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Abstract

The human brain is very effective at integrating new words one by one into the
composed representation of a sentence as it is read left-to-right. This raises the
important question of what happens to the neural representations of words present
earlier in the sentence? For example, do the strength of word representations en-
countered earlier on in the sentence remain constant or do they evolve as additional
words are processed? Representation of words by neural activity in the brain has
been the subject of several previous studies. We perform the experiment with a
naturalistic task in which the subjects read simple active and passive sentences.
Naturalistic studies have tended to explore words in isolation or in a very limited
context (e.g., adjective-noun phrases). Representation of previously encountered
words during incremental sentence reading, and how such representation evolve as
more parts of a sentence are read, is a fundamental but unexplored problem – we
take a first step in this direction. In particular, we examine the spatio-temporal char-
acteristics of neural activity encoding nouns and verbs encountered in a sentence
as it is read word-by-word. We use Magnetoencephalography (MEG) to passively
observe neural activity, providing 1 ms temporal resolution.
Our experiments reveal that nouns and verbs read early in the sentence have a
varying influence on neural activity while reading subsequent words, decreasing
and increasing at particular word positions in active and passively voiced sentences,
with particularly important contributions to activity in frontal and temporal cortical
regions. We find the noun and verb information to be decodable from the neural
activity for several seconds after sentence reading has completed. Our exploration
is also the first to study the effect of question-answering task on the neural rep-
resentation of the words post-sentence. We are releasing our 300 sentence MEG
dataset to encourage further research in this important area.

1 Introduction

As we read a sentence word by word, our brains integrate the meaning of a newly encountered word
to the composed representation of words read so far. This raises the question of what happens to the
neural representation of words present earlier in the sentence. Are those words still actively retained
in the composed representation? Or does the strength of their presence in the composed representation
decrease over time? And what happens once the sentence has been read fully? These are fundamental
questions whose answers are essential towards deepening our understanding of how sentences are
processed in the brain. We initiate a study in this direction and provide empirical observations and
insights for these questions. In particular, we use machine learning and naturalistic brain imaging
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experiments to study the spatio-temporal characteristics of noun and verb representations during
sentence comprehension in the brain.

Semantic composition is the process of combining small units of linguistic information (words) to
form meaning. Semantic composition has been the focus of several studies [1, 19, 20, 40]. A recent
study [14] uses source reconstructed Magnetoencephalography (MEG) to investigate how individual
words are interpreted in a sentence context by comparing the magnitude of brain activity between
words in sentences and lists of words. Through their analysis, the study is able to detect the time at
which the current word is combined into the current sentence context. However, some key questions
like the composition of the current context are not answered. Machine Learning (ML) techniques can
tell us more about the information content of a signal by testing the ability of that signal to distinguish
between categories of interest. The application of ML techniques to naturalistic stimuli (as opposed
to carefully chosen stimuli) enables us to study a wider range of scientific questions regarding the
information content of the recorded brain activity. One naturalistic study successfully approached the
question of semantic compositions in the restricted setting of adjective-noun phrase comprehension
[7]. In this paper, we expand on that work to incorporate composed representations of words in a full
sentence context with the aim of elucidating the contributions of the past and current words during
the evolution of sentence-level meaning.

We also collect a new MEG dataset of 300 simple sentences in the active and passive voice. MEG
[21] is especially ideal for understanding the fast dynamics of language processing due to its superior
time resolution. Simple sentences allow us to focus on the brain processes involved in processing the
words in a sentence, as opposed to the more complex syntactic elements in the sentence. We present
these sentences word by word to the subject and to a BERT model [4]. Sentence representation
by BERT model has been shown to be predictive of the brain activity data [16, 36]. We use the
BERT representation vector as a state of the art representation of the composed meaning of the
word sequence up to a given time point. A decoding framework is used to decompose the current
context into constituent word representations at various time positions in the brain. The decoding
accuracy is reported for the individual brain regions and the whole brain. In summary, we find the
degree to which earlier words modulate the neural activity according to the BERT hypothesis about
the composed meaning. Our experiments reveal important contributions from frontal and temporal
regions of the brain in the mechanism of context composition during sentence comprehension. We
also find the word representations to be decodable for a significant amount of time after the end of
the sentence.

In summary, in this paper, we make the following contributions.

