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ABSTRACT 44 

  45 

Premise of study: Leaf morphology is dynamic, continuously deforming during leaf 46 

expansion and among leaves within a shoot. We measured leaf morphology from over 47 

200 vines over four years, and modeled changes in leaf shape along the shoot to 48 

determine if a composite “shape of shapes” can better capture variation and predict 49 

species identity compared to individual leaves. 50 

  51 

Methods: Using homologous universal landmarks found in grapevine leaves, we 52 

modeled various morphological features as a polynomial function of leaf node. The 53 

resulting functions are used to reconstruct modeled leaf shapes across shoots, 54 

generating composite leaves that comprehensively capture the spectrum of possible 55 

leaf morphologies. 56 

  57 

Results: We found that composite leaves are better predictors of species identity than 58 

individual leaves from the same plant. We were able to use composite leaves to predict 59 

species identity of previously unassigned vines, which were verified with genotyping.  60 

  61 

Discussion: Observations of individual leaf shape fail to capture the true diversity 62 

between species. Composite leaf shape—an assemblage of modeled leaf snapshots 63 

across the shoot—is a better representation of the dynamic and essential shapes of 64 

leaves, as well as serving as a better predictor of species identity than individual leaves. 65 
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 68 

INTRODUCTION 69 

  70 

Leaf shape is dynamic. Allometry—the differential growth of shape attributes relative to size or 71 

other attributes—was first documented in leaves by Stephen Hales in 1727. Imprinting a grid of 72 

points onto expanding young fig leaves led to the observation of “the difference of the 73 

progressive and lateral motions of these points in different leaves”, finding that they “were of 74 

very different lengths in proportion to their breadths” (Hales, 1727). Not only is the shape of a 75 

leaf dynamic over its development as it expands, but that of multiple leaves located at different 76 

nodes within a plant is as well. Heteroblasty—phenotypic changes in sequential lateral organs 77 

(such as leaves)—was first described by Johann Wolfgang von Goethe (a contributor to art, 78 

philosophy, and botany; Friedman and Diggle, 2011) when he compared the transformation of 79 

mature leaf shapes within a plant to the Greek god of the sea, and the mutable nature of water 80 

(Goethe, 1817; 1952). 81 

  82 

Our ability to recognize differences in leaf shape indicates that this is a quantifiable trait. A 83 

number of morphometric approaches have been proposed to measure leaf shape across 84 

angiosperms, from focusing on the venation using computer vision (Wilf et al., 2016) to the 85 

closed contour of the blade using Topological Data Analysis (Li et al., 2018). In some special 86 

cases, simple but powerful geometric approaches have been developed to aid in the 87 
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classification of plants. For example, all grapevine leaves have corresponding, homologous 88 

primary and secondary veins. With the introduction of North American rootstocks in Europe— 89 

to combat the spread of phylloxera—during the late 19
th

 and early 20
th

 centuries viticulturists 90 

were exposed to new and unfamiliar varieties; thus, they needed a method to confirm 91 

rootstock identity. Without the ability to genotype (yet), viticulturists used phenotype, and 92 

proposed that the angle of the petiolar veins, which form the petiolar sinus, could be used to 93 

differentiate between varieties (Goethe 1876; 1878; Ravaz, 1902). This system was extended to 94 

other major veins in the leaf, measuring their relative angles and the ratios of lobe and sinus 95 

lengths, by Pierre Galet (Galet 1979; 1985; 1988; 1990; 2000). A system of homologous features 96 

was seized upon to further elaborate all veins hierarchically and to enumerate the 97 

corresponding teeth in which they terminate (Rodrigues 1939; 1941a; 1941b; 1952a; 1952b). 98 

María-Carmen Martínez used these approaches to calculate average leaves (Martínez and 99 

Grenan, 1999) and with this mathematical framework classified varieties, clones, and even their 100 

similarity to depictions of grapevines in art (Martínez et al., 1995; 1997a; 1997b; Santiago et al., 101 

