
Speeding up eQTL scans in the BXD
population using GPUs

Chelsea Trotter1, Hyeonju Kim1, Gregory Farage1, Pjotr Prins2, Robert W. Williams2, Karl W. Broman3, and Śaunak Sen1,�

1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN

3Department of Biostatistics, University of Wisconsin-Madison, Madison, WI

The BXD recombinant inbred strains of mice are an important
reference population for systems biology and genetics that have
been full sequenced and deeply phenotyped. To facilitate inter-
active use of genotype-phenotype relations using many massive
omics data sets for this and other segregating populations, we
have developed new algorithms and code that enables near-real
time whole genome QTL scans for up to 1 million traits. By
using easily parallelizable operations including matrix multipli-
cation, vectorized operations, and element-wise operations, we
have decreased run-time to a few seconds for large transcrip-
tome data sets. Our code is ideal for interactive web services,
such as GeneNetwork.org. We used parallelization of differ-
ent CPU threads as well as GPUs. We found that the speed ad-
vantage of GPUs is dependent on problem size and shape (num-
ber of cases, number of genotypes, number of traits). Our re-
sults provide a path for speeding up eQTL scans using linear
mixed models (LMMs). Our implementation is in the Julia pro-
gramming language.

Linear Model | Genome Scan | BXD | GPU
Correspondence: sen@uthsc.edu

Introduction
The BXD family is an important set of approximately 150
recombinant inbred strains for which there is a large number
of massive omics data sets. All members of the family have
been densely genotyped and even fully sequenced. Thus any
new omics data can be immediately used for quantitative ex-
pression trait locus (QTL or eQTL) mapping, and for asso-
ciation analyses with previously-collected phenotypes. For
omic data sets collected using high-throughput technologies,
additional analyses, such as transcriptional network construc-
tion or causal mediation analyses, are also practical.
The open-source GeneNetwork web service
(www.genenetwork.org) (1) (2) (3) facilitate sys-
tems genetics and mapping by providing a searchable and
exportable database of phenotypes and genotypes for a va-
riety of organisms (including mouse, rat, and Arabidopsis).
It also provides a suite of interactive tools for browsing the
data, generating QTL maps, correlational analyses, network
construction, and genome browsing. Our goal here is to
develop a real-time backend for GeneNetwork to perform
real-time eQTL analysis of tens-of-thousands of omics traits
using key populations such as the BXDs.
To perform eQTL scans in the BXD family, one has to sim-
ply perform as many genome scans as there are phenotypes.
This can be done in an “embarrassingly parallel” fashion by

using standard algorithms for QTL analysis, such as those
employed by R/qtl (4). In practice, this is too slow. For exam-
ple, by using the Haley-Knott algorithms (5) using genotype
probabilities on batches of phenotypes with the same miss-
ing data pattern, instead of using the EM algorithm (6) on
each phenotype individually, substantial speedups are possi-
ble. This is a well-known trick and is used by R/qtl. Addi-
tionally, if only additive effects are tested, or if the popula-
tion has only two genotype categories (as in a backcross or
recombinant inbred line), then matrix multiplication can be
used to perform Haley-Knott regression. With pre-processed
data, the computation intensive part of QTL analysis can be
expressed with matrix multiplication (7).

Processing large data set has been a challenge for genome
scans. We were blessed with Moore’s Law for decades, but
the central processing unit (CPU) is reaching to its physical
limit of transistors. Graphical processing units (GPUs), orig-
inally used as an image processing component of a computer,
have shown some compelling results to accelerate computa-
tion in various fields. General purpose graphics processor
units (GPGPUs) became popular in the early 2000s because
of their ability to natively handle matrix and vector opera-
tions. Such power is attractive to the scientific computing
community. Zhang et al. (8) used GPU to simultaneously
dissect various genetic effects with mixed linear model. Cha-
puis et al. (9) utilized GPU to offset heavy computation to
deploy various ways for a more precise calculation of a QTL
detection threshold. By using GPU-backed machine learning
libraries such as TensorFlow, Taylor-Weiner et al. (10) re-
implemented QTL mapping and Bayesian non-negative ma-
trix factorization, achieving greater than 200 fold speedup
compared to CPU versions. The ease of using such libraries
has motivated the development of new methods for genomic
research.

