
1

Title 1

Innocent until proven guilty: Privacy-preserving search over a central CODIS criminal database from the 2

field 3

Authors 4

Jacob A. Blindenbach1,*, Karthik A. Jagadeesh2,*, Gill Bejerano3,4,5,6,7, David J. Wu1,7 5

Affiliations 6
* These authors contributed equally to this work and will list themselves first on their CVs. 7
 8
1 Department of Computer Science, University of Virginia, Charlottesville, VA 9
2 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 10
3 Department of Computer Science, Stanford University, Stanford, CA 11
4 Department of Developmental Biology, Stanford University, Stanford, CA 12
5 Department of Pediatrics (Medical Genetics), Stanford University, Stanford, CA 13
6 Department of Biomedical Data Science, Stanford University, Stanford, CA 14
7 Corresponding authors: bejerano@stanford.edu (G.B) and dwu4@virginia.edu (D.J.W) 15

Abstract 16

The presumption of innocence (i.e., the principle that one is considered innocent until proven guilty) is a 17

cornerstone of the criminal justice system in many countries, including the United States. DNA analysis is 18

an important tool for criminal investigations1. In the U.S. alone, it has already aided in over half a million 19

investigations using the Combined DNA Index System (CODIS) and associated DNA databases2. CODIS 20

includes DNA profiles of crime scene forensic samples, convicted offenders, missing persons and more. 21

The CODIS framework is currently used by over 50 other countries3 including much of Europe, Canada, 22

China and more. During investigations, DNA samples can be collected from multiple individuals who may 23

have had access to, or were found near a crime scene, in the hope of finding a single criminal match4. 24

Controversially, CODIS samples are sometimes retained from adults and juveniles despite not yielding 25

any database match4–6. Here we introduce a cryptographic algorithm that finds any and all matches of a 26

person’s DNA profile against a CODIS database without revealing anything about the person’s profile to 27

the database provider. With our protocol, matches are immediately identified as before; however, 28

individuals who do not match anything in the database retain their full privacy. Our novel algorithm runs 29

in 40 seconds on a CODIS database of 1,000,000 entries, enabling its use to privately screen potentially-30

innocent suspects even in the field. 31

 32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

mailto:bejerano@stanford.edu
mailto:dwu4@virginia.edu
https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Introduction 33

DNA-based forensic analysis is a powerful tool used by law enforcement agencies around the world for 34

solving crimes1–3. With today’s technology, local police stations7 and even agents in the field8 can 35

generate a suspect’s DNA profile to search against central criminal DNA databases in an impressive 90 36

minutes9,10. At the same time, the increased prominence of DNA-based forensics opens up new avenues 37

for misuse including social control and racial profiling11,12. 38

In particular, the storage of DNA samples from potentially innocent individuals permanently links their 39

genetic identities to criminal databases (without due process). Within the United States, these 40

controversial practices have included collecting DNA from individuals who have been arrested but not 41

convicted or even charged with a crime4, people who are not even arrested (so-called “stop-and-spit” 42

and “swab-and-go” practices13), detained immigrants and asylum seekers6, and even children brought in 43

for questioning5. 44

Here we develop a novel solution (Figure 1) whereby an agent in the field, using modest computational 45

resources, could privately query a suspect’s DNA profile against a large central database of DNA profiles. 46

In less than 40 seconds, the agent learns whether the suspect’s profile matches, based on CODIS rules, 47

against any profile in the central database of 1,000,000 profiles, while learning nothing else about the 48

contents of the central database. More importantly, the central database itself learns absolutely nothing 49

about the DNA profile being searched. Any match discovered can be investigated further as before. 50

However, should no match be made, the suspect’s DNA profile, now exonerated, can be disposed of on 51

the spot, with zero risk that the central database provider chose to retain it. 52

Results 53

CODIS system of DNA profiles and profile matches 54

The United States CODIS system originally established a set of 13 loci across the genome coinciding with 55

short tandem repeats (STRs) as a method for comparing genetic data for identification purposes3. These 56

were expanded to a set of 20 loci in 2017. Many countries have adopted a similar system with a 57

combination of existing core STR loci and region-specific STR loci. For example, a European Union (EU) 58

system of 16 loci, a UK system of 11 loci and a Chinese system of 20 loci have all been described14,15 (see 59

Online Methods and Supplementary Table 1). At each locus, individuals have 2 alleles, one inherited 60

(with possible personal modification) from each parent. The allele at each locus is represented by a 61

varying range and represents the number of repeats of a 2 to 6-character (base pair) generic sequence 62

observed in the individual’s genome. Based on frequency statistics collected by the FBI, the probability 63

that two unrelated individuals share the same STR profile across all 13 core loci positions of the older US 64

system is 1 in 575 trillion16. This probability further decreases with the expanded set of 20 loci 65

introduced in 2017. 66

The CODIS system describes several ways to query a database of STR profiles. The standard and default 67

method is a “high-stringency search with one mismatch,” which requires that both of the alleles 68

appearing in at least 19 out of the 20 STR loci between the query profile and the database profile match 69

exactly17,18. Central CODIS databases holding thousands to millions of DNA profiles that can be used for 70

such queries are maintained in the US at the national, state, and sometimes even municipal level2 (as 71

well as very similar databases and matching rules in dozens of other countries3). 72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Encoding an STR profile for secure computation 73

We encode an STR profile as a binary string. For each STR locus, we propose a public dictionary that 74

maps every pair of STR alleles to a unique binary string. The number of bits used to encode each allele is 75

determined based on the number of unique alleles expected at the locus14. We assume that all entries in 76

the central database (unknown to the agent making the query) and the suspect’s STR profile held by the 77

agent (unknown to the central database) are encoded in this commonly-agreed upon manner. 78

Secure protocol overview 79

It suffices to construct a secure protocol for comparing a single entry in the central database with the 80

suspect’s profile. By running this protocol over and over against all entries in the central database, the 81

agent will learn the indices of the complete set of matching records, and nothing else, while the central 82

database will learn nothing (Figure 1C). 83

We start by fitting a computational model to the task, before later securing it: given two binary strings 84

encoding two STR profiles as above, decide whether they correspond to a match according to the CODIS 85

specification or not. Our key observation is that one can efficiently compute this using a compact 86

deterministic finite automaton19 (DFA). In a DFA, the computation begins at an initial state, and at each 87

step of the computation, the DFA reads a bit of the input and advances the state. After reading all of the 88

input bits, the DFA ends in either an “accepting” state or a “rejecting” state. For example, a DFA can be 89

constructed to test for equality between two equal length bit-strings by defining two sets of states: a set 90

of “matching” states and another for “mismatching” states. The computation begins in the “matching” 91

set, and as each bit of the input is read, it is compared against the target bit. As long as the current state 92

is in the matching set, if the two bits match, the program transitions to the next state in the matching 93

set, and otherwise, it transitions to a state in the mismatching set. Once a single bit mismatches, one 94

enters the mismatching set, from which all inputs lead only to the next state in the mismatching set. The 95

input bit string is equal to the target string if the computation concludes in a state in the matching set, 96

and is otherwise unequal (see Supplementary Figure 1). We use this DFA to check for matches at a single 97

STR locus. A similar DFA can be used to test for equality with up to one mismatch (see Online Methods 98

and Supplementary Figure 2). We use this one to compute a CODIS match of at least 19 of 20 STR loci. 99

In our setting, the central database owner constructs a DFA for each profile in its