• We propose a new method to quantify the degree to which earlier words modulate the neural
activity in the current context composition.

• Our results reveal important contributions from Frontal and Temporal regions of the brain in
context composition. We also find the words to be decodable for a significant amount of
time post-sentence.

• Our exploration is the first to study the effect of question-answering task on the neural
representation of the words post-sentence.

• We also provide a new MEG dataset to study simple sentence understanding.

In the paper we outline the methods used to collect and process MEG data (Section 2), describe
the framework to measure the predictive accuracy (Section 3), outline the setup and results of our
experiments (Section 4), further discuss the related work (Section 5) and conclusions (Section 6).

2 SimplePassAct: A New Simple Sentence MEG Dataset

Simple sentences allow us to perform a focused study of word processing, as opposed to more
complex syntactic elements in the sentence. Previously proposed MEG-based sentence datasets
suffer from confounding issues, such as animacy and sentence length [26, 27]. To overcome these
issues, we designed a new study with a larger 300 sentence dataset. We shall refer to the dataset as
SimplePassAct dataset in the rest of the paper. Three participants (one female, two male) read 300
unique sentences, 150 active and 150 passive, comprised of six nouns (singer, baker, customer, parent,
artist, author) and five verbs (encouraged, attached, answered, challenged, followed). To minimize
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Figure 1: Decoding model for the MEG data. A string is processed by BERT model to obtain context
embedding for the last token. For example, in the figure, the string “the author followed the", is
processed by BERT. The resulting context embedding is used to predict the corresponding brain
activity using a learned Ridge Regression model (Refer Section 3.2 for more details). The candidate
references are ordered based on the cosine similarity score with the predicted brain activity. The true
candidate rank r is used to calculate rank accuracy. An above chance level (50%) accuracy suggests
decodability of the stimulus. Please refer to Section 3 for more details.

uncontrolled semantic bias, the nouns were matched in gender neutrality [17] and both nouns and
verbs were matched in frequency using the Corpus of Contemporary American English [3]. There
were no repetitions of any sentence in this study, and the noun positions were completely counter
balanced across the entire sentence set. Please find the stimulus sentences in the Appendix.

Neural activity was recorded using an Elekta Neuromag device (Elekta Oy). Sentences were presented
across six blocks in randomized order unique to each participant. During each trial, each word of
the sentence appeared on the display for 300ms followed by 200ms of blank screen, with 3.5-4s of
rest before the next sentence began. To ensure participants engagement, 15% of the sentences were
followed by a two-choice question regarding the agent or the patient of the preceding sentence and
were given 2s to respond, followed by an additional 1.5s rest before the next sentence began. The two
answer choices were presented. Left and right position of the correct answer was balanced across
the experiment to eliminate perceptual and laterality bias. The MEG data was acquired adhering to
the best practices of MEG data collection [10]. The collected data was spatially filtered using the
temporal extension of SSS [35] which also realigned the head position to a default location. The
Signal Space Projection (SSP) method [37] was used to remove artifacts captured by empty room
data recorded on the day of each participant’s data acquisition, then the MEG signal was band-pass
filtered from 1 to 150 Hz with notch filters applied at 60 and 120Hz to remove the contributions
of line noise. The SSP method was again used to remove signal contamination by eye blinks or
movements and cardiac signals.

The sentences are presented only once to our three subjects. This allowed us to present a higher
number of sentences (300) in a given session. Though a group of three participants is on the smaller
side for studies such as this, we note that the key features we describe in the results are apparent for
most subjects and there is support for collecting more high-quality data from fewer subjects [18].
A study by Wehbe et al. [38] showed that the higher number of samples can be used by encoding
models with good results. All three subjects consented to the study approved by the University of
Pittsburgh and Carnegie Mellon Institutional Review Board.

3 Method

In this section, we present the methodological approach to explore semantic composition during
simple sentence comprehension. We study words as they compose to form a context representation in
the brain. The experiment is performed using naturalistic stimuli with simple sentences (Section 2).
The sentence stimuli comprise of several similarly constructed sentences. This feature allows us to
conduct experiments to compare representations among candidate sentences which differ by just
one word. Some example sentences are, (a) Noun variation - "the artist answered the parent" v/s
"the author answered the parent", (b) Verb variation - "the artist answered the parent" v/s "the
artist challenged the parent". Figure 1 details the prediction framework. We predict brain activity
using BERT representation (Section 3.1). The corresponding prediction rank accuracy calculation is
described in Section 3.2. The candidate rank reference brain activity is computed as described in
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Section 3.3. Finally, the references are compared to the predicted brain activity to calculate a rank
accuracy (Section 3.4).