We sought to build upon these efforts aiming to perform real-
time eQTL scans for the BXD populations using both CPU
and GPU systems. Since programming for GPUs is often
non-trivial, needing the use of low-level languages such as
C++, we used the Julia programming language that offers
GPU programming capabilities while retaining the simplic-
ity of a high-level language such as R or MATLAB. Finally,
since most phenotype-marker associations are null, we ex-
amined the impact of storage precision, and of only returning
the highest association (LOD) score for each trait instead of
a matrix of LOD scores for every pair of marker and phe-

Chelsea Trotter et al. | bioRχiv | June 22, 2020 | 1–6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

GeneNetwork.org
www.genenetwork.org
https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

notypes. We have achieved computing speeds to the extent
that almost all response latency is now related to data transfer
and browser display, rather that the computation. This makes
real-time eQTL scans practical for the BXDs and many other
well structured populations.

Methods and Data

A. Information about Datasets. We downloaded the BXD
Genotype Database (GN Accession: GN600) and two sets
of transcriptome data, UTHSC Affy MoGene 1.0 ST Spleen
(GN Accession: GN283) and UMUT Affy Hippocampus
Exon (GN Accession: GN206) from GeneNetwork to build
and refine methods. The genotype file includes 7321 mark-
ers by 198 BXD strains; the spleen dataset has data for 79
BXD strains and for 35556 transcripts, while the hippocam-
pus dataset has data for 70 BXD strains and 1,236,087 probe
sets. Data cleaning and wrangling was performed using R/qtl
(4) and R/qtl2 (11).

B. Linear Model. Let yi denote a vector for the i-th expres-
sion trait for n individuals in the (i= 1, . . . ,m). We define a
univariate linear model as follows:

yi = Xjβj + εi, εi ∼N(0,σ2
i I),

where Xj is a matrix including the y-intercept and the j-
th candidate genetic marker (j = 1, . . . ,p) without any co-
variate(s), βj is a vector of the j-th eQTL effects, and εi is
random error distributed as N(0,σ2

i I). Suppose RSS0i is
the residual sum of squares under the null hypothesis of no
eQTL, and RSS1ij is the residual sum of squares under the
alternative of existing eQTL at the i-th trait and j-th genetic
marker. Then, the LODij score for a one-df test can be writ-
ten as:

LODij = n

2 log10

(
RSS0i
RSS1ij

)
= n

2 log10
(
1−r2

ij

)
,

where rij is the correlation between the i-th expression trait
and j-th marker. If Y ∗ and G∗ are respectively standardized
trait (Y) and genotype (G) matrices, then the correlation ma-
trix is simply

R= Y ∗
′
G∗.

Since matrix multiplication is a parallelizable operation for
which optimized routines are available, this formula is very
atrractive for bulk calculation of LOD scores. The formula
can be extended for LOD scores adjusted by covariates. The
idea is to project genetic markers and gene expressions onto
the space orthogonal to the covariates and to compute the
corresponding correlation matrix just as we did for the no-
covariate case. In other words, let Z be a matrix of covariates
including y-intercept. The projection orthogonal to the co-
variate space is then P = I −Z(Z′Z)−1Z′. The genotype
matrix (G) and gene expressions (Y) are now transformed
into Gz = PG, Yz = PY , respectively. This is the same as

calculating the residuals after regressing on Z. Standardizing
them (G∗z , Y ∗z) followed by multiplication yields the correla-
tion matrix (Rz) just as shown above. Figure 1 gives a visual
representation of the matrix multiplication.
Fig. 1. Schematic of data and correlation calculation: Y is an expression phenotype
matrix, G is a genotype matrix, and R = Y ∗′G∗ is a correlation matrix. LOD
scores are a function of the correlation matrix.

