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Abstract 16 

The presumption of innocence (i.e., the principle that one is considered innocent until proven guilty) is a 17 

cornerstone of the criminal justice system in many countries, including the United States. DNA analysis is 18 

an important tool for criminal investigations1. In the U.S. alone, it has already aided in over half a million 19 

investigations using the Combined DNA Index System (CODIS) and associated DNA databases2. CODIS 20 

includes DNA profiles of crime scene forensic samples, convicted offenders, missing persons and more. 21 

The CODIS framework is currently used by over 50 other countries3 including much of Europe, Canada, 22 

China and more. During investigations, DNA samples can be collected from multiple individuals who may 23 

have had access to, or were found near a crime scene, in the hope of finding a single criminal match4. 24 

Controversially, CODIS samples are sometimes retained from adults and juveniles despite not yielding 25 

any database match4–6. Here we introduce a cryptographic algorithm that finds any and all matches of a 26 

person’s DNA profile against a CODIS database without revealing anything about the person’s profile to 27 

the database provider. With our protocol, matches are immediately identified as before; however, 28 

individuals who do not match anything in the database retain their full privacy. Our novel algorithm runs 29 

in 40 seconds on a CODIS database of 1,000,000 entries, enabling its use to privately screen potentially-30 

innocent suspects even in the field. 31 

  32 
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Introduction 33 

DNA-based forensic analysis is a powerful tool used by law enforcement agencies around the world for 34 

solving crimes1–3. With today’s technology, local police stations7 and even agents in the field8 can 35 

generate a suspect’s DNA profile to search against central criminal DNA databases in an impressive 90 36 

minutes9,10. At the same time, the increased prominence of DNA-based forensics opens up new avenues 37 

for misuse including social control and racial profiling11,12. 38 

In particular, the storage of DNA samples from potentially innocent individuals permanently links their 39 

genetic identities to criminal databases (without due process). Within the United States, these 40 

controversial practices have included collecting DNA from individuals who have been arrested but not 41 

convicted or even charged with a crime4, people who are not even arrested (so-called “stop-and-spit” 42 

and “swab-and-go” practices13), detained immigrants and asylum seekers6, and even children brought in 43 

for questioning5.  44 

Here we develop a novel solution (Figure 1) whereby an agent in the field, using modest computational 45 

resources, could privately query a suspect’s DNA profile against a large central database of DNA profiles. 46 

In less than 40 seconds, the agent learns whether the suspect’s profile matches, based on CODIS rules, 47 

against any profile in the central database of 1,000,000 profiles, while learning nothing else about the 48 

contents of the central database. More importantly, the central database itself learns absolutely nothing 49 

about the DNA profile being searched. Any match discovered can be investigated further as before. 50 

However, should no match be made, the suspect’s DNA profile, now exonerated, can be disposed of on 51 

the spot, with zero risk that the central database provider chose to retain it. 52 

Results 53 

CODIS system of DNA profiles and profile matches 54 

The United States CODIS system originally established a set of 13 loci across the genome coinciding with 55 

short tandem repeats (STRs) as a method for comparing genetic data for identification purposes3. These 56 

were expanded to a set of 20 loci in 2017. Many countries have adopted a similar system with a 57 

combination of existing core STR loci and region-specific STR loci. For example, a European Union (EU) 58 

system of 16 loci, a UK system of 11 loci and a Chinese system of 20 loci have all been described14,15 (see 59 

Online Methods and Supplementary Table 1). At each locus, individuals have 2 alleles, one inherited 60 

(with possible personal modification) from each parent. The allele at each locus is represented by a 61 

varying range and represents the number of repeats of a 2 to 6-character (base pair) generic sequence 62 

observed in the individual’s genome. Based on frequency statistics collected by the FBI, the probability 63 

that two unrelated individuals share the same STR profile across all 13 core loci positions of the older US 64 

system is 1 in 575 trillion16. This probability further decreases with the expanded set of 20 loci 65 

introduced in 2017.  66 

The CODIS system describes several ways to query a database of STR profiles. The standard and default 67 

method is a “high-stringency search with one mismatch,” which requires that both of the alleles 68 

appearing in at least 19 out of the 20 STR loci between the query profile and the database profile match 69 

exactly17,18. Central CODIS databases holding thousands to millions of DNA profiles that can be used for 70 

such queries are maintained in the US at the national, state, and sometimes even municipal level2 (as 71 

well as very similar databases and matching rules in dozens of other countries3).  72 
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Encoding an STR profile for secure computation 73 

We encode an STR profile as a binary string. For each STR locus, we propose a public dictionary that 74 

maps every pair of STR alleles to a unique binary string. The number of bits used to encode each allele is 75 

determined based on the number of unique alleles expected at the locus14. We assume that all entries in 76 

the central database (unknown to the agent making the query) and the suspect’s STR profile held by the 77 

agent (unknown to the central database) are encoded in this commonly-agreed upon manner. 78 

Secure protocol overview 79 

It suffices to construct a secure protocol for comparing a single entry in the central database with the 80 

suspect’s profile. By running this protocol over and over against all entries in the central database, the 81 

agent will learn the indices of the complete set of matching records, and nothing else, while the central 82 

database will learn nothing (Figure 1C).  83 

We start by fitting a computational model to the task, before later securing it: given two binary strings 84 

encoding two STR profiles as above, decide whether they correspond to a match according to the CODIS 85 

specification or not. Our key observation is that one can efficiently compute this using a compact 86 

deterministic finite automaton19 (DFA). In a DFA, the computation begins at an initial state, and at each 87 

step of the computation, the DFA reads a bit of the input and advances the state. After reading all of the 88 

input bits, the DFA ends in either an “accepting” state or a “rejecting” state. For example, a DFA can be 89 

constructed to test for equality between two equal length bit-strings by defining two sets of states: a set 90 

of “matching” states and another for “mismatching” states. The computation begins in the “matching” 91 

set, and as each bit of the input is read, it is compared against the target bit. As long as the current state 92 

is in the matching set, if the two bits match, the program transitions to the next state in the matching 93 

set, and otherwise, it transitions to a state in the mismatching set. Once a single bit mismatches, one 94 

enters the mismatching set, from which all inputs lead only to the next state in the mismatching set. The 95 

input bit string is equal to the target string if the computation concludes in a state in the matching set, 96 

and is otherwise unequal (see Supplementary Figure 1). We use this DFA to check for matches at a single 97 

STR locus. A similar DFA can be used to test for equality with up to one mismatch (see Online Methods 98 

and Supplementary Figure 2). We use this one to compute a CODIS match of at least 19 of 20 STR loci. 99 

In our setting, the central database owner constructs a DFA for each profile in its database. The input to 100 

the DFA is the agent-held suspect’s STR profile. The DFA computation ends in an accepting state if the 101 

suspect’s profile is a CODIS match to the central database profile; otherwise, the DFA computation ends 102 

in a rejecting state. 103 

Our protocol now proceeds as follows. At the beginning, the agent knows the initial state of the DFA as 104 

well as the suspect’s STR profile (hidden from the central database). The central database holds the DFA 105 

corresponding to a database entry (hidden from the agent). Using a cryptographic protocol called 106 

“oblivious transfer20,21,” the agent and the central database now jointly perform the evaluation of the 107 