2005; 2007; 2008; Gago et al., 2009a; 2009b; 2014). These morphometric methods, which have 102 

been tailored to the unique geometric properties of grapevine leaves for over a century, have 103 

been extended to formal landmark-based methods and have been used in the study of the 104 

genetic basis of leaf shape (Chitwood et al., 2014; Demmings et al., 2019).  105 

 106 

The unique features of grapevine leaves allow not only for the classification of different 107 

varieties, but also the study of the dynamics of leaf morphology on individual vines, as these 108 

features vary along the grapevine shoot (Fig. 1). From shoot base to tip, two developmental 109 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.163899doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.163899


 5

processes—allometry and heteroblasty—are discernable through observation of leaf size and 110 

shape (Fig. 2). Following initiation at the shoot tip, leaves rapidly undergo expansion while their 111 

shape continuously deforms, governed by the allometric processes first described by Hales 112 

(1727). Heteroblasty is caused by temporal changes in the shoot apical meristem that alter the 113 

phenotype of the subsequent lateral organs (in this case, leaves) produced, including leaf 114 

shape. Leaves found at the shoot base were the first to emerge from buds; thus, leaves at 115 

nodes closer to the base are relatively mature and have reached their maximum size. At this 116 

point in development, differences in leaf shape are predominantly attributable to the 117 

transformations from “first to last” described by Goethe (1817) between mature leaves with 118 

different shapes.  119 

 120 

Previously, we measured leaf shape from hundreds of vines from a germplasm collection 121 

representative of North American Vitis species (Chitwood et al., 2016a). We were able to 122 

capture changes in shape between species as well as changes due to allometry and 123 

heteroblasty by sampling leaves from all nodes on a single shoot. We found that the effects of 124 

species and developmental processes on leaf shape were additive and statistically distinct, 125 

meaning that regardless of node chosen along the vine, a given leaf can be used to identify the 126 

species and vice versa. We sampled leaves from the same vines in a second season (Chitwood 127 

et al., 2016b), and, by comparing equivalent leaves (by the vine and node) between the two 128 

growing seasons (2013 and 2015), we observed interannual variability in leaf shape that was 129 

attributable to climate rather than genotype or development. 130 

 131 
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Here, using the same vines as in our previous work (Chitwood et al., 2016a; 2016b), we sampled 132 

leaves from two more seasons (2016 and 2017) and successfully use composite leaf-modelling 133 

to predict species identity in vines with unknown background, which were confirmed by 134 

genotyping. Our work demonstrates that phenotypic modeling of dynamic changes in leaf 135 

shape, using composite leaves, improves genotype predictions compared to approaches 136 

statistically accounting for individual leaves only. 137 

  138 

METHODS 139 

  140 

Germplasm, sample collection, and imaging 141 

  142 

Leaves (8,465 in total) were collected from 209 vines at the USDA germplasm repository 143 

vineyard in Geneva, New York (USA). Samples were taken from the same vine during the 2nd  144 

week of June, annually, in 2013 and 2015-17. This study builds upon and analyzes previous 145 

work, including datasets from 2013 (Chitwood et al., 2016a) and 2013 + 2015 (Chitwood et al., 146 

2016b). The vines sampled represent 11 species (Ampelopsis glandulosa var. brevipedunculata, 147 

Vitis acerifolia, V. aestivalis, V. amurensis, V. cinerea, V. coignetiae, V. labrusca, V. palmata, V. 148 

riparia, V. rupestris, and V. vulpina), four hybrids (V. ×andersonii, V. ×champinii, V. ×doaniana, 149 

and V. ×novae-angliae), and 13 Vitis vines with unassigned identity. Starting at the shoot tip 150 

(with shoot order noted for each leaf), leaves greater than ~1 cm in length were collected in 151 

stacks (Fig. 1) and stored in labelled plastic bags with ventilation holes in a cooler. Within 2 days 152 

of collection, leaves were arranged on a large-format Epson Workforce DS-50000 scanner 153 
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(Tokyo, Japan) in the order collected, with a small number near each leaf indicating which node 154 

it came from and a ruler for scale within the image file. Image files are named with the vine ID, 155 

followed by a sequential lowercase letter if multiple scans were needed. 156 

  157 

Landmarking and Generalized Procrustes Analysis 158 

  159 

Twenty-one landmarks were (manually) annotated sequentially on the abaxial side of the leaf, 160 

as in Fig. 2A, using the point tool in ImageJ (version 1.52k, Abràmoff et al., 2004). From the 161 