3.1 BERT Representation

Bidirectional Encoder Representations from Transformers (BERT) is a state of the art Natural Lan-
guage Understanding model [4]. The model is used to generate in-context embedding representations
for text. The pre-trained model can be fine-tuned with additional layers to create models for a wide
range of Natural Language Processing tasks. Unlike previous models, BERT can use both left and
the right context to predict the randomly masked tokens. Jat et al. [16] show evidence of layer_18
representations to be the most predictive of brain activity. Similar to Jat et al. [16], we use layer_18
representations and process the sentences incrementally with BERT model to prevent information
from future words from affecting the current representation, in line with how information is processed
by the brain. For example, in the sentence “the artist answered the parent", the representation of the
word “answered" is calculated by processing sentence segment “the artist answered" and taking the
last token representation from the layer 18, as the embedding representation for the word “answered".

3.2 Decoding Model

We transform the neuroscience research question to a machine learning problem by learning a
function f̂ (Ridge Regression) to predict brain activity y from corresponding features of the stimulus
x (substring representation). If the learned function f̂ can accurately predict the brain activity data
from the stimulus features for an unseen test example, then we conclude that the brain activity contains
information about the stimulus. We measure the accuracy of the prediction using classification rank
accuracy (Section 3.4). An above chance accuracy deems the stimulus decodable.

The brain activity data is preprocessed to improve the signal to noise ratio similar to Wehbe et al [39].
After the preprocessing, each trial y is represented using a (306, 500) sized matrix corresponding to
the 306 sensors and 500ms time. The encoding model is learned to predict brain activity for 25 ms non-
overlapping windows [23]. Each of the 25 ms brain activity is averaged over 5 ms non-overlapping
windows to produce (306, 5) size brain activity yt for the prediction task. We use Generalised cross-
validation to train a ridge regression model [9] with regularisation parameter λ ∈ [0.01, 0.1, 1, 10].
We compute the stimulus (substring) representation using BERT model Section 3.1. The predicted
brain activity ŷt is evaluated based on a classification rank accuracy measure (Section 3.4). The
prediction and classification experiment are run using cross-validation.

3.3 Candidate Reference Representation

Meaning of a word can become more specific as the sentence context unfolds, for example, the
word “artist” can have different neural representation in the following two sentences “the artist
answered the parent”, “the artist challenged the parent”. The brain as a perfect language machine
updates its word representation in such a case. Therefore, it is appropriate to work with a candidate
reference representation for neural representation of a word, which dynamically evolves with more
sentence context. One simple way to compute this representation is by averaging all those sentences
in which the word of interest appears in the same temporal position. But, for use in the rank accuracy
computation, the candidates should be equally likely to occur in a test position. The following method
computes these candidates with the desired properties.

We define the following notation to describe candidate reference representation. A single trial is
represented by 500 ms of stimulus presentation time and is referenced as time position i. For example,
in the sentence “the artist answered the parent", the word “artist" is at time position i = 2 and
“parent" at time position i = 5. The brain activity for a position i in sentence s is denoted by ys,i. A
set of sentences where, word w is present at a fixed time position α in sentence s, is denoted by Sαw.
The word w can be represented with a candidate reference Rαw,i at any position i ≥ α in the sentence
s as follows:

Sαw = {s | s[α] = w} , Rαw,i =
1

|Sαw|
∑
s∈Sαw

ys,i (1)
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Figure 2: Classification rank accuracy of stimulus predicted from BERT layer-18 representations
for noun1, verb and noun2 at various times during sentence comprehension. We continue testing
post-sentence for an additional four-time positions (2000 ms). “eos" refers to “end of a sentence".
Our experiments reveal the resurgence of the first noun (noun1) representation when the second
noun (noun2) is encountered in both active and passive sentences. And, that both noun and verb
representations remain decodable after the sentence ends. Please refer to Section 4.1 for more details.