DFA on the agent’s input STR profile.  108 

Specifically, at each step of the DFA evaluation, the central database enumerates all possible states of 109 

the DFA that the agent might be in and all possible states the agent will end up in based on the next bit 110 

of the agent’s input. These statements are of the form “if you are in state 𝑋 and the next bit of your 111 

input is 0, then you will proceed to state 𝑌.” Using the oblivious transfer protocol, the agent can secretly 112 

choose to learn exactly one of these statements without revealing which one she chose to the database 113 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

server. In this case, the agent chooses the statement corresponding to her current state and the next bit 114 

of her input; this in turns reveals to the agent her next state in the DFA evaluation. The oblivious 115 

transfer protocol hides all of the other statements from the agent, so the agent cannot learn what 116 

would have happened had she been in a different state or had a different input. 117 

At the very end of the protocol, the agent arrives at either an accepting state or a rejecting state, which 118 

indicates whether the STR profile she provided matched against the central database’s profile or not. As 119 

described so far, the agent learns the full execution path in the DFA as well as whether her input profile 120 

matches the database profile or not. To ensure that the execution path does not leak additional 121 

information about the profiles on the database server, the central database additionally encrypts all of 122 

the intermediate steps of the computation (in a way that still enables the above evaluation procedure). 123 

Then, at each of the intermediate steps, the agent no longer knows where she is in the actual DFA 124 

execution. The central database only provides a single intelligible state: the very last state which reveals 125 

whether the two profiles match or not match.  126 

By repeating the above protocol with each profile in the central database, while changing the encryption 127 

of intermediate states every run, the agent has learned just one thing: the database indices of any and 128 

all profile matches. She learns nothing else about any of the centrally-stored profiles. On the flip side, 129 

the central database learns nothing at all about the suspect’s STR profile; at every step, they only 130 

provide an exhaustive list of “if you are here, and have this bit next, then go there.” We have thus 131 

achieved the desired goal of Figure 1C. We encourage our readers to refer to the Online Methods for 132 

the full technical details and security analysis. 133 

Performance measurements 134 

With our protocol implementation, an agent in the field in Northern California can privately query a 135 

CODIS database containing 1 million STR records located 3,000 miles away in Northern Virginia in just 38 136 

seconds, using 180 MB of online communication. In our experiments, we represent each STR profile as a 137 

vector of 20 biallelic components (212 bits in total) based on the current US CODIS specification2. Our 138 

protocol additionally requires preparing 116 million oblivious transfer correlations20,21 and 122 MB of 139 

client-side storage (see Online Methods and Supplementary Table 2). These can be generated in a 140 

separate preprocessing phase on commodity hardware in about a minute using existing state-of-the-art 141 

oblivious transfer extension protocols22. Since these correlations are independent of both the query and 142 

the database contents, they can be prepared concurrently with the 90 minutes needed for STR profile 143 

derivation9,10, and thus, contributes no extra latency. 144 

We also measured the performance of our protocol on CODIS specifications reported for the UK14, the 145 

EU14,18, and China15 (see Online Methods for specifications details). In all cases, the cost of the protocol is 146 

smaller or comparable to that of the US CODIS system (up to 40 seconds and under 200 MB of 147 

communication; see Table 1). To illustrate the scalability of our approach, we also measured the 148 

performance for a CODIS system with 40 loci and an encoding length of 492 bits, a setting based on a 149 

system previously tested by NIST23. Performing a CODIS search in this setting over a database of a million 150 

records completes in just 72 seconds and requires only 340 MB of communication. Thus, our protocol 151 

also scales favorably to future scenarios with an expanded set of STR loci. 152 

 153 
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We also tested the performance of our protocol on central databases of different sizes (Figure 2). Both 154 

the online bandwidth and execution time of our protocol scale linearly with the size of the STR profile (a 155 

function of both the number of loci and the number of bits needed to represent the allele values at each 156 

locus) and with the size of the central database. For example, our protocol can search over a 20-STR U.S. 157 

database with 10 million records in just under 6 minutes. 158 

Discussion 159 

DNA profiles are an extremely powerful tool in forensics and crime solving24. Our law enforcement 160 

agencies have a duty to both serve and protect their communities. How can they use DNA databases to 161 

find criminals while simultaneously protecting the privacy of innocent individuals who make up the 162 

majority of each society12? It is natural to think that searching a suspect’s DNA profile against a master 163 

database either requires the database to see the suspect’s profile, or for the agent holding the suspect 164 

profile to have a local copy of the master database. Both scenarios compromise privacy (Figure 1). Here 165 

we show a third way, whereby a field agent searches the remote master database without learning 166 

anything about it except any possible match. Moreover, the central database aids the search while 167 

learning nothing about the suspect’s profile. Should the search come up empty, if the field agent 168 

disposes of the sample, they have both served their community and protected its privacy. 169 

DNA profiling machines can now routinely produce a searchable profile in a matter of 90 minutes, and 170 

can even be carried to the field8. Integrating our privacy-preserving protocol with such a system adds 171 

minimal overhead and can easily fit into existing workflows. In fact, the computational requirements to 172 

run the protocol are so modest, it is likely they can be performed on a modern smartphone. The 173 

performance of our protocol also compares favorably against generic approaches for privacy-preserving 174 

computation. For instance, a direct implementation of a query protocol using Yao’s garbled circuits25 175 

would require communicating, storing, and evaluating a circuit that is around 8 GB (≈ 260 million AND 176 

gates) in size for a database with 1 million profiles (and increase to 80 GB of communication and storage 177 

for a 10 million entry database). In comparison, our protocol requires less than 125 MB of offline storage 178 

for the OT correlations (which can be generated in about a minute22) for a database of 1 million profiles. 179 

Our implementation follows the CODIS guidelines for high-stringency matching (the default mode of 180 

searching)17,18.The deterministic finite automata at the root of our approach can be easily extended to 181 

also support moderate and low-stringency matches as well as partial match queries, with modest 182 

increases in computation time and communication. In fact, similar operations like paternity testing and 183 

ethnicity identification can also be formulated as a similar string-matching problem and implemented 184 

using a similar approach. In all cases, the correct answer is obtained while the input DNA profiles to the 185 

computation remain private. 186 

Our protocol is relevant not only in the US, but also in any of dozens of countries that use a CODIS-like 187 

system3. It scales well with the size of the central database (Figure 2), on current hardware that will only 188 

get faster, and most importantly, it gives the agent in the field or local office, the ability to destroy an 189 

exonerated profile that has yielded no incriminating match. Whether they are instructed to do so or not 190 

is a civil rights matter that each country must resolve for itself11,12,26,27. The importance of our work is in 191 

showing that accurate practical implementations to enable these fundamental rights are already doable.  192 
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Online Methods 193 

STR profiles and representation 194 

The US National Institute of Standards and Technology (NIST) has enumerated all possible allele values 195 

for each STR core locus in the current US system14. While over 50 other countries reportedly use a local 196 

variant of the same CODIS system3, details of each country’s system, or even a list of these 50+ countries 197 

are not easily found. Possibly current versions of the EU and UK systems are described by NIST14, while a 198 

partial description of the Chinese system is provided in a paper co-authored by officials from the 199 