8,465 leaves used in this study, 177,765 landmarks (355,530 values in total) were analyzed. 162 

Landmarks were placed sequentially for each leaf in a scan and saved as a text file of x- and y- 163 

coordinate values. To check for errors, landmarks from each scan were visualized using ggplot2 164 

(Wickham, 2016) in R (version 3.6.0, R Core Team, 2019), and landmarking was redone as 165 

necessary. Generalized Procrustes Analysis (GPA) was performed using the shapes package 166 

(version 1.2.4, Dryden and Mardia, 2016) in R (R Core Team, 2019), allowing for reflection. The 167 

resulting superimposed Procrustes coordinates were used in subsequent analyses. 168 

  169 

Data analyses 170 

  171 

The data analysis methods used in this study were devised by students during Fall 2019 in 172 

Foundation in Computational Plant Science, a graduate-level course offered through the 173 

Department of Horticulture at Michigan State University, which focused on the integration of 174 

computational and plant science approaches. Use of the “flipped classroom” approach, Jupyter 175 
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notebooks (Kluyver et al., 2016), and the Python coding language to teach statistical and 176 

modeling analyses was inspired by Introduction to Computational Modeling and Data Analysis, 177 

an undergraduate course offered through the Department of Computational Mathematics, 178 

Science & Engineering at Michigan State University (Silvia et al., 2019; 2020). The learning 179 

objectives of both courses focus on teaching coding (assuming no prior experience) in addition 180 

to principles of statistics and modeling.  181 

 182 

An innovative feature of Jupyter notebooks is their multifunctional use in both education and 183 

research. Additionally, as an open-source platform, Jupyter notebooks facilitate sharing 184 

between multiple sources, including the classroom and laboratory. Creativity and skill drive 185 

data-analysis oriented research; thus, educational methods are essential and should be shared, 186 

reproduced, and improved upon.  187 

 188 

All Python code (Jupyter notebooks) and R scripts used for data analysis are available on github: 189 

https://github.com/DanChitwood/grapevine_shoots. The concept of modeling Procrustean 190 

coordinate values across nodes using polynomial functions was introduced to students using 191 

published leaf shape data from Passiflora spp. (Chitwood and Otoni, 2017a; 2017b): 192 

https://github.com/DanChitwood/PlantsAndPython/blob/master/PlantsAndPython10_STUDEN193 

T_A_Passion_for_Passiflora.ipynb. Jupyter notebooks used as instructional materials for the 194 

class are available in the PlantsAndPython repository: 195 

https://github.com/DanChitwood/PlantsAndPython. 196 

  197 
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Analyses and visualizations in Python were done with NumPy (Oliphant, 2006), pandas 198 

(McKinney, 2010), scikit-learn (Pedregosa et al., 2011), and Matplotlib (Hunter, 2007). In order 199 

to compare node position of each leaf against each other, we created a relative node position, 200 

which is simply the node position for each leaf divided by the total leaf count for the shoot, 201 

where 0 is the shoot tip and 1 is the shoot base (Fig. 2). Procrustean coordinates for each vine 202 

were modeled as a function of relative node using a second-degree polynomial function fitted 203 

to the data using the NumPy polyfit and poly1d functions (Appendix S1). Ten modeled leaf 204 

shapes were calculated across the normalized range of node values from zero to one for each 205 

shoot. Collectively, the coordinate values for these ten modeled leaf shapes were used in 206 

subsequent analyses, representing leaf shape changes across the shoot as a composite leaf 207 

shape. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were 208 

performed using scikit-learn. For LDA and classification, random resampling was used to even 209 

the replication between species. For the test set, 20% of the data was used, and the remaining 210 

80% was used for training. The genotypes of Vitis spp. and parentage of Vitis hybrids were 211 

unknown (or subject to speculation); thus, these individuals were omitted from the training set 212 

but included in the test set, to determine which species their leaves most resembled. LDA 213 

prediction was run 1,000 times to estimate precision, recall, accuracy, and F1 statistics. 214 

