Ni\j∪Nj\i|

neighbors
∑
lAilAjl

sptl 1

fies the distances between distributions of key topological statis-
tics of the network; as such, lower values indicate better model fit.
We focused on four key metrics: node-level distributions of de-
gree, clustering, and betweenness, and the edge-level distribution
of connection distance (33). The quality of model fit was defined as
the maximum KS value across all four distributions; that is, model
performance is defined by the property that is fitted most poorly.
In principle, any number of other topological parameters could be
used in this objective function, but these are some of the most
widely used to characterize brain networks and were employed in
prior work evaluating the same models (32, 33)
We optimize the free parameters η and γ as per previous work (33).
Specifically, we randomly sample the parameter space and evaluate
the fits of the resulting networks. We consider η values in the range
from -4 to 4, allowing both positive and negative contributions for
the topological terms, whereas wiring cost is always penalized with
γ values ranging from -15 to 0. After sampling 2000 points in this
space, Voronoi tessellation is then used to identify areas – or cells –
of this space where the parameters produce networks with the best
fits, as defined by the KS statistic. We then preferentially sample
from cells with better fits. This procedure is repeated four times
so that the algorithm gradually converges on an optimum. We ran
each generative model on the group connectome 10 000 times and
then evaluated each different model by comparing the 100 lowest
energy values obtained from the optimization procedure.
For our analysis, we draw a critical distinction between the distri-
bution and sequence of a topological property. The distribution
refers to how a property is statistically distributed across the nodes
of the network. The sequence refers to the exact assignment of a
particular value to individual nodes or edges; in other words, how
the property is spatially embedded in the brain. It is possible that
two networks may have similar distributions for a given property,
but very different underlying sequences.
The models we consider here are optimized to match distributions,
not sequences. As we are specifically interested in understanding
the mechanisms driving the precise way in which hubs are con-
nected, and given evidence that the specific anatomical location
of network hubs has important implications for network dynamics
(56), we seek to evaluate whether the models can not only gener-
ate networks with hubs, which would be shown by accurate fitting
of the degree distribution, but also whether they yield hubs in the
same anatomical regions as the empirical data, which would be
shown by accurate fitting of the degree sequence. To this end, we
additionally evaluate the correlation between the degree sequences
of the empirical and synthetic networks using the Spearman cor-
relation coefficient, ρ. A high correlation between the model and
data implies that hubs are located in the same anatomical regions
across the two networks. Conversely, a low correlation indicates
that the model does not accurately capture the spatial embedding
of connectivity in the connectome. Put simply, a low correlation

implies that the hubs in the model network reside in anatomical
locations that differ from the actual connectome.

An important consideration is that the correlation between model
and empirical degree sequences was not a part of the objective
function used in model fitting. We fitted the models using topo-
logical distributions and then evaluated their performance in cap-
turing the empirical degree sequence. This procedure allows us
to examine how well these models, as traditionally implemented,
capture spatial properties of hub connectivity. However, this pro-
cedure also raises the question of whether it is possible to ob-
tain a higher degree sequence correlation if model parameters are
chosen to optimize this specific quantity. We therefore repeated
the analysis after replacing the objective function with one that
maximized the similarity between model and empirical degree se-
quences. Specifically, we optimized the Spearman correlation be-
tween model and empirical degree sequences with no other con-
straints to give the models the best possible chance of reproducing
the empirically observed spatial topography of hub regions. The
results of this analysis are shown in Fig. S11. Qualitatively simi-
lar results were obtained when optimizing the Pearson correlation
between model and empirical degree sequences.