C. Acceleration Techniques. While it is true that many
programs can achieve tens or even hundreds of speedup by
utilizing GPUs, the difference needs to be examined with
more care. Sometimes, the reported CPU time is using sin-
gle thread, and multithreaded CPU time may bring the per-
formance gap of CPU and GPU closer than claimed. Also
depending on the library chosen for CPU, speed might vary
depending on whether the library is optimized for such com-
putation or hardware. We believe for a fair comparison, both
CPU and GPU functions should be optimized at maximum
performance and count in all necessary overhead. The fol-
lowing section explains our efforts of optimization on CPU
and GPU functions.

C.1. Multithreaded CPU operations. Our goal is to build a
backend for GeneNetwork that allows researchers to inter-
act with data in real time. Such requirement sets up the
standard that the genome scan must finish within seconds.
To bring out the best performance of CPU, we use mul-
tithreaded operations whenever possible. Julia (12) (13),
our choice of the programming language, provides simple
yet safe syntax for multithreading. It is simply done by
adding Threads.@thread macro to indicate to Julia that
the following for loop is the multithreaded region. Using
Threads.nthreads() function can show the number of

2 | bioRχiv Chelsea Trotter et al. | eQTL speed up

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

C Acceleration Techniques

threads in julia, and the default number of threads we use is
16 threads.

C.2. Matrix and Vectorized Operations. Since our algorithm
largely depends on matrix operations, it is natural to find the
fastest way to achieve the best result, regardless of comput-
ing platforms. There are various matrix libraries available
for CPU, such as gslBLAS and OpenBLAS (14). They target
different hardware or use various techniques to get optimal
results. Multithreaded matrix multiplication is the default in
OpenBLAS, so as not to require an extra coding effort to
make the CPU version of matrix multiplication run in par-
allel. We therefore chose OpenBLAS as the CPU computing
library.
Matrix multiplication and element-wise operations are
algorithmically free of data and function dependency, so
that they are amendable to GPU’s parallel computing power.
Julia provides various packages for GPU including CUDA
(15) bindings. Our chosen hardware for GPU is from Nvidia,
which requires its proprietary library, CUDA. Besides
the hardware requirement, CUDA is also mature and has
been recognized in the scientific computing community.
https://www.overleaf.com/project/5eea5c1d4f553e00016a0611
cuBLAS (16) library provides a fast GPU implementation of
the BLAS from Nvidia. For matrix operations on GPU, we
used the cuBLAS library.
Not only do we want to see how much speed up we can get
from using GPU, but we also experiment whether the shape
of matrix will affect the speedup. Of course, most of the
time, one cannot pick the size and shape of data in a ma-
trix form, but such information would help researchers as a
rough guidance of whether it is worth considering the GPU
option before investing programming efforts for GPU. We ran
matrix multiplication with different shapes of matrices and
compared the running time of CPU and GPU. CPU time is
measured by matrix multiplication from the OpenBLAS li-
brary using 16 threads. GPU time includes all overhead of
using GPU, which involves device launch, data transfer and
all necessary API calls. In order to make a fair comparison
between CPU and GPU, we need to use maximum strength
of both and include all necessary cost.
The experiment setup is to multiply two input matrices,
A(m×n), and B(n×p), and produce an output matrix C
(m×p). The range of m, n and p is between 24 and 217

in log scale. Due to the GPU hardware limitations, we can
only compare the result when the size of input and output
(I/O size) matrices, in total, is less than 16 GB. The result is
shown in Figure 2. The x-axis of Figure 2 is the dimensions
of matrix whose I/O size is over 12 GB. This is because us-
ing GPU involves a lot of overhead. Such overhead can only
be justified by processing large data sets. The y-axis is the
speedup of GPU compared with CPU in log scale. From this
figure, matrices whose shapes are closer to square matrices
get better speedups from GPU. Matrix multiplication is up to
5 times faster on GPU than that on 16 threaded CPU.