  215 

Genotypic data and ADMIXTURE analysis 216 

  217 

Genotype data is derived from Klein et al. (2018). VCF files containing genotype data for the 218 

grapevines were processed using PLINK2 (Chang et al., 2015), resulting in a binary biallelic 219 
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genotype table (.bed), PLINK extended MAP file (.bim), and PLINK sample information file 220 

(.fam). PLINK2 was used to calculate eigenvectors and eigenvalues used in PCA (Galinsky et al., 221 

2016). The biallelic genotype table was used in a single run of ADMIXTURE (Alexander et al., 222 

2009). K-values from 3-15 were run and CV error was calculated. CV error decreased 223 

consistently from 0.20442 with K = 3 to 0.16453 with K = 10, after which it fluctuated around 224 

0.164 for K values of 11-15. For final analysis, K = 10 was used. The resulting table of group 225 

proportions was analyzed in R and visualized with ggplot2. 226 

  227 

RESULTS 228 

  229 

Using composite leaves to model leaf shape along the shoot  230 

  231 

Vein area relative to that of the whole leaf blade decreases exponentially with leaf expansion in 232 

grapevine, making this trait an important allometric feature of leaf morphology (Fig. 2A; 233 

Chitwood et al., 2016b). We measured leaf shape and vein width using 21 homologous 234 

landmarks, which were superimposed using a Generalized Procrustes Analysis such that the 235 

resulting coordinates for each sample were translated, rotated, reflected, and scaled; thus, 236 

allowing for cross-comparison of shape (Gower, 1975). Relative node position was used to 237 

compare vines with different numbers of leaves (Fig. 2B-C). 238 

  239 

With comparable Procrustes-adjusted coordinates and relative node positions, the coordinate 240 

x- and y-values for each of the 21 homologous landmarks (42 per leaf) were modeled as a 241 
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function of node position. There was never more than one inflection point and the data were 242 

smooth; thus, a second order polynomial function was used for modelling—also selected so as 243 

to not overfit the data, which can occur with higher-order polynomials (Appendix S1). Using the 244 

resulting functions, coordinate values for 10 modeled leaf shapes were calculated for each vine, 245 

in intervals of 0.1 across the relative node space from 0.1-1. The resulting modeled leaf shapes 246 

(with 210 landmarks and 420 coordinate values) are referred to as composite leaves and 247 

represent the dynamic changes in shape across each shoot sampled.  248 

 249 

Composite leaves can be superimposed and visualized, comparing changes in leaf shape along 250 

the shoot in different species, effectively reflecting both genotypic (species) and developmental 251 

(node position) differences (Fig. 3). Some of the most noticeable differences in leaf shape were 252 

observed between different species—the wide reniform leaves of Vitis rupestris, the broad 253 

orbicular leaves of V. labrusca, V. coignetiae, and V. amurensis, and the deep-lobed leaves of V. 254 

palmata and Ampelopsis glandulosa var. brevipedunculata. Developmental trends were also 255 

observed. Generally, the youngest leaves (at the shoot tip) were thinner and had deeper lobes 256 

than mature leaves found at the shoot base. Composite leaves were able to capture the 257 

dynamic developmental changes in leaf shape along the shoot, which individual leaves are not 258 

able to do, a “shape of shapes” that better represents leaf shape across different species. 259 

  260 

Composite leaves outperform individual leaves in predicting species identity 261 

  262 
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We hypothesized that composite leaves would outperform individual leaves in predicting 263 

species identity. To test this, we performed a Principal Component Analysis (PCA) on individual 264 

vs. composite leaf shape. Performing PCA for individual leaves permits representation of the 265 

axes of variation along Principal Components (PCs) as eigenleaves (theoretical leaf shapes 266 

representing variation along each PC axis at a chosen standard deviation value; Fig. 4A). A set of 267 

4 example species with distinct leaf morphologies (Vitis riparia, V. acerifolia, V. rupestris, and 268 