The rank reference Rαw,i is the average brain activity of the word in a given context. When using
these candidate reference representations in rank score computation, it’s important to make sure that
each candidate for a given α position is equally likely. To make the candidates comparable, we add
one more constraint on the set of sentences Sαw. Any two pair of sentence sets S at given position α,
should consist of same token-vocabulary (VS) except the candidate word at position α (Equation 2).

VS = {v | v 6= w, v ∈ s, s ∈ Sαw} , VS1 = VS2 , Sk = Sαwk (2)

Please recall that our MEG dataset consists of sentences with 6 nouns, 5 verbs. These nouns and
verbs are combined in all possible combinations to produce 300 active and passive sentences. Since a
noun is not paired with itself in a sentence, the set of second nouns for any two given first nouns is
distinct, thus violating the equal token-vocabulary condition (Equation 2). To satisfy the constraint,
we divide the nouns N into two distinct sets as in Equation 3 to compute rank accuracy as follows:

N = N1 ∪N2, N1 ∩N2 = ∅
sn1 = {n|s[α] = n, n ∈ N1}, sn2 = {n|s[α] 6= n, n ∈ N2}
S1n,α = {s | s[α] = n, sn1 = n, n ∈ N1, sn2 ∈ N2}
S2n,α = {s | s[α] = n, sn1 = n, n ∈ N2, sn2 ∈ N1}

Acc = Average [ Acc (S1n,α), Acc (S2n,α)]

(3)

In short, the noun tokens are divided into two non-overlapping sets N1 and N2. The sentences are
then grouped into a set (S1n,α), such that the noun1 is in N1 and noun2 is in N2 and vice versa for set
(S2n,α). Rank accuracy is computed as the average decoding accuracy of the two sets S1n,α and S2n,α.

3.4 Classification Rank Accuracy Measure

We use a classification rank accuracy measure to evaluate the presence of a noun/verb in the earlier
sentence context. The rank accuracy measure [27] is more sensitive than the 0/1 measure commonly
used in the literature [22]. This measure yields a confidence value (cosine similarity) over potential
candidate references (Section 3.3). We order the references by the confidence values and assign a
rank r for the correct candidate noun/verb from the set of candidates references C. The rank r is
converted to an accuracy (Acc) using the Equation 4. The chance value for the rank accuracy measure
is 0.5. Please refer to the Appendix for a proof.

Acc = 1− (r − 1)

(C − 1)
(4)

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.163808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.163808
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Cosine similarity of gold label data (irrespective of rank) predicted from BERT layer-18
representations for noun1, verb, noun2 at during sentence comprehension. “eos" refers to “end of a
sentence". We plot this information for an additional 5 seconds post-sentence. In the last 1 second
(eos9, eos10) a new sentence is seen by the subject or a question (with 15% chance). We observe
that the word representations are retained in the context until new information arrives when it slowly
starts degrading. Please refer to Section 4.1 for more details.

4 Results

Experiments were performed with the SimplePassAct dataset (Section 2), over 25 ms non-overlapping
time windows. The decoding accuracy is averaged over all the subjects. Due to the nature of our
dataset, it is possible to encounter same text substring in both the train and test set, but with different
brain activity data, for example “the artist answered the parent” and “the artist answered the
author” have the same text substring till the third word. We note that this is not a strict leakage
of information. However, to avoid any possible double-dipping into the test data, we performed
careful cross-validation. For a noun condition, no two sentences with the same verb could separately
occur in train and test split, resulting in a 5-fold (one fold for each verb) cross-validation. Similarly,
for verb condition, a 6-fold cross-validation based on the first noun is performed. Please note that
imposing the constraint in Equation 2 reduces the total number of sentences in the noun setting to 90
([3× 5× 3]× 2). Both noun and verb are decoded from 0 ms to the end of the sentence and beyond.
BERT representation of the last word in a sentence, is used to predict the brain activity for all end
of sentence positions (eos1 – eos10 in Figure 3). While we do not expect the brain activity before
stimulus onset to be able to decode the given stimuli, decoding accuracy at chance level works as a
good sanity check for our results. The computations described in this paper were performed using a
multiprocessor Intel Xeon E5 server with 377 GB RAM and 24 threads. The average run-time for
computing a single experiment (for example, figure 2) is approximately 4 hours.