C.3. Single precision. Precision means the smallest differ-
ence between two representable numbers. Floating point

Fig. 2. Variation of GPU vs CPU speedup with matrix shape

numbers, in scientific computing, are usually stored in double
precision. Double precision floating point numbers take up 8
bytes in memory while single precision takes up 4 bytes. In
addition to the difference in storage size, the speed for calcu-
lation using single and double precision also varies by hard-
ware. For example, the GPU throughput (the number of float-
ing point calculation per second, measured in FLOPS) for
double precision is 1/32 of single precision on a Nvidia GTX
1050 GPU, and 1/4 on a Nvidia Tesla K80. Differences in
optimization techniques, underlying architecture cause such
performance gap. Considering the storage size, data transfer
speed and throughput, single precision brings multiple bene-
fits when precision is not the priority concern.

C.4. GPU operations. Originally used in graphics, GPU has
taken off as a general computing device in recent years be-
cause of its massive number of cores at a lower price range,
and fast GPGPU libraries such as CUDA and OpenCL. Based
on our profiling result, the time consuming parts of our
genome scan method are matrix multiplication and element-
wise operations. Both are amenable to GPU heterogeneous
computing architecture since they have no data race condi-
tions and low data dependencies. However, GPU also has
its own limitations. To truly utilize the maximum comput-
ing power of GPU, one needs to think creatively to work
around such limitations from GPU. For example, during our
experiment, memory transfer between host and device is re-
ally slow. Profiling the result shows that 98% of total genome
scan time is spent on memory transfer. To cope with this lim-
itation, instead of offloading the entire correlation matrix, we
use GPU to calculate the max LOD score of each expression
trait and output the maximum.

C.5. Julia language. Although a programming language can-
not really be classified as an optimization technique, the
choice of programming language can affect the speed of the
program. Ease of use is also considered because the cost of
any program comprises not only recurring expense of run-
ning time on a piece of hardware but also the front load ex-

Chelsea Trotter et al. | eQTL speed up bioRχiv | 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

pense of programming effort. Shorter development time is
valuable because researchers can quickly prototype and ex-
periment with different models, but performance should also
be equally important, if not more. Our language choice is
Julia.

Results
Our method uses the linear model and simplified the genome
scan process to basic matrix operations. The timing of our
method is shown in Table 1. The execution time without find-
ing the maximum LOD score of phenotype (full results) using
double precision is 0.55 second if we only use CPU. Getting
the same result using the same dataset from R/qtl took about
36.5 seconds.

D. Benefit of using single precision. Table 1 also shows
the execution time using single and double precision. In all
cases, genome scan runs faster using single precision than
using double precision. Using single precision provides ben-
efits in 3 aspects: memory storage, data transfer, and arith-
metic calculation.

E. Benefit of using GPU. In parallel computing, Amdahl’s
law is used to find the theoretical maximum speedup by im-
proving a particular part of a program. For example, if a
program takes ten minutes for a serial processor, and a func-
tion that takes nine hour of those ten minutes can be par-
allelized, and then, the theoretical speedup, no matter how
many processors are used, can not be more than ten times
because the minimum execution time of this program is one
minute. Therefore, profiling the entire genome scan process
is a prerequisite for the optimization. Often, profiling would
consider space and time complexity. Our primary concern is
the time taken by each function, and therefore only timing
information is considered in our profiling. We used Julia’s
built-in Sampling Profiler to find our target function for GPU
because it is less intrusive than the other profiling methods.
The genome scan process includes the following steps:

• Calculate standardized matrices (G∗, Y ∗) for input
matrices (G, Y)