Ampelopsis glandulosa var. brevipedunculata) was compared, and the individual-leaf PCA 269 

separated species predominantly by PC2 (Fig. 4B). The eiglenleaf representations support this 270 

structure, as a short and wide reniform leaf type, characteristic of V. rupestris, is associated 271 

with low PC2 values, whereas the longer leaf type with more prominent lobes more similar to 272 

A. glandulosa var. brevipedunculata is associated with high PC2 values. In contrast, the 273 

separation between species is much greater for the composite leaf PCA space (Fig. 4C).  274 

 275 

Node position (discretized into ten relative nodes) could only be projected for individual leaf 276 

PCA, as it is intrinsic to the modeling approach used. Node position varied mostly by PC1 in 277 

individual leaf PCA (Fig. 4D) associated with eigenleaf representations characteristic of the 278 

shoot tip (high PC1 values) and the shoot base (low PC1 values). The species factor varied along 279 

one axis (PC2) and node position along another (PC1), consistent with previous observations 280 

that species and developmental effects on leaf shape are additive and orthogonal (Chitwood et 281 

al., 2016a). The main morphological difference between the two axes is the association of the 282 

petiolar sinus with other features (Fig. 4A). Four replicates for each vine are included in the 283 

composite leaf space, corresponding to the four growing seasons during which each vine was 284 
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sampled. Comparing individual (Fig. 4E) and composite (Fig. 4F) leaf PCA with data separated by 285 

year yielded little separation, as is expected given that the main source of variance (species 286 

type and developmental effects) was balanced in each analysis. 287 

  288 

The increased separation of species in composite compared to individual leaf PCA (Fig. 4B-C) 289 

suggests that composite leaves may discriminate between species better than individual leaves. 290 

To test the ability of these two methods to predict species identity, we used Linear Discriminant 291 

Analysis (LDA). The resulting confusion matrices, which plot the proportion of predicted species 292 

(horizontal axis) for each actual species class (vertical axis), showed that composite leaves 293 

outperform individual leaves in predicting species identity (Fig. 5A-B). Precision (true positives 294 

divided by the total number of positive predictions), recall (true positives divided by true 295 

positives + false negatives), and the F1 score (the harmonic mean of precision and recall) for 296 

species prediction were higher for composite compared to individual leaves (Table 1). For 297 

species prediction, the minimum values of precision, recall, accuracy, and the F1 score were 298 

0.57, 0.50, 0.50, and 0.53, respectively, for individual leaves, and 0.85, 0.84, 0.84, and 0.86 for 299 

composite leaves, demonstrating the superior predictive ability of composite leaves. Node 300 

position can be predicted for individual leaves but not for composite leaves. For individual 301 

leaves, prediction was the most accurate at the shoot tip and base (Fig. 5C; Table 2), as the 302 

effects of allometry and heteroblasty are most pronounced at the tip and base of the shoot, 303 

respectively, with little influence over leaves in the middle. Although matched by vine and 304 

species, the prediction of year also showed improvement with composite compared to 305 

individual leaves (Fig. 5D-E; Table 3). This indicates that composite leaves retain morphological 306 
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information useful for discriminating effects more subtle than genotype or development, such 307 

as the environment. 308 

  309 

Using composite leaves to predict genotype and phenotype 310 

  311 

We demonstrated that composite leaves outperform individual leaves in discriminating vines of 312 

known species identity. We subsequently sought to test the predictive ability of composite 313 

leaves on vines of unassigned identity. Of the 209 vines measured, 147 had been genotyped 314 

previously (Klein et al., 2018). Vitis vines of unassigned species identity totaled 13, 10 of which 315 

have been genotyped. ADMIXTURE analysis of genotyped vines confirmed most known species 316 

groups (Moore, 1991; Miller et al., 2013), with some exceptions (Fig. 6). Some intraspecies 317 

population structure was detected in V. riparia and V. acerifolia vines. V. amurensis and V. 318 

coignetiae had low replication and are not resolved (Fig. 6A). V. aestivalis vines were either 319 

misidentified from V. palmata or are unresolved hybrids of  V. palmata × (V. labrusca + V. 320 

aestivalis). A number of other misassigned vines are indicated by small roman numerals in Fig. 321 