Chinese Ministry of Justice15. Similarly, the high-stringency matching rule with at most one mismatching 200 

locus is published for the US17 and EU18. As the exact CODIS system parameters are immaterial for the 201 

essence of our proposed solution, when necessary, we infer the number of possible values at a locus 202 

based on the existing NIST standards, and also assume a default search configuration of high-stringency 203 

matching of all but one locus for all systems. 204 

In 2017, the US 13 loci system was replaced by the 20 loci system3. It is unclear if or when this set will be 205 

expanded on. For purposes of illustrating the scalability of our solution we use a 40 loci system 206 

described in a NIST paper partly funded by the FBI23. 207 

Security model 208 

We work in a two-party setting where the server holds a profile 𝒗 = (𝑣1, … , 𝑣𝑛) and the client holds a 209 

query vector 𝒘 = (𝑤1, … , 𝑤𝑛), where each of the components 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ can be represented by ℓ-210 

bit strings. We define the “threshold matching” function TM𝑘(𝒗, 𝒘) to be the following Boolean-valued 211 

function: 212 

TM𝑘(𝒗, 𝒘) = {
1, |{𝑣𝑖 ≠ 𝑤𝑖 | 1 ≤ 𝑖 ≤ 𝑛}| ≤ 𝑘

0, |{𝑣𝑖 ≠ 𝑤𝑖 | 1 ≤ 𝑖 ≤ 𝑛}| > 𝑘
 213 

In words, TM𝑘(𝒗, 𝒘) outputs 1 if the vectors 𝒗 and 𝒘 disagree on at most 𝑘 components. In this work, 214 

we design a secure protocol such that at the end of the protocol, the client learns the value of 215 

TM𝑘(𝒗, 𝒘) and nothing more about the server’s profile 𝒗, while the server learns nothing about the 216 

client’s query 𝒘. Importantly, the client only learns whether the number of differing components 217 

between 𝒗 and 𝒘 is greater than 𝑘 or not, but nothing about the exact number of differing components 218 

or the indices of the differing components. 219 

We can naturally extend this notion to the setting where the server holds a database with many vectors 220 

{𝒗1, … , 𝒗𝑡} and the client’s goal is to learn all of the indices 𝑖 ∈ {1, … , 𝑡} where TM𝑘(𝒗𝑖, 𝒘) = 1, but 221 

nothing more about the vectors 𝒗1, … , 𝒗𝑡. Since a protocol for private evaluation of TM𝑘(𝒗, 𝒘) for a 222 

single entry 𝒗 suffices for searching over a database of values (by repeating the protocol for each 223 

database entry 𝒗1, … , 𝒗𝑡), we focus on the single-instance setting for the remainder of this section. 224 

Throughout this work, we assume that the client and the server are semi-honest or “honest-but-225 

curious;” namely, both the client and the server will follow the protocol as described, but may try to 226 

infer additional information about the other party’s private inputs based on the messages they receive 227 

in the protocol. We note that our protocol actually ensures privacy of the client’s query even against a 228 

malicious database server that may arbitrarily deviate from the protocol execution, provided that the 229 

underlying “oblivious transfer” protocol we use (see below) is secure against a malicious sender. 230 
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Oblivious transfer and the OT-hybrid model 231 

An oblivious transfer (OT) protocol20,21,28 is a two-party protocol between a sender and a receiver. In a 1-232 

out-of-𝑘 OT protocol on 𝑡-bit messages, the sender holds 𝑘 messages 𝑚1, … , 𝑚𝑘 ∈ {0,1}𝑡 while the 233 

receiver holds an index 𝑖 ∈ {1, … , 𝑘}. At the end of the protocol, the receiver learns the 𝑖th message 𝑚𝑖 234 

and nothing else about any of the remaining messages, while the sender learns nothing. To facilitate the 235 

analysis of our protocol, we will work in the “OT-hybrid” model where we assume that the parties have 236 

access to a trusted party that implements the above 1-out-of-𝑘 OT functionality20. We can then replace 237 

the trusted party with a cryptographic implementation of a 1-out-of-𝑘 OT protocol28. If our protocol 238 

provides semi-honest security in the OT-hybrid model, and we instantiate the OT protocol with a 239 

cryptographic protocol that is secure against semi-honest adversaries, then the overall protocol is also 240 

secure against semi-honest adversaries (without relying on any trusted party)29. 241 

Oblivious transfer correlations 242 

We can significantly reduce the online cost of oblivious transfer by first precomputing input-independent 243 

“oblivious transfer correlations” in an offline (or preprocessing phase). Because the correlations are 244 

input-independent, they can be precomputed without knowledge of the client’s query or the server’s 245 

database. These OT correlations can be generated efficiently using a technique called OT extension in a 246 

separate input-independent preprocessing step30 (this can even be done with low communication using 247 

a recent approach called silent OT extension31). Alternatively, they can be generated ahead of time by a 248 

trusted dealer or a secure hardware platform (observe that in both of these settings, the party 249 

generating the correlations does not need to know anything about the query or the database entries). 250 

Very briefly, a 1-out-of-𝑘 OT correlation for 𝑡-bit messages consists of the following: (1) a tuple of 𝑘 251 

random values 𝑟1, … , 𝑟𝑘 ∈ {0,1}𝑡 for the server; and (2) a random index 𝛽 ∈ {1, … , 𝑘} together with the 252 

value 𝑟𝛽 for the receiver. Once the client and server have this OT correlation, it is straightforward to 253 

implement a 2-message 1-out-of-𝑘 OT (on an arbitrary collection of sender messages 𝑚1, … , 𝑚𝑘 ∈254 

{0,1}𝑡 and receiver index 𝑖 ∈ {1, … , 𝑘}). We recall the construction below: 255 

 Receiver message: The receiver sends the index 𝑗 = 𝑖 + 𝛽 (mod 𝑘) to the sender. Observe that 256 

since 𝛽 is uniformly random over {1, … , 𝑘} and unknown to the sender, this message perfectly 257 

hides the receiver’s index 𝑖. For notational convenience, we will consider the output of 258 

arithmetic modulo 𝑘 to be a value between 1 and 𝑘 (as opposed to 0 and 𝑘 − 1). 259 

 Sender response: On input an index 𝑗 ∈ {1, … , 𝑘} from the receiver, the sender computes the 260 

blinded message 𝑐𝑖 ← 𝑚𝑖 ⊕ 𝑟𝑗−𝑖 (mod 𝑘), where ⊕ denotes the bitwise exclusive-or operator 261 

(i.e., bitwise xor). The sender sends the blinded messages 𝑐1, … , 𝑐𝑘 to the receiver. Since 262 

𝑟1, … , 𝑟𝑘 are uniform over {0,1}𝑡 and the receiver knows exactly one of these values (i.e., 𝑟𝛽), 263 

𝑘 − 1 out of the 𝑘 values are perfectly hidden from the receiver. 264 

 Receiver reconstruction: The receiver computes its message as 𝑐𝑖 ⊕ 𝑟𝛽. 265 

Correctness of the protocol follows from the following simple relation: 266 

𝑐𝑖 ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝑗−𝑖 (mod 𝑘) ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝑖+𝛽−𝑖 (mod 𝑘) ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝛽 ⊕ 𝑟𝛽 = 𝑚𝑖. 267 