• Get a correlation matrix (R) by multiplying the stan-
dardized matrices

• Calculate LOD scores

Our profiling result shows that the second and third steps take
up 90% of the time and involve parallelizable matrix oper-
ations. Hence, they are our candidates for GPU accelera-
tion. To make a fair comparison of CPU and GPU, the tim-
ing shown in Table 1 is the total execution time for genome
scan. There is overhead of using GPU, such as data trans-
fer and setting up context. The timing shown for CPU &
GPU here included all overhead for fairness. We ran the
genome scan process 10 times and chose the median to re-
move the randomness of each run and warm-up time of GPU.
The Full Results LOD method shows the timing when run-
ning the scan with CPU only and CPU&GPU. As the table

shows, the CPU&GPU combination did not show any im-
provement over the serial version (CPU only) in terms of the
performance time. That is, the former is rather slower than
the latter regardless of precision for the data type. We used a
GPU profiler nvprof (17) to investigate what is the bottleneck
of GPU. The result is, 98% of the time is spent on data trans-
fer from GPU to CPU (device to host). As shown in Figure
1, the input matrices Y’ and G are small compared with the
output matrix R. For the BXD spleen dataset, Y’ matrix is 17
MB, G matrix is 21 MB, but R matrix is about 4GB. Data of-
floading is the main bottleneck for our GPU implementation.
To cope with this limitation of GPU, we further developed
Max LOD method because the main interest of genome scan
is to find the maximum LOD score of every phenotype. This
step is highly parallelizable, can utilize GPU’s massive cores,
and, at the same time, reduces the amount of data that needs
to be transferred back to host. Table 1 shows that Max LOD
method for the spleen data reduces CPU&GPU execution
time down to 0.079 seconds when using double precision.
Compared with CPU only, which took 0.55 seconds, this
GPU modification provides 7 times speedup. As we men-
tioned earlier, since we are porting the computation to GPU,
which took 90% of the total execution time, according to Am-
dahl’s Law, the theoretical maximum speed up is 10 times.
We got 7 times speed up for genome scan using GPU. For
the hippocampus data, which contains over 1 million pheno-
types, the GPU Max LOD implementation took 3.51 seconds
for double precision and 2.26 seconds for single precision.
As a backend service to a website, this wait time is much
more preferable than the CPU timing for real time interac-
tions.

F. Benefit of using Julia. In our experiment of matrix mul-
tiplication, Julia’s speed is comparable to C/C++. However,
the low learning curve, clean syntax, as well as support to
GPU programming libraries such as CUDAnative (18) and
CuArrays (19) affords much lower programming efforts than
C/C++. Compared with writing GPU functions in C/C++,
writing in Julia is cleaner and easier because it requires much
less boilerplate code. Below is some code snippets to demon-
strate GPU code, calling a library or writing a custom kernel
in Julia. The first example illustrates how to call CUBLAS
from Julia, and the second example shows how to write a cus-
tom kernel in Julia. For the reason of page limitation, we will
not show the corresponding C code. An example of using
CuBLAS with C can be found online (20).

Example 1:

A = rand(1000,1000)
B = rand(1000,1000)
Data transfer from CPU to GPU
d_a = CuArray(A)
d_b = CuArray(B)
Do matrix multiplication on GPU by

calling CuBLAS library.↪→

d_c = CuArrays.CUBLAS.gemm('T', 'N',
d_a,d_b);↪→

4 | bioRχiv Chelsea Trotter et al. | eQTL speed up

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

H Platform

Table 1. Time comparison between CPU and GPU

Data Set Method Precision CPU only CPU & GPU

Spleen Data
Full Results Single 0.36s 0.41s

Double 0.55s 0.80s

Max LOD Single 0.46s 0.06s
Double 0.71s 0.08s

Hippocampus Data Max LOD Single 17.64s 2.26s
Double 26.77s 3.51s

Data Transfer from GPU to CPU
C = collect(d_c)

Example 2:

Custom kernel to do a matrix
element-wise calculation↪→

function log_kernel(data, MAX)
calculating GPU thread ID
i = (blockIdx().x-1) * blockDim().x +

threadIdx().x↪→

Check thread ID is in bound.
if(i < MAX+1)
Call log function on GPU
data[i] = CUDAnative.log(data[i])

end
return

end

initialize and transfer data to GPU.
MAX = 64000
d_data = CuArray(rand(MAX))
Launching GPU
d_res = @cuda blocks=1000 threads=64

log_kernel(data, MAX)↪→

Transfer result back to CPU
res = collect(d_res)

G. Software Availability. The source code for this package
is publicly available on Github as the LMGPU Julia pack-
age: https://github.com/senresearch/LMGPU.
jl. This repository contains three folders: data, src and test.
Using Julia language and running test.jl in test folder
will run our method using either the spleen data or hippocam-
pus data in data folder. Thes package uses openBLAS and
CUDA10.1. To use this package, one needs to have a Nvidia
GPU in the test machine, and have the Julia executable, open-
BLAS and CUDA libraries installed.