6A. These and V. aestivalis vines occupy positions in the PCA genotype space inconsistent with 322 

their assigned identities or between species groups reflecting complex ancestry (Fig. 6C-D). 323 

  324 

For each Vitis spp. vine with genotype data, we predicted species identity using composite 325 

leaves with our LDA classifier (Fig. 5) for each of the four years sampled (Fig. 6B). Three vines 326 

were unambiguously identified using leaf shape consistently across the four years: vines 327 

588282 and 588508 were correctly predicted to be V. riparia, and vine 588501 as V. labrusca. 328 
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These vines clustered clearly with their respective species groups within the genotype PCA 329 

space (Fig. 6C-D). Two additional vines were ambiguously identified: vine 588529 has a (V. 330 

labrusca + V. aestivalis) × V. palmata genotype characteristic of V. aestivalis and was identified 331 

as V. labrusca or V. aestivalis in three of the four years. Vine 597293 with a (V. amurensis + V. 332 

coignetiae) ancestry was identified as V. coignetiae in two of the four years. Vine 588549 was 333 

not predicted correctly using composite leaf shape and has a (V. labrusca + V. aestivalis) × V. 334 

palmata genotype similar to vine 588529, but lies even farther from the V. labrusca cluster in 335 

genotype PCA space, suggesting that the more ambiguous the genotype of a vine from a well-336 

characterized species, the more difficult morphological-based prediction is.  337 

 338 

Vine 588628 had a unique V. rupestris × V. palmata ancestry and occupied an ambiguous 339 

position in the genotypic PCA. We expect that this vine was not classified correctly using 340 

morphology. The remaining vines that were not predicted are all of (V. amurensis + V. 341 

coignetiae) ancestry (vines 597294, 597295, and 597298). Likely, because of the small sample 342 

sizes for these two species, we have not adequately sampled leaf shape for this lineage, and 343 

therefore, cannot accurately predict for test cases. Our results show that composite leaf shape 344 

can predict species identity successfully, but not for vines with complex ancestry or species that 345 

have not been adequately sampled for leaf shape variation. 346 

  347 

DISCUSSION 348 

  349 
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Previously, we analyzed leaf morphology across nodes in different species of Vitis and Passiflora 350 

and found that allometric and heteroblastic effects are statistically separable from species-351 

specific differences (Chitwood et al., 2016a; Chitwood and Otoni, 2017a). The tracking of 352 

alterations to leaf shape between nodes was critical for several observations, including 1) the 353 

determination that species-specific differences in leaf shape arise from a common juvenile form 354 

(Chitwood and Otoni, 2017b) and 2) the identification of alterations to leaf morphology 355 

between growing seasons/years (Chitwood et al., 2016b; Baumgartner et al, 2020). However, in 356 

these instances, individual leaf shape was statistically analyzed, meaning that node position is a 357 

statistical effect rather than being part of the phenomenon studied (shape). By normalizing 358 

nodes against overall leaf count per shoot (Fig. 2B-C) and subsequently modeling Procrustes-359 

adjusted coordinates as a function of node position (Appendix S1), we are able to construct 360 

composite leaves—a shape of shapes (Fig. 3), able to capture multiple leaf-forms along the 361 

shoot in a single object. 362 

  363 

Shifting the concept of leaf shape from singular leaves to multiple, sequential, leaves found 364 

along the shoot has repercussions for the morphological species concept and phenotype. 365 