Across the 13 models evaluated in our analysis, we find that the
best-fitting model is the ‘deg-avg’ model, which involves a trade-
off between forming connections between highly connected nodes
(i.e., node pairs with high average degree) and penalizing long-
range connections (i.e., minimizing wiring cost). This result differs
from past work, in which a homophilic attachment trade-off model
that balances wiring cost with a preference for forming connections
between nodes with similar neighbors offered the best fit to empir-
ical connectome data (32, 33). This discrepancy may be related
to our use of a higher resolution network parcellation, a connec-
tome mapped at a different connection density, using a different
tractography algorithm, and/or a different diffusion MRI process-
ing pipeline. Investigating the effect of these factors on modeling
results is an important direction of future work, but these poten-
tial effects do not change the substantive point of our results that
current stochastic models do a poor job of reproducing the spa-
tial embedding of hub connectivity, as across 260 000 runs of the
13 different models considered, no degree sequence correlation ex-
ceeded ρ= 0.3. We also note that our model fits (Figs 4B–E) are
in the same range as those reported by Betzel et al. (33), indicat-
ing that our discrepant results are not due to differences in model
accuracy.

Models incorporating transcriptional information are constructed
using the same general form (Eq.8) while replacing one of the terms
with pairwise distance-corrected CGE values gij , weighted using
a parameter λ varying in the range [0,200] that favors forming
connections between regions with higher CGE.

While our analysis mimics prior comprehensive evaluations of gen-
erative network models based on cost-value trade-offs (32, 33),
other formulations and approaches are also possible (99–101). It
is also possible to define 3-parameter or higher-order models that
incorporate spatial, topological and genetic constraints, but we
have focused on the simpler 2-parameter form here to enable ef-
ficient optimization and fair model comparison. It is also possi-
ble that alternative, non-genetic wiring rules may yield improved
model performance, and thus we cannot completely rule out a role
for stochastic processes in shaping hub connectivity. Indeed, more
abstract models suggest that stochastic wiring, acting in concert
with developmental changes in brain geometry and heterogeneous
timing of connection formation across regions, can indeed gener-
ate networks with brain-like properties (34, 59, 102). However, a
framework for directly fitting such models to human DWI data
has not yet been developed.
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66. S. Oldham, A. Arnatkevic̆iūtė, E. R. Smith, et al. The efficacy of different preprocessing
steps in reducing motion-related confounds in diffusion MRI connectomics. bioRxiv (2020).

67. Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a hidden
Markov random field model and the expectation-maximization algorithm. IEEE Trans Med
Imaging 20, 45 (2017).

68. M. Notter, K. Eschenburg, T. Serey, Claudio, et al. Parcellation fragmenter (2018).
69. J.-D. Tournier, F. Calamante, and A. Connelly. MRtrix: diffusion tractography in crossing

fiber regions. Int. J. Imaging Syst. Technol. 22, 53 (2012).
70. M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith. FSL.

Neuroimage 62, 782 (2012).
71. J.-D. Tournier, F. Calamante, and A. Connelly. Improved probabilistic streamlines tractog-

raphy by 2 nd order integration over fibre orientation distributions. Ismrm 88, 2010 (2010).
72. R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly. Anatomically-constrained

tractography: improved diffusion MRI streamlines tractography through effective use of
anatomical information. Neuroimage 62, 1924 (2012).

73. R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly. SIFT2: Enabling dense quanti-
tative assessment of brain white matter connectivity using streamlines tractography. Neu-
roimage 119, 338 (2015).

74. D. K. Jones. Challenges and limitations of quantifying brain connectivity in vivo with diffu-
sion MRI. Imaging Med. 2, 341 (2010).

75. A. Zalesky, A. Fornito, L. Cocchi, et al. Connectome sensitivity or specificity: which is more
important? Neuroimage 142, 407 (2016).

76. C. Thomas, F. Q. Ye, M. O. Irfanoglu, et al. Anatomical accuracy of brain connections
derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. 111,
16574 (2014).

77. K. H. Maier-Hein, P. F. Neher, J.-C. Houde, M.-A. Cote, and M. Descoteaux. The challenge
of mapping the human connectome based on diffusion tractography. Nat. Commun. 8,
1349 (2017).

78. A. Zalesky and A. Fornito. A dti-derived measure of cortico-cortical connectivity. IEEE
Transactions on Medical Imaging 28, 1023 (2009).
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