To summarize, a 1-out-of-𝑘 OT correlation on 𝑡-bit values yields a 1-out-of-𝑘 OT on 𝑡-bit messages in 268 

two rounds of interaction where the total communication is ⌈log 𝑘⌉ + 𝑘𝑡 bits. The only necessary 269 

computation is integer arithmetic and bitwise operations, so this is a very lightweight protocol. 270 
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Representing threshold matching as a deterministic finite automaton 271 

Given two vectors 𝒗 = (𝑣1, … , 𝑣𝑛) and 𝒘 = (𝑤1, … , 𝑤𝑛) where 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ, our objective is to 272 

securely compute the threshold matching function TM𝑘(𝒗, 𝒘) defined above. In our setting, we assume 273 

the database server holds 𝒗 while the client holds 𝒘. The starting point of our design is to express the 274 

computation of TM𝑘 as a composition of two deterministic finite automatons (DFAs): 275 

 The first DFA checks equality of ℓ-bit strings. Namely, for a string 𝑣 ∈ {0,1}ℓ, the machine 276 

computes the function 𝑔𝑣(𝑤) that outputs 1 if 𝑣 = 𝑤 and 0 otherwise. 277 

 The second DFA computes a threshold function. Namely, for a target sequence of bits 278 

𝑎1, … , 𝑎𝑛 ∈ {0,1} and a threshold 𝑘, the machine computes the function ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) 279 

that outputs 1 if 𝑎𝑖 ≠ 𝑏𝑖 on at most 𝑘 indices 1 ≤ 𝑖 ≤ 𝑛 and 0 otherwise. 280 

By definition, the threshold matching function TM𝑘 can now be expressed as 281 

TM𝑘(𝒗, 𝒘) = ℎ(1,1…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)). 282 

We note that while we can construct a single DFA that combines both functionalities, decomposing the 283 

computation into two separate steps enables a more efficient privacy-preserving protocol. 284 

We now show how to construct simple DFAs for computing the functions 𝑔𝑣 and ℎ(𝑎1,…,𝑎𝑛),𝑘. For both 285 

functions, we design a “layered” DFA, which can be more efficiently computed in a privacy-preserving 286 

manner. First, a DFA consist of a tuple 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆), where 𝑄 denote the set of states, Σ is the 287 

alphabet, 𝛿: 𝑄 × Σ → 𝑄 is the state-transition function, 𝑞0 ∈ 𝑄 is the start state, and 𝑆 ⊆ 𝑄 is the set of 288 

accepting states. On input 𝑥 = 𝑥1𝑥2 ⋯ 𝑥𝑛 ∈ Σ𝑛, the output 𝑀(𝑥) is 1 if 𝛿(𝑞𝑛−1, 𝑥𝑛) ∈ 𝑆 where 𝑞𝑖 =289 

𝛿(𝑞𝑖−1, 𝑥𝑖) for all 1 ≤ 𝑖 < 𝑛, and 0 otherwise. Finally, we say that 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆) is a layered DFA if 290 

the following properties hold: 291 

 The set of states 𝑄 can be partitioned into ⋃ 𝑄𝑖
𝑛
𝑖=0  where 𝑄0, … , 𝑄𝑛 are pairwise disjoint, 𝑄0 =292 

{𝑞0}, and 𝑆 ⊆ 𝑄𝑛. 293 

 The state-transition function 𝛿 can be decomposed into a collection of functions (𝛿1, … , 𝛿𝑛) 294 

where 𝛿𝑖: 𝑄𝑖−1 × Σ → 𝑄𝑖  and 𝛿(𝑞, 𝜎) = 𝛿𝑖(𝑞, 𝜎) for all 1 ≤ 𝑖 ≤ 𝑛, 𝑞 ∈ 𝑄𝑖−1, 𝜎 ∈ Σ. 295 

In words, a layered DFA is one whose states can be partitioned into a collection of 𝑛 + 1 pairwise 296 

disjoint sets (i.e., “layers”) 𝑄0, … , 𝑄𝑛. On input 𝑥 ∈ Σ𝑛, the state of the DFA after reading the first 𝑖 bits 297 

of 𝑥 is contained in layer 𝑖 (i.e., in the set 𝑄𝑖). We now describe how to represent 𝑔𝑣 and ℎ(𝑎1,…,𝑎𝑛),𝑘 as 298 

layered DFAs: 299 

 Let 𝑔𝑣(𝑤) denote the function that outputs 1 if 𝑣 = 𝑤 and 0 otherwise, where 𝑣, 𝑤 ∈ {0,1}ℓ. It 300 

is easy to construct a layered DFA for the equality function. The DFA consists of two branches, 301 

each with ℓ states: an “accept” branch that corresponds to a matching input and a “reject” 302 

branch that corresponds to a non-matching input. Evaluation begins on the accept branch and 303 

successively compares the bits of 𝑤 to the bits of 𝑣 (encoded in the DFA transitions). If a 304 

mismatch is encountered, the DFA transitions to the reject branch. The output is 1 if the final 305 

state is on the accept branch and 0 otherwise. We illustrate this in Figure 1. Thus, for 𝑣 ∈ {0,1}ℓ, 306 

the function 𝑔𝑣 can be computed by a layered DFA with ℓ + 1 layers, each containing up to 2 307 

states. Note that the vector 𝑣 is entirely encoded in the transition function 𝛿 of the DFA. Our 308 
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protocol for privacy-preserving layered DFA evaluation assumes that the topology of 𝑀 is public, 309 

but will hide the transition function 𝛿 (and thus, the value of 𝑣) from the client. 310 

 Let ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) be the threshold function that outputs 1 if there are at most 𝑘 indices 311 

1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑖 ≠ 𝑏𝑖 and 0 otherwise. It is also straightforward to construct a layered DFA 312 

for ℎ(𝑎1,…,𝑎𝑛),𝑘. Namely, we consider a DFA with 𝑘 + 2 branches. We label each branch with an 313 

integer 𝑗 = 0,1 … , 𝑘, 𝑘 + 1, corresponding to the number of mismatches encountered thus far. 314 

Evaluation begins on branch 0 and whenever the DFA reads in an input bit 𝑏𝑖 ≠ 𝑎𝑖, then the 315 

state transitions from branch 𝑗 to branch 𝑗 + 1; otherwise, evaluation continues on branch 𝑗. All 316 

state transitions on the final branch 𝑗 = 𝑘 + 1 (corresponding to an input that differs on more 317 

than 𝑘 indices), remain on the branch irrespective of the input bit. We illustrate this in 318 

Supplementary Figure 2 (for the case where 𝑘 = 1). Thus, the function ℎ(𝑎1,…,𝑎𝑛),𝑘 can be 319 

implemented by a layered DFA with 𝑛 + 1 layers, each containing up to 𝑘 + 2 states. Note that 320 

the sequence of bits (𝑎1, … , 𝑎𝑛) is entirely encoded in the transition function 𝛿 of the DFA. The 321 

topology of the DFA is a function of the dimension 𝑛 and the threshold 𝑘, both of which will be 322 

assumed to be publicly known in our protocol; our final protocol will require that the target bits 323 

(𝑎1, … , 𝑎𝑛) be hidden, which holds as long as the protocol for layered DFA evaluation hides 𝛿. 324 

It is easy to see that the two layered DFAs described above can be combined into a single layered 325 