Species are better-resolved and predicted morphologically with composite (Fig. 4) rather than 366 

individual leaves alone (Fig. 5). With an adequate training dataset, composite leaves can help to 367 

identify vines with unknown species identity (Fig. 6). Leaf shape—a feature that is complex, 368 

conspicuous, and easily observable—is readily used to classify closely-related botanical 369 

specimens, as well as assess developmental- or environmentally-driven alterations within single 370 

plants. While the diversity of leaf shape can be recognized by specialists and communicated to 371 
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others through writing, the geometric properties of leaf shape allow for quantification of 372 

differences that we perceive visually (Amézquita et al., 2020). Furthermore, our assessment of 373 

leaf morphology is limited with individual leaves, which allow us to observe only facets of the 374 

comprehensive phenotype. Thus, composite leaves can better help identify and define species 375 

by allowing us to capture dynamic morphological data from developmental and environmental 376 

conditions compared to individual leaves. 377 

 378 
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Figure 1: Examples of changes in leaf traits between different developmental stages in 597 

different grapevine species. Vineyard-collected leaves (adaxial side up, except for V. riparia) 598 

from the tip (top of stack) to base (bottom of stack) of the shoot. Size, shape, and color (among 599 

other traits) vary from node to node. Images are not to scale relative to each other. 600 

  601 

Figure 2: Quantifying leaf shape changes along the shoot. A) Two Vitis labrusca leaves from 602 

the second (left) and fourth (right) nodes from the shoot tip. Landmarks are indicated to the 603 

left, and lobe tips, sinuses, and associated nomenclature to the right. Leaves are scaled to show 604 

the allometric decrease in the ratio of vein-to-blade area that occurs during expansion. B) 605 

Examples of morphological changes in V. riparia and V. labrusca leaves sampled along the 606 

shoot. Shoot tip, shoot base, nodes, and scale are indicated. Leaves in (A) are from the V. 607 

labrusca shoot shown here. C) Diagrammatic representation of the methods used to quantify 608 

leaf shape change along the shoot. Leaves are first superimposed and scaled using Procrustean 609 

methods. The outlines shown were formed using Procrustean coordinates derived from the 610 

blade of each leaf shown in (B). Relative node position is calculated as the node number 611 

(starting at the tip) divided by total leaf count (for the shoot), such that all nodes are assigned a 612 

fractional value between 0 and 1. Coordinate x- and y- values are modeled as a function of 613 

relative node position. Dots connected between leaves by the dotted line correspond to 614 

landmark 19 of the distal sinus. 615 

  616 

Figure 3: Modeling leaf shape along grapevine shoots with composite leaves. For each 617 

species, modeled leaf shapes for ten relative node positions along the shoot were 618 
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superimposed and illustrated, forming a composite leaf. Illustrations are grouped by species-619 

relatedness: A) Vitis riparia, V. acerifolia, V. rupestris; B) V. cinerea, V. vulpina; C) V. aestivalis, 620 

V. labrusca; D) V. coignetiae, V. amurensis; E) V. palmata; F) Ampelopsis glandulosa var. 621 

brevipedunculata. For each species, the number of leaves and vines sampled is given (note that 622 

every vine is sampled across four years, yielding a pseudoreplication of four). Composite leaves 623 

are colored as a gradient from gray (the shoot tip, node 1) to pink-purple (the shoot base, node 624 

10). 625 

  626 

Figure 4: Principal Component Analysis (PCA) of individual vs. composite leaves. A) Eigenleaf 627 

representations of shape variance at -/+ 3 standard deviations explained by Principal 628 

Components (PCs) for a PCA performed on all individual leaves. The percent variance explained 629 

by each PC is shown (on the left). B-C) Comparison of results from two separate PCAs, one with 630 

all individual (B) and the other with composite (C) leaves. Confidence ellipses (95%) for four 631 

species (following the color legend) are provided in addition to all data points (gray). D) Relative 632 

node position discretized into nodes counting from one to ten projected onto the individual leaf 633 

PCA space. For relative node position, there is no composite leaf PCA as nodes are accounted 634 

for and integrated into the resulting values for that analysis. E-F) Individual (E) and composite 635 

(F) leaf PCAs with 95% confidence ellipses for each year (following the color legend). 636 