4.1 Whole brain stimulus prediction accuracy

The rank accuracy of predicting noun1, verb and noun2 at various times during sentence compre-
hension is shown in Figure 2. We use the whole brain (306 sensors) data to predict the stimulus
for this analysis. We find that the rank accuracy of all the words is high post-sentence. This makes
sense, as the brain retains the representation of earlier sentence and therefore gets the “argmax(cosine
similarity)" right in the rank accuracy measure. To test the degree of retention of this information,
we also plot the cosine score for the gold-candidate in Figure 3. This plot displays accuracies till
5 seconds post-sentence, of which 4 seconds is a BLANK screen followed by 1s of next sentence
stimuli or a question (with 15% chance). From the plot, we observe that the word representations are
retained in the brain until a new piece of information arrives when it slowly starts degrading.

Noun Comprehension: We observe that the first noun (subject in active and object in passive) is
decoded with significant accuracy during the word presentation and continues to be significantly
decodable in the brain till the end of sentence activity. In addition, its decodability improves when a
second noun is encountered and remains active even at 2s past the last word. Similar end of sentence
decodability results was reported in Fyshe et al. [7]. The lack of predictive quality from noun1 to
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Figure 4: Rank Accuracy of predicting stimulus from each sensor location (102 locations each with 3
sensors). The resulting rank accuracy was aggregated in signal space over brain regions delineated
by the position of each sensor in the MEG helmet. The x-axis represents the word position in the
sentence. Each word position is 500 ms of brain activity data. The figure shows verb decoding
accuracy from the position of occurrence to the end-of-sentence activity. We find that left, right frontal
and right temporal regions are the most accurate at predicting word representation during sentence
comprehension. These Brain areas underlying our outlined sensor regions have been implicated in
memory and executive function by previous neuroscience research. Please refer to Section 4.2 for
more details.

noun2 in the SimplePassAct dataset , might necessitate noun1 recollection for semantic composition
when noun2 is shown.

Verb Comprehension: Similar to nouns, verbs are decodable with high accuracy during and after
the presentation of the word. But, in contrast to nouns, the verb decodability remains heightened for
the remainder of sentence reading. This result supports the growing body of literature for successful
in-context verb decoding [16, 24].

Active v/s passive sentence comprehension: Both voices exhibit similar post-sentence neural
representation. During the sentence reading, noun1 (object) in passive sentence displays different
temporal decodability as compared to noun1 (subject) in active voice. We leave further exploration
into this effect as future work.

4.2 When and where are the representations predicted in time?

The MEG helmet consists of 306 sensors, distributed over 102 locations. To understand the spatial
distribution of word information in the brain, we predicted the noun1, verb, noun2 at different times
with each sensor location (3 sensors) in the brain. The results from the analysis were then aggregated
for larger brain regions (similar to Figure 1 in Hu et al. [13]). We examined the primary visual
areas (left and right occipital lobe), speech and language processing areas (left temporal) and verbal
memory (right temporal), sensory perception (left parietal) and integration (right parietal), language
related movements (left frontal) and non-verbal functioning (right frontal). The aggregated brain
region accuracy is shown in Figure 6 for verb stimuli. The left, right frontal and right temporal
brain regions are the most accurate at predicting word representation. These brain regions have been
implicated in memory and executive function in language networks [29, 5]. We find similar trends
for nouns, please find more information in the Appendix section.

4.3 What happens when a question is encountered?

In SimplePassAct dataset , 15% (45) of the sentences are followed by a question and then a short
pause to allow the user to answer that question. How do the neural representations of the words
presented earlier in the sentence evolve when a question is encountered? In Figure 5, we show the
comparison of cosine similarity scores of earlier Noun1, Verb and Noun2 between conditions “during
a question presentation" (Only-QA), vs “during blank screen before another sentence" (No-QA).
Please note that the subjects do not know which sentences are followed by a question. An upcoming
question is indicated by “?" sign, which appears on the screen between 800-1000ms after end of a
sentence. To make the “Only-QA" and “No-QA" setting comparable in terms of the regression model,
we sub-sampled the sentences in the “No-QA" setting to match that of “Only-QA", approximately
23 sentences in each sentence voice. We observe, in the case of a question, the subject retains the
sentence information for a longer period of time as compared to the no question setting, perhaps to
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Figure 5: Comparison between post-sentence representations in “Only-QA" versus “No-QA" set, and
the 15 point moving average of the corresponding series. We observe that, in the case of a question,
the subject retains the sentence information for a longer period of time as compared to the no question
set. Please refer to Section 4.3 for more details.

answer the question. All three subjects had close to 100% accuracy in correctly answering these
engagement questions.