DFA for computing TM𝑘. However, the number of layers in the resulting DFA will be the product of 326 

the number of layers in the two underlying DFAs. When developing our cryptographic protocol for 327 

privacy-preserving layered DFA evaluation, both the round complexity and the communication 328 

complexity scales with the number of layers. Thus, privately-evaluating two smaller DFAs yields a 329 

significantly more efficient protocol compared with evaluating a single larger layered DFA. 330 

Privacy-preserving evaluation of a layered DFA 331 

We now describe how to use oblivious transfer to construct a privacy-preserving protocol for computing 332 

TM𝑘. We leverage our implementation of the threshold matching function as a layered DFA to enable a 333 

more efficient protocol. While there already exist protocols for private evaluation of general (i.e., not 334 

necessarily layered) DFAs 32,33, in this work, we show that the layered structure of our DFAs are 335 

amenable to a simpler and direct OT-based evaluation procedure (without needing to additionally rely 336 

on heavier cryptographic primitives such as homomorphic encryption). 337 

Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆) be a layered DFA: namely, 𝑄 = ⋃ 𝑄𝑖
𝑛
𝑖=0  and 𝛿 = (𝛿1, … , 𝛿𝑛). We will label the 338 

states 𝑄𝑖  in layer 𝑖 by indices 1,2, … , |𝑄𝑖|.  In our model, the server holds the layered DFA 𝑀 while the 339 

client holds the input 𝑥 ∈ Σ𝑛. At the end of the protocol, the server should learn nothing while the client 340 

should learn the value 𝑀(𝑥). In addition, we assume that the topology of the DFA 𝑀 is publicly-known 341 

(i.e., the client knows the number of layers in 𝑀 as well as the number of states in each layer of 𝑀). 342 

What is hidden is the transition function 𝛿. This assumption is true for the setting we consider in this 343 

work: here, the CODIS algorithm itself is public (and this determines the topology of the DFA), but the 344 

records within the server’s database determine the exact transition function, which is precisely what our 345 

protocol hides. 346 

Our protocol relies on the following simple observation: the transition function 𝛿𝑖  can be described by a 347 

truth table of size |𝑄𝑖| ⋅ |Σ|. This yields the following general approach for evaluating 𝑀 privately: 348 

 The client initializes her state to 𝑠0 ← 𝑞0 ∈ 𝑄0. 349 
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 Let 𝑥 ∈ Σ𝑛 be the client’s input. We maintain the following invariant. At the beginning of round 350 
𝑖 = 1, … , 𝑛 − 1, the client knows the state 𝑠𝑖−1 ∈ 𝑄𝑖−1 of the DFA after reading the prefix 351 
𝑥1 ⋯ 𝑥𝑖−1. The client wants to learn 𝑠𝑖 ≔ 𝛿𝑖(𝑟𝑖−1, 𝑥𝑖). To do so, the client and server run a 1-out-352 
of-(|𝑄𝑖||Σ|) OT where the receiver’s input is (𝑠𝑖−1, 𝑥𝑖) and the server associates the message 353 
𝑦𝑖 = 𝛿𝑖(𝑞, 𝜎) with index (𝑞, 𝜎) ∈ 𝑄𝑖−1 × Σ is. At the end of this protocol, the client learns the 354 
state 𝑠𝑖 = 𝛿𝑖(𝑠𝑖−1, 𝑥𝑖) ∈ 𝑄𝑖  of the DFA after reading 𝑥1 ⋯ 𝑥𝑖. 355 

 After 𝑛 − 1 rounds, the client learns the state 𝑠𝑛−1 ∈ 𝑄𝑛−1. For the final round, the client and 356 
server run a 1-out-of-(|𝑄𝑛−1||Σ|) OT protocol where the client’s input is (𝑠𝑛−1, 𝑥𝑛) and the 357 
server associates the value 1 with the index (𝑞, 𝜎) ∈ 𝑄𝑛−1 × Σ if  𝛿𝑛(𝑞, 𝜎) ∈ 𝑆 (i.e., 𝛿𝑛−1(𝑞, 𝜎) is 358 
an accepting state) and value 0 for the remaining indices (𝑞, 𝜎) where 𝛿𝑛(𝑞, 𝜎) ∉ 𝑆. 359 

Correctness of the above protocol follows by correctness of the underlying OT protocol. In particular, OT 360 

is used to iteratively evaluate the layered transitioned functions 𝛿1, … , 𝛿𝑛. Moreover, privacy for the 361 

client’s input is ensured by security of the OT protocol since the server’s view in the entire protocol 362 

execution only consists of its view in the OT queries (which hide the client’s input). 363 

However, this protocol does not provide privacy for the server. Namely, the client learns the sequence 364 

of states corresponding in the DFA evaluation on her input, which could reveal information about the 365 

state-transition functions. Consider for instance a layered DFA with 𝑘 branches where the node in 366 

branch 𝑗 of layer 𝑖 is always labeled with the index 𝑗. Then, the sequence of states the client obtains by 367 

executing the above protocol completely reveals which branch of the computation her input takes at 368 

each step in the DFA evaluation. This in turns leaks information about the transition function 𝛿𝑖  (e.g., the 369 

client learns whether 𝛿𝑖(𝑠𝑖−1, 𝜎) outputs a state in the same branch or in a different branch). In the case 370 

of our threshold matching DFA, this in turn reveals to the client partial matches between her query and 371 

the server’s database entry. 372 

The above attack shows that additional randomization is necessary to ensure security for the server. The 373 

fix is simple: the server simply blinds the index of each state in each round of the protocol. The full 374 

protocol is described below: 375 

1. The client initializes her current state to 𝑠0 ← 1. The server initializes 𝛼0 ← 0. 376 
2. On round 𝑖 = 1, … , 𝑛 − 1 of the protocol, the client makes an OT query on the index (𝑠𝑖−1, 𝑥𝑖). 377 

On round 𝑖 of the protocol, the server samples a random blinding factor 𝛼𝑖 ← {1, … , |𝑄𝑖|}. It 378 
prepares a table of size |𝑄𝑖| ⋅ |Σ| where the message 𝑦𝑖  associated with index (𝑞, 𝜎) ∈ 𝑄𝑖−1 × Σ 379 
is 𝑦𝑖 = 𝛿𝑖(𝑞 − 𝛼𝑖−1 mod |𝑄𝑖−1|, 𝜎) + 𝛼𝑖 mod |𝑄𝑖|. The server uses this collection of |𝑄𝑖| ⋅ |Σ| as 380 
its set of messages in the OT protocol. Let 𝑠𝑖 ∈ {1, … , |𝑄𝑖|} be the client’s output in the OT 381 
protocol. 382 

3. On the final round of the protocol, the client and server run a 1-out-of-(|𝑄𝑛−1||Σ|) protocol 383 
where the client’s input is (𝑠𝑛−1, 𝑥𝑛) and the server associates the message 1 with index 384 
(𝑞, 𝜎) ∈ 𝑄𝑛−1 × Σ if 𝛿𝑛(𝑞 − 𝛼𝑛−1 mod |𝑄𝑛−1|, 𝜎) ∈ 𝑆 and 0 otherwise. 385 
 386 

Correctness. Let 𝑧0 = 1, 𝑧1, … , 𝑧𝑛 be the sequence of states in the evaluation of 𝑀(𝑥). Namely, 𝑧𝑖 =387 