H. Platform. Our platform for computation:
Hardware:

• CPU: Intel Xeon Gold 6148; 40 cores @ 2.40GHz,
192GB

• GPU: Tesla V100-PCIE; 5120 Cores @ 1380 MHz,
16GB

Software:

• Programming environment: Julia; CentOS 7

• Libraries: CUDA v10.1 and cuBLAS; OpenBLAS

• Profilers: Julia Profiler; nvprof

Conclusion
We examined the effectiveness of using GPUs for speeding
up eQTL scans in the BXD family of recombinant inbred
lines. We investigated the effect of different matrix size and
shape on GPU speed up for matrix multiplication. Closer to
a square matrix [WHICH MATRIX IS SQUARE] wins the
best speedup over CPU when matrix multiplication is im-
plemented on GPU. With the maximum total input data size
of 16 GB, matrix multiplication is up to 5 times faster on
GPU than on 16 threaded CPUs. Our LMGPU package takes
advantage of GPU’s massive parallel computing power, Ju-
lia’s elegant syntax, fast performance for quick prototyping,
and performance-minded implementation in one language.
LMGPU also uses various techniques such as multi-threaded
operations and finding the maximum LOD score on GPU to
achieve close to real-time genome scan. We are able to run
genome scan for the spleen data in 0.06 seconds and one
for the hippocampus data with over one million traits in 3
seconds. As a backend for the GeneNetwork web service,
LMGPU will enable researchers to do real-time interaction
with the data. It can also be used as a stand-alone Julia pack-
age for running eQTL scans.
The LMGPU package also has some limitations. Currently
the best speed up of GPU uses an algorithm that finds the
maximum LOD score to minimize data transfer between
GPU and CPU, which was the bottleneck for our LM algo-
rithm. For those who are interested in the whole matrix of
LOD scores using the CPU alone might be the best option.
LMGPU also only supports 1-degree freedom test currently,
with no missing data in input dataset; any missing data has
to be handled in pre-processing and will add to the computa-
tion time. Currently the the LOD scores are fit using a linear
model; for many problems a linear mixed model (LMM) (21)
is of interest. We expect to build on the current work to tackle
that problem in the future.

Bibliography
1. Zachary Sloan, Danny Arends, Karl W Broman, Arthur Centeno, Nicholas Furlotte, Harm

Nijveen, Lei Yan, Xiang Zhou, Robert W Williams, and Pjotr Prins. GeneNetwork: framework
for web-based genetics. The Journal of Open Source Software, 1(2), 2016.

2. Megan K Mulligan, Khyobeni Mozhui, Pjotr Prins, and Robert W Williams. GeneNetwork: a
toolbox for systems genetics. In Systems Genetics, pages 75–120. Springer, 2017.

Chelsea Trotter et al. | eQTL speed up bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

https://github.com/senresearch/LMGPU.jl
https://github.com/senresearch/LMGPU.jl
https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. Elissa J Chesler, Lu Lu, Jintao Wang, Robert W Williams, and Kenneth F Manly. WebQTL:
rapid exploratory analysis of gene expression and genetic networks for brain and behavior.
Nature neuroscience, 7(5):485–486, 2004.

4. Karl W Broman, Hao Wu, Śaunak Sen, and Gary A Churchill. R/qtl: QTL mapping in
experimental crosses. Bioinformatics, 19(7):889–890, 2003.

5. Chris S Haley and Sarah A Knott. A simple regression method for mapping quantitative trait
loci in line crosses using flanking markers. Heredity, 69(4):315, 1992.