5 Related Work

To study human language comprehension, researchers have used neuroimaging methods such as
Functional Magnetic Resonance Imaging (FMRI) [8], electroencephelography (EEG) [2] and Mag-
netoencephalography (MEG) [21] etc. Evidence from deficit studies, FMRI, MEG, Event related
potential (ERP) imaging studies have been combined to formulate neural models of language com-
prehension [6, 11, 12, 28]. Recently, Machine learning (ML) models are becoming popular in
understanding the brain imaging data in the field of neuroscience. These models can be very sen-
sitive in determining what stimulus information is present in the brain activity data. In addition,
Deep Learning models trained on a large corpus of data are also used to provide rich stimulus
features for the ML models [15, 39, 30]. Prior research by multiple papers has established a general
correspondence between a computational model and the brain’s response to naturalistic language
[22, 33, 25, 34, 32, 31]. Some studies have successfully used the BERT model to predict the brain
activity data [16, 36] . For sentence comprehension, event related potential (ERP) studies present
anomalous sentences to the subjects to study the timing (P600, N400) of various composition effects.
In contrast, few studies understand the semantic composition using naturalistic methods, specifically
methods that include stimuli with no surprisal effect or semantically predictable quality [7]. We add
to these previous research works to further our understanding of sentence comprehension.

6 Conclusion

In this paper, we present a framework to study how neural representations of words present earlier
in a sentence evolve as subjects read a sentence from left-to-right. More precisely, we focus on the
representations of noun and verb in the neural encoding of a sentence. Our experiments reveal the
resurgence of the first noun (noun1) representation when the second noun (noun2) is encountered
in both active and passive sentences. The verb representation remains important from the onset of
its presentation through the remainder of the sentence. Both noun and verb representations remain
decodable after the sentence ends. We also reveal important contributions from Frontal and Temporal
regions of the brain in context composition. Our exploration is the first to study the effect of question-
answering task on the neural representation of the words post-sentence. We find that post-sentence
question-answering helps in maintaining sentence representation in the brain. Finally, we provide
a new MEG dataset of 300 simple sentences in the active and passive voice. In future, we plan to
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extend our analysis by: (1) source localising the neural data to gain fine-grained spatial resolution in
the analysis, and (2) collecting more data to perform additional analysis pertaining to brain behaviour
during question-answering.

7 Broader Impact

Cognitive studies for natural language understanding, endeavour to discover brain mechanisms for
language understanding. The non-invasive nature of MEG/fMRI/PET/EEG studies makes a lot of data
available for the same. In the past, such an experiment required careful choice of stimuli to discover
the impact of a condition of interest on the brain. In contrast, Machine learning enables naturalistic
experiments by discovering discriminative information about a condition of interest. Deep Learning
has recently been applied to this kind of study by relating brain and language understanding machines.
The core principle of this match is to be able to detect information flow in the brain using better
and more compact representations of language using deep learning as compared to the alternative
one-hot vectors or discreet labels. In this paper, we propose a methodological approach to detect
representations of words from the past in the current context composition in the brain. Enabling a
better understanding of language understanding in the brain which should hopefully inform better
design of AI models for language understanding tasks. However, the findings of this study are limited
to the native English language speakers. The small sample size of both the stimulus and the subjects
also leads to bias in the findings of such studies.

Societally, understanding brain representations is considered key to discovering true intelligence and
to improve machine learning methods to reach the accuracy levels of a human. However, we also
have to be careful to avoid any biases in the development of such algorithms. The data and algorithms
should be general and include information about minority population etc. In the context of our study,
this would mean studying the language comprehension for a variety of different languages to discover
the true language comprehension.