𝛿𝑖(𝑧𝑖−1, 𝑥𝑖) for each 1 ≤ 𝑖 ≤ 𝑛. First, we show that for each 0 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 − 𝛼𝑖 = 𝑧𝑖  mod |𝑄𝑖|. We 388 

proceed inductively. The claim trivially holds for 𝑖 = 0. By correctness of the OT protocol, 389 

𝑠𝑖+1 = 𝛿𝑖+1(𝑠𝑖 − 𝛼𝑖 mod |𝑄𝑖|, 𝑥𝑖+1) + 𝛼𝑖+1 mod |𝑄𝑖+1| = 𝛿𝑖+1(𝑧𝑖 mod |𝑄𝑖|, 𝑥𝑖+1) + 𝛼𝑖+1 mod |𝑄𝑖+1|. 390 

Thus, 391 

𝑠𝑖+1 − 𝛼𝑖+1 = 𝛿𝑖+1(𝑧𝑖, 𝑥𝑖+1) mod |𝑄𝑖+1| = 𝑧𝑖+1 mod |𝑄𝑖+1|, 392 
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and the claim holds. In the final OT, the output is 1 if 393 

𝛿𝑛(𝑠𝑛−1 − 𝛼𝑛−1 mod |𝑄𝑛−1|, 𝜎) = 𝛿𝑛(𝑧𝑛−1, 𝑥𝑛) = 𝑧𝑛 ∈ 𝑆, 394 

and 0 otherwise. Similarly, the output of 𝑀(𝑥) is 1 if and only if 𝑧𝑛 ∈ 𝑆, and correctness follows. 395 

Security. We show that in the OT-hybrid model, the above protocol is secure in the presence of semi-396 

honest adversaries. Recall that in the OT-hybrid model, the client and server interact with an “ideal” OT 397 

functionality (i.e., the client sends an index 𝑖 ∈ {1, … , 𝑘} to the OT functionality, the server sends a 398 

collection of messages 𝑚1, … , 𝑚𝑘, and the OT functionality replies to the client with 𝑚𝑖). If we then 399 

instantiate the OT with any concrete protocol that is secure against semi-honest adversaries, we obtain 400 

a secure protocol for evaluating layered DFAs. We consider client and server security separately: 401 

 Client Security (Query Privacy). In the OT-hybrid model, the server only provides inputs to the 402 

ideal OT functionality. It does not receive any message from either the client or the ideal OT 403 

functionality. Thus, the view of the server is independent of the client’s query so security for the 404 

client against a semi-honest server is immediate. 405 

 Server Security (Function Privacy). In the OT-hybrid model, the client receives a sequence of 406 

values 𝑠1, … , 𝑠𝑛 from the ideal OT functionality. From the above correctness analysis, we have 407 

that 𝑠𝑛 = 𝑀(𝑥) ∈ {0,1}. By construction (and correctness of the OT protocol), each of the 408 

intermediate indices 𝑠𝑖 for 1 ≤ 𝑖 < 𝑛 satisfies 𝑠𝑖 = 𝛿𝑖(𝑠𝑖−1, 𝑥𝑖) + 𝛼𝑖 mod |𝑄𝑖|. Here, the server 409 

samples each 𝛼𝑖 uniformly from the set {1, … , |𝑄𝑖|}, and in particular, independently of 𝛿𝑖. This 410 

means that the value of each 𝑠𝑖 is uniform and independent over {1, … , |𝑄𝑖|}. (Formally, we can 411 

construct a simulator that on input 𝑀(𝑥) outputs random indices 𝑠𝑖 ← {1, … , |𝑄𝑖|} for 1 ≤ 𝑖 < 𝑛 412 

and 𝑠𝑛 = 𝑀(𝑥). The output of this simulator is identically distributed as the receiver’s view in 413 

the protocol. Thus, the protocol provides perfect security in the OT-hybrid model.) 414 

Efficiency. For a layered DFA with 𝑛 + 1 layers, the protocol as described requires 𝑛 rounds of 415 

communication, where on round 1 ≤ 𝑖 ≤ 𝑛, the client and server perform a single 1-out-of-(|𝑄𝑖−1||Σ|) 416 

OT on ⌈log|𝑄𝑖|⌉-bit messages. Using precomputed OT correlation, the total communication in bits is then 417 

∑ ⌈log(|𝑄𝑖−1||Σ|)⌉

𝑛

𝑖=1

+ ∑|𝑄𝑖−1||Σ|⌈log|𝑄𝑖|⌉

𝑛

𝑖=1

. 418 

 419 

Secure evaluation of the threshold matching function 420 

We now describe how to use our layered DFAs evaluation protocol to obtain a secure protocol for the 421 

threshold matching function TM𝑘(𝒗, 𝒘). As discussed above, we can write TM𝑘(𝒗, 𝒘) =422 

ℎ(1,1,…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)) and also represent the functions 𝑔𝑣𝑖
 and ℎ(1,1,…,1),𝑘 as layered DFAs. 423 

We can leverage our protocol for secure layered DFA evaluation to evaluate 𝑔𝑣𝑖
 and ℎ(1,1,…,1),𝑘. 424 

However, directly applying our privacy-preserving protocol for layered DFAs does not yield a secure 425 

protocol for evaluating TM𝑘 since such a protocol would leak the intermediate values 426 

𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛) to the client. This means the client would learn the exact set of components that 427 

match between its vector 𝒘 and the server’s vector 𝒗 (irrespective of whether the threshold is satisfied 428 

or not). We address this by blinding the output of the equality-checking circuits.  429 
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As currently defined 𝑔𝑣𝑖
(𝑤𝑖) outputs 1 if 𝑣𝑖 = 𝑤𝑖 and 0 otherwise. We can blind the equality bit by 430 

having the server sample a uniform bit 𝑎𝑖 ← {0,1} and define 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) = 𝑎𝑖  if 𝑣𝑖 = 𝑤𝑖 and 1 − 𝑎𝑖  431 

otherwise. We make a few simple observations: 432 

 If we have a layered DFA for computing 𝑔𝑣𝑖
, then the same DFA (from Figure 1) can be used to 433 

compute 𝑔𝑣𝑖,𝑎𝑖
′  by swapping the accept and reject states in the final layer of the DFA. 434 

 Let 𝛽𝑖 ← 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖). By construction, this means that 𝛽𝑖 ⊕ 𝑎𝑖 ⊕ 1 = 𝑔𝑣𝑖