  637 

Figure 5: Comparison of Linear Discriminant Analysis (LDA) results for individual vs. composite 638 

leaves. A-B) Comparison of confusion matrices from two separate LDAs, one for individual (A) 639 

and the other for composite (B) leaves. The proportion of actual species (vertical) assigned to 640 
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predicted species identity (horizontal) is indicated by color. Vitis hybrids and species were not 641 

used in the training set and were only assigned identity in the test set. C) Confusion matrix for 642 

an LDA performed on relative node position discretized into ten nodes along the shoot for 643 

individual leaves. For relative node position, there is no composite leaf LDA as nodes are 644 

accounted for and integrated into the resulting values for that analysis. D-E) Individual (D) and 645 

composite (E) leaf LDAs predicting year. All panels use the indicated color scheme for assigned 646 

proportion from 0 (white) to 1 (dark green). 647 

  648 

Figure 6: Comparing species identity predictions based on morphology to known ancestry. A) 649 

Ancestry for each individual using K = 10 from ADMIXTURE. Each population is assigned a 650 

different color. Species designations for each vine are as previously assigned for this collection, 651 

without prior genetic knowledge, and arranged by known phylogenetic relationships. Vines 652 

with genetic identities at odds with their assigned identity are indicated by black arrows and 653 

lowercase roman numerals. B) For Vitis spp. with genetic information, ancestry (left) and 654 

predicted species identity (based on morphology) for each shoot for each of four years (right) is 655 

provided. Morphological predictions consistent with genetic identity are indicated in bold. C) 656 

Principal Component Analysis (PCA) of the same individuals in (A). Vines with conflicting 657 

assigned and genetic identities are indicated by black arrows and lowercase roman numerals as 658 

in (A). Vitis spp. in (B) are indicated by black dots and vine identification numbers. Species are 659 

indicated by colors which do not correspond with the color scheme of other panels and the 660 

number of vines with genetic information is provided. 661 

  662 
Table 1: Comparison of species prediction using LDA for individual vs. composite leaves. 663 
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  664 

 
Individual leaves Composite leaves 

Species Precision Recall Accuracy F1 Precision Recall Accuracy F1 

A. 
glandulosa 

0.93 1.00 1.00 0.96 1.00 1.00 1.00 1.00 

V. acerifolia 0.57 0.50 0.50 0.53 0.90 0.94 0.94 0.92 

V. aestivalis 0.68 0.56 0.56 0.62 0.96 0.97 0.97 0.97 

V. amurensis 0.65 0.73 0.73 0.69 0.99 0.97 0.97 0.98 

V. cinerea 0.59 0.69 0.69 0.64 0.97 0.91 0.91 0.94 

V. coignetiae 0.74 0.77 0.77 0.75 1.00 1.00 1.00 1.00 

V. labrusca 0.67 0.65 0.65 0.66 0.95 0.97 0.97 0.96 

V. palmata 0.85 0.84 0.84 0.85 1.00 1.00 1.00 1.00 

V. riparia 0.58 0.51 0.51 0.54 0.85 0.87 0.87 0.86 

V. rupestris 0.76 0.73 0.73 0.75 0.99 0.84 0.84 0.91 

V. vulpina 0.69 0.75 0.75 0.72 0.88 0.99 0.99 0.93 

 665 
Table 2: Relative node position prediction using LDA for individual leaves. 666 
  667 

Node 

position 
Precision Recall Accuracy F1 

1 (tip) 0.66 0.66 0.66 0.66 

2 0.42 0.37 0.37 0.39 

3 0.41 0.44 0.44 0.42 

4 0.35 0.40 0.40 0.37 

5 0.27 0.30 0.30 0.28 

6 0.26 0.26 0.26 0.26 

7 0.29 0.22 0.22 0.25 

8 0.28 0.23 0.23 0.25 

9 0.35 0.39 0.39 0.36 

10 (base) 0.53 0.56 0.56 0.54 

 668 
Table 3: Comparison of year prediction using LDA for individual vs. composite leaves. 669 
  670 

 Individual leaves Composite leaves 

Year Precision Recall Accuracy F1 Precision Recall Accuracy F1 

2013 0.58 0.56 0.56 0.57 0.83 0.79 0.79 0.80 

2015 0.62 0.64 0.64 0.63 0.79 0.85 0.85 0.82 

2016 0.74 0.79 0.79 0.76 0.95 0.96 0.96 0.95 

2017 0.79 0.73 0.73 0.76 0.97 0.95 0.95 0.96 
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