As we deepen our understanding of language processing in the brain, this is likely to inspire more
sophisticated Natural Language Understanding (NLU) machines. While such advanced NLU may be
used for many positive uses such as drug discovery, information access, etc., the same technology
may be used for nefarious acts such as spreading misinformation. It is therefore vital for the field to
be vigilant of such misuse of technology, and develop guard against those.
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A Appendices

A.1 Chance Performance for Rank Accuracy

In the prediction task (stimulus features to brain activity), we score the prediction by ranking a list of
gold candidate references by cosine similarity. If the correct candidate is at the top rank position, we
assign the prediction a 100 % accuracy using the following formula:

r = rank of the true class

C = number of classes

A = Rank Accuracy

A = 1− (r − 1)

(C − 1)

(5)

The expected value of the accuracy estimates the system performance under random prediction.

E(A) = E(1− (r − 1)

(C − 1)
)

Using Linearity of Expectation

= E(1)− E(
(r − 1)

(C − 1)
))

= 1− (
1

(C − 1)
× E(r − 1))

= 1− [
1

(C − 1)
× (E(r)− 1)]

(6)

In a random prediction, the true answer is equally likely to be ranked at any of the C positions.
Therefore, the expected value of the random rank would be C+1

2 .

E(r) =
1

C
× (1 + 2 + . . .+ C)

=
1

C
× [

(C × (C + 1))

2
]

=
C + 1

2

(7)

substituting Equation 7 in Equation 6

E(A) = 1− [
1

C − 1
)× (

C + 1

2
− 1)]

= 1− [
1

(C − 1)
× (C − 1)

2
]

= 1− 1

2
= 0.5

(8)

Thus proved, the chance performance of rank accuracy measure as defined in Equation 5 is 50 %.
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A.2 SimplePassAct dataset Stimuli

The stimuli of SimplePassAct dataset is designed to be balanced for subjects and objects in the dataset.
The active and passive sentences in the dataset have the following simple pattern:

“the [noun] was [verb] by the [noun]"
“the [noun] [verb] the [noun]"

Such that,

noun ∈ [singer, baker, customer, parent, artist, author]
verb ∈ [encouraged, attached, answered, challenged, followed]

We construct the sentences with all possible combination of nouns and verbs. The only condition is
that a noun cannot be paired with itself in the same sentence. The total number of active and passive
sentences thus formed are 300. Some example sentences are as follows:

“the baker was answered by the parent"
“the parent answered the baker"
“the singer was answered by the parent"
“the parent answered the singer"

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.163808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.163808
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6: Rank Accuracy of predicting stimulus (noun1, verb, noun2) from each sensor location (102
locations each with 3 sensors). The resulting rank accuracy was aggregated in signal space over brain
regions delineated by the position of each sensor in the MEG helmet. The x-axis represents the word
position in the sentence. Each word position is 500 ms of brain activity data. For example noun1
appears at position 2 in the active sentence, the figure shows noun1 decoding accuracy from position
2 to end-of-sentence activity. We find that left, right frontal and right temporal regions are the most
accurate at predicting word representation during sentence comprehension. Please refer to Section
4.2 for more details.

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.163808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.163808
http://creativecommons.org/licenses/by-nd/4.0/


(a) Candidate reference for noun “artist"

(b) Candidate reference for noun “author"

(c) Candidate reference for noun “baker"

(d) Candidate reference for noun “customer"

(e) Candidate reference for noun “parent"

(f) Candidate reference for noun “singer"

Figure 7: Example topomap visualisation of the candidate references for noun1 at word position
(α) 4 in an active sentence (eg. “the artist answered the"). The brain activity data is shown for 500
ms with 100 ms non-overlapping windows. We observe distinct activity patterns in the candidate
references from the visualisation. These differences are captured by the ML algorithms to help predict
the correct stimulus. Please refer to Section 3.3 for more details.
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(a) Candidate reference for verb “answered"

(b) Candidate reference for verb “attacked"

(c) Candidate reference for verb “challenged"

(d) Candidate reference for verb “encouraged"

(e) Candidate reference for verb “followed"

Figure 8: Topomap visualisation of the candidate reference for verbs at word position (α) 6 in a
passive sentence (eg. “the artist was answered by the"). The brain activity data is shown for 500
ms with 100 ms non-overlapping windows. We observe distinct activity patterns in the candidate
references from the visualisation. Please refer to Section 3.3 for more details.
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