(𝑤𝑖). If the client and 435 

server apply the privacy-preserving protocol for evaluating a layered DFA to 𝑔𝑣𝑖,𝑎𝑖
′ , then at the 436 

end of the protocol, the client learns 𝛽𝑖 (and nothing more) while the server learns nothing. In 437 

this case, 𝛽𝑖 is uniformly random (it is perfectly hidden by 𝑎𝑖), and thus, the client does not learn 438 

anything about the value of 𝑔𝑣𝑖,𝑎𝑖
(𝑤𝑖). (More precisely, we say that the client and the server 439 

have a “secret sharing” of the negated equality bit 𝑔𝑣𝑖,𝑎𝑖
(𝑤𝑖) ⊕ 1.) 440 

 The client and server use the privacy-preserving protocol for computing layered DFAs to 441 

compute the quantity 442 

ℎ(𝑎1,…,𝑎𝑛),𝑘 (𝑔𝑣1,𝑎1
′ (𝑤1), … , 𝑔𝑣𝑛,𝑎𝑛

′ (𝑤𝑛)) = ℎ(1,1,…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)). 443 

The overall protocol is now given as follows: 444 

1. The server begins by sampling 𝑎1, … , 𝑎𝑛 ← {0,1}. For each 𝑖 = 1, … , 𝑛, the client and server 445 

execute the protocol for layered DFA evaluation for the function 𝑔𝑣𝑖,𝑎𝑖
′ . On the 𝑖th iteration of 446 

the protocol, the client provides 𝑤𝑖 as its input. Let 𝑏1, … , 𝑏𝑛 ∈ {0,1} be the client’s output in 447 

the 𝑛 protocol executions. 448 

2. The client and server execute the protocol for layered DFA evaluation for the function 449 

ℎ(𝑎1,…,𝑎𝑛),𝑘 where the client uses 𝑏1, … , 𝑏𝑛 as its input. The output 𝑧 is the result of the threshold 450 

matching function TM𝑘(𝒗, 𝒘).  451 

Correctness. Correctness of the above protocol follows via correctness of the underlying layered DFA 452 

evaluation protocol. Take any two inputs 𝒗 and 𝒘. Then, we have that 𝑏𝑖 = 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. 453 

The client’s output at the end of the computation is 454 

ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) = ℎ(𝑎1,…,𝑎𝑛),𝑘 (𝑔𝑣1,𝑎1
′ (𝑤1), … , 𝑔𝑣𝑛,𝑎𝑛

′ (𝑤𝑛)) = ℎ(1,1,…,1),𝑘(𝑔𝑣1
(𝑤1), … , 𝑔(𝑣𝑛)(𝑤𝑛), 455 

which is precisely the value of TM𝑘(𝒗, 𝒘). 456 

Security. Security of the protocol also follows by security of the underlying protocol for evaluating 457 

layered DFAs. As before, we consider client and server security separately: 458 

 Client Security (Query Privacy). The threshold matching protocol consists of 𝑛 + 1 invocations 459 

of the protocol for layered DFA evaluation. Security of our protocol for layered DFA evaluation 460 

ensures that the server does not learn anything about the client’s input in any of these protocol 461 

executions, and security follows. (More formally, security of the layered DFA evaluation protocol 462 

implies that the server’s view can be simulated without knowledge of the client’s input or 463 

output, and correspondingly, the server’s view in the threshold matching protocol can be 464 

simulated by simply running the simulator for the underlying layered DFA evaluation protocol). 465 

 Server Security (Database Privacy). Security for the server follows similarly from security of the 466 

underlying layered DFA evaluation protocol. In the above protocol, the client learns the values 467 
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of 𝑏1, … , 𝑏𝑛 and 𝑧. From the correctness analysis, we have that 𝑧 = TM𝑘(𝒗, 𝒘). Next, by 468 

security of the layered DFA evaluation protocol (as applied to the computation of ℎ(𝑎1,…,𝑎𝑛),𝑘), 469 

the client learns no additional information other than the value 𝑧. In particular, the protocol 470 

does not leak any information about the values of 𝑎1, … , 𝑎𝑛 to the client. By correctness of the 471 

layered DFA evaluation protocol, each bit 𝑏𝑖 the client obtains satisfies 𝑏𝑖 = 𝑔𝑣𝑖
(𝑤𝑖) ⊕ 𝑎𝑖 ⊕ 1. 472 

Security of the layered DFA evaluation protocol (as applied to the computation of 𝑔𝑣𝑖,𝑎𝑖
′ ) implies 473 

that the client learns nothing more about 𝑣𝑖, 𝑎𝑖  other than the value 𝑏𝑖 = 𝑔𝑣𝑖
(𝑤𝑖) ⊕ 𝑎𝑖 ⊕ 1. In 474 

particular, this means that the client does not learn anything about the value of 𝑎𝑖  from the 475 

layered DFA protocol executions. Since the server samples 𝑎𝑖 ← {0,1} to be a uniformly random 476 

bit, the distribution of 𝑏𝑖 is also uniform (even conditioned on the client’s view of the protocol 477 

execution, which is independent of 𝑎𝑖). As such, the client’s view in the protocol execution can 478 

be described by a sequence of uniform random bits 𝑏1, … , 𝑏𝑛 together with the output 𝑧 =479 

TM𝑘(𝒗, 𝒘). Thus, the client does not learn anything more about 𝑣 other than the value 480 

TM𝑘(𝒗, 𝒘). (More formally, we can simulate the client’s view of the protocol based on the value 481 

of 𝑧 = TM𝑘(𝒗, 𝒘) and then sampling the bits 𝑏1, … , 𝑏𝑛 ← {0,1}). 482 

Efficiency. We now analyze the cost of privately computing TM𝑘(𝒗, 𝒘) for two 𝑛-dimensional 483 

vectors 𝒗, 𝒘 with 𝑛-bit components where each component 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ is an ℓ-bit string. 484 

 Equality checking. Computing the (blinded) equality-check functions 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) requires 485 

evaluating a DFA with ℓ + 1 layers, where each layer contains 2 nodes. This requires ℓ 486 

rounds of communication and 6ℓ bits of communication. 487 

 Thresholding. Computing the threshold function ℎ(𝑎1,…,𝑎𝑛),𝑘 requires evaluating a DFA with 488 

𝑛 + 1 layers, where each layer contains 𝑘 + 2 nodes. This requires 𝑛 rounds of 489 

communication and 𝑛(1 + (2𝑘 + 5)⌈log(𝑘 + 2)⌉) bits of communication. 490 

Finally, we note that the equality checks can be conducted in parallel. Thus, the round complexity of the 491 

complete protocol is 𝑛 + ℓ and the total communication (in bits) is 492 

𝑛((2𝑘 + 5)⌈log(𝑘 + 2)⌉ + 6ℓ + 1) = 𝑂(𝑛𝑘 log 𝑘 + 𝑛ℓ). 493 

We can achieve a tradeoff between communication complexity and round complexity by having each 494 

DFA read multiple bits of the input at a time. This is equivalent to considering a DFA with a larger 495 

alphabet (i.e., Σ = {0,1}𝑚 if the DFA is reading 𝑚 bits of the input for each state transition). Reading 496 

multiple bits of the input per state transition decreases the number of layers in the DFA (thus decreasing 497 

the round complexity of the private layered DFA evaluation protocol), but increases the size of the 498 

transition table between each layer (thus increasing the communication complexity of the protocol). In 499 

particular, if we consider DFAs that read 𝑚-bits of input per transition, then the overall round 500 

complexity of the protocol becomes ⌈
ℓ

𝑚
⌉ + ⌈

𝑛

𝑚
⌉ while the communication complexity (in bits) is 501 

⌈
ℓ

𝑚
⌉ 𝑛(𝑚 + 1 + 2𝑚+1) + ⌈

𝑛

𝑚
⌉ (𝑚 + (2𝑚(𝑘 + 2) + 1)⌈log(𝑘 + 2)⌉). 502 

When ℓ and 𝑚 are even, then setting 𝑚 = 2 (i.e., reading 2 bits at a time) yields a protocol with smaller 503 

round complexity compared to the 𝑚 = 1 setting (by roughly a factor of 2) and slightly smaller 504 

communication complexity (compared to both the case where 𝑚 = 1 and all 𝑚 > 2). This is the setting 505 

we use in our implementation.  506 
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Implementation and evaluation 507 