6. Eric S Lander and David Botstein. Mapping mendelian factors underlying quantitative traits
using RFLP linkage maps. Genetics, 121(1):185–199, 1989.

7. Andrey A Shabalin. Matrix eQTL: ultra fast eqtl analysis via large matrix operations. Bioin-
formatics, 28(10):1353–1358, 2012.

8. Fu-Tao Zhang, Zhi-Hong Zhu, Xiao-Ran Tong, Zhi-Xiang Zhu, Ting Qi, and Jun Zhu. Mixed
linear model approaches of association mapping for complex traits based on omics variants.
Scientific reports, 5:10298, 2015.

9. Guillaume Chapuis, Olivier Filangi, Jean-Michel Elsen, Dominique Lavenier, and Pascale
Le Roy. Graphics processing unit–accelerated quantitative trait loci detection. Journal of
Computational Biology, 20(9):672–686, 2013.

10. Amaro Taylor-Weiner, Francois Aguet, Nicholas Haradhvala, Sager Gosai, Shankara
Anand, Jaegil Kim, Kristin Ardlie, Eliezer Van Allen, and Gad Getz. Scaling computational
genomics to millions of individuals with GPUs. bioRxiv, page 470138, 2019.

11. Karl W Broman, Daniel M Gatti, Petr Simecek, Nicholas A Furlotte, Pjotr Prins, Śaunak Sen,
Brian S Yandell, and Gary A Churchill. R/qtl2: software for mapping quantitative trait loci
with high-dimensional data and multiparent populations. Genetics, 211(2):495–502, 2019.

12. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

13. Julia 1.0. https://julialang-s3.julialang.org/bin/linux/x64/1.0/

julia-1.0.5-linux-x86_64.tar.gz, 2018. Accessed: 2020-06-19.
14. Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. AUGEM: automatically generate

high performance dense linear algebra kernels on x86 CPUs. In SC’13: Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–12. IEEE, 2013.

15. John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-
ming with CUDA. Queue, 6(2):40–53, March 2008. ISSN 1542-7730. doi: 10.1145/1365490.
1365500.

16. NVIDIA. cuBLAS. https://developer.nvidia.com/cublas, 2019. Accessed:
2019-07-24.

17. NVIDIA. nvprof. https://docs.nvidia.com/cuda/profiler-users-guide/

index.html, 2019. Accessed: 2019-07-24.
18. Tim Besard, Christophe Foket, and Bjorn De Sutter. Effective extensible programming:

Unleashing Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems, 2018.
ISSN 1045-9219. doi: 10.1109/TPDS.2018.2872064.

19. Tim Besard. cuArray. https://github.com/JuliaGPU/CuArrays.jl, 2019. Ac-
cessed: 2019-07-24.

20. Nvidia. CuBLAS example code. https://docs.nvidia.com/cuda/cublas/

index.html#example-code, 2019. Accessed: 2019-10-28.
21. Christoph Lippert, Jennifer Listgarten, Ying Liu, Carl M Kadie, Robert I Davidson, and David

Heckerman. FaST linear mixed models for genome-wide association studies. Nature meth-
ods, 8(10):833, 2011.

6 | bioRχiv Chelsea Trotter et al. | eQTL speed up

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.153742doi: bioRxiv preprint

https://julialang-s3.julialang.org/bin/linux/x64/1.0/julia-1.0.5-linux-x86_64.tar.gz
https://julialang-s3.julialang.org/bin/linux/x64/1.0/julia-1.0.5-linux-x86_64.tar.gz
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/JuliaGPU/CuArrays.jl
https://docs.nvidia.com/cuda/cublas/index.html#example-code
https://docs.nvidia.com/cuda/cublas/index.html#example-code
https://doi.org/10.1101/2020.06.22.153742
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Information about Datasets
	Linear Model
	Acceleration Techniques
	Multithreaded CPU operations
	Matrix and Vectorized Operations
	Single precision
	GPU operations
	Julia language

	Benefit of using single precision
	Benefit of using GPU
	Benefit of using Julia
	Software Availability
	Platform