We implemented the protocol in C++. For our benchmarks, we conducted experiments using two 508 

Amazon EC2 instances (M4.2xlarge). Each instance has an 8-core 2.4 GHz Intel Xeon E5-2676 v3 509 

(Haswell) processor and 32 GB of memory. The client instance is located on the West Coast (Northern 510 

California region) while the server is located on the East Coast (Northern Virginia region) to simulate a 511 

wide-area network (WAN). The network latency between the two instances is roughly 60ms and the 512 

bandwidth is roughly 25 MB/s. We use a single-threaded execution environment for all of our 513 

experiments.  514 
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Tables and Figures 597 

Table 1 598 

CODIS System End-to-End Time (seconds) Bandwidth (MB) 

US System, current (20 STRs) 38.4 172.4 
US System, pre-2017 (13 STRs) 27.7 114.9 

UK-like System (11 STRs) 23.4 97.3 
EU-like System (16 STRs) 34.1 154.5 

Chinese-like System (20 STRs) 40.0 189.0 
 599 

Table 1. Runtime and network communication needed to privately compare a suspect CODIS profile in 600 

the field to a central office database far away. End-to-end protocol execution time and communication 601 

required to privately query a central database of 1,000,000 entries for CODIS systems deployed at 602 

different countries (see Online Methods). Here, the client and server are Amazon EC2 instances, with 603 

the client located on the West Coast of the U.S. and the server located on the East Coast of the U.S. 604 
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Figure 1 

  

Figure 1. A novel privacy-preserving CODIS DNA profile matching protocol. Rapid STR profiling technologies enables genetic testing and 

matching from the field. They provide a valuable tool for crime solving but raise significant civil rights concerns regarding data retention and 

racial profiling. (A) Today, STR profiles collected from potentially innocent individuals are sent to a central CODIS database to check for matches. 

Here, the central database learns the full query profile and has the option to retain it, irrespective of whether the search yields any match or not. 

(B) To try and provide anonymity to exonerated (unmatched) profiles, one may load a private copy of the central database onto every field 

device. This way, an unmatched suspect profile may be destroyed in the field to retain suspect privacy. However, this approach risks exposure of 

all or parts of the sensitive central database to malicious parties who get ahold of a field device. (C) Our privacy-preserving search protocol 

enables a new approach where agents can still query a central CODIS database as in (A), but in a way that completely hides the query from the 

central database. The agent still learns the outcome of the query as before. However, an innocent profile, not matching anything in the database 

may safely be destroyed in the field.  The central database can no longer store it, as it has learned nothing about it through the query.
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Figure 2 

 

Figure 2. Single query search performance against an entire CODIS database as a function of database 

size. The number of STR loci and number of precision bits assumed for each system are described in 

Supplementary Table 1. 
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Supplementary Tables and Figures 

Supplementary Table 1 
CODIS System # of Loci # of Bits Bits per Locus Breakdown 

US System, current 20 212 10 bits (17 loci); 14 bits (3 loci) 
US System, pre-2017 13 142 10 bits (10 loci); 14 bits (3 loci) 

UK-like System 11 126 10 bits (7 loci); 14 bits (4 loci) 

EU-like System 16 178 10 bits (12 loci); 14 bits (3 loci); 16 bits (1 locus) 

Chinese-like System 20 224 10 bits (14 loci); 14 bits (6 loci) 

NIST 40 Loci System 40 492 10 bits (17 loci); 14 bits (23 loci) 

 

Supplementary Table 1. Approximate CODIS system specifications for select countries. Number of STR 

loci and number of bits used to encode alleles at each locus for a handful of the 50+ countries using the 

CODIS system (See Online Methods). 
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Supplementary Table 2 
 Precomputation Size (MB) # of OT Correlations 
CODIS System Client Server  (in millions) 

US System, current (20 STRs) 122 923 116 
US System, pre-2017 (13 STRs) 87 616 78 

UK-like System (11 STRs) 71 574 73 
EU-like System (16 STRs) 104 763 96 

Chinese-like System (20 STRs) 122 969 122 

NIST 40 Loci System (40 STRs) 260 2105 266 

 

Supplementary Table 2. Offline precomputation cost for each setting. Number of oblivious transfer 

(OT) correlations, and the memory footprint of the OT correlations for the client and server needed to 

implement a single CODIS search query against a database with 1,000,000 records. Using state-of-the-

art OT extension protocols22, it is possible to setup 224 > 16 million OT correlations in 7.5 seconds over 

a wide-area network. For system specifications, see Online Methods. 
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Supplementary Figure 1 

 

Supplementary Figure 1. Layered DFA for equality test. This DFA computes the equality-check function 
𝑔𝒗(𝒘) that outputs 1 if 𝒗 = 𝒘 and 0 otherwise. In particular, for a vector 𝒗 = (𝑣1, … , 𝑣𝑛) ∈ {0,1}𝑛, this 
DFA only accepts the input 𝒘 = (𝑤1, … , 𝑤𝑛) ∈ {0,1}𝑛 where 𝑣𝑖 = 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. We use this DFA 
to decide whether there is a match at a single STR locus. If we denote the single start state as “layer 0”, 
the two states one can arrive at from layer 0 after reading the first bit as “layer 1”, etc. we see that this 
DFA has 𝑛 + 1 layers, such that after reading 𝑖 bits, it can only be in one of the two states in layer 𝑖. 
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Supplementary Figure 2 

 

Supplementary Figure 2. Layered DFA for thresholding. This DFA computes the threshold function 
ℎ(𝑎1,…,𝑎𝑛),𝑘 for the 𝑘 = 1 case. Namely, ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) outputs 1 if 𝑎𝑖 = 𝑏𝑖 for all but at most 𝑘 

indices 1 ≤ 𝑖 ≤ 𝑛. In other words, for any sequence of bits (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛, this DFA accepts if the 
input 𝑏1, … , 𝑏𝑛 satisfies 𝑏𝑖 = 𝑎𝑖  for all but at most one index 𝑖. For instance, in this work, we use this 
DFA to decide whether a DNA profile matches against a database record on at least 19 out of 20 loci 

(i.e., the setting where 𝑘 = 1 and 𝑛 = 20) as well as the other configurations. Here, the 𝑖𝑡ℎ input bit 

𝑏𝑖 ∈ {0,1} is the (blinded) equality bit denoting whether there is a match in the 𝑖𝑡ℎ STR locus (between 
the agent’s query and the central database’s record). In our protocol, this (blinded) equality bit is 
computed using the equality-test DFA from Supplementary Figure 1. The bits 𝑎1, … , 𝑎𝑛 in the function 
description ℎ(𝑎1,…,𝑎𝑛),𝑘 are the blinding values chosen by the server. Recall that the blinding is 

introduced to hide from the client all information on whether there was a match at STR locus 𝑖 between 
the database server’s profile and the client’s query. The client only learns whether her query matches 
the record or not, and nothing more. Much like Supplementary Figure 1, this DFA has 𝑛 + 1 layers, such 
that after reading 𝑖 bits, the computation can only be in one of the (at most) 3 states of layer 𝑖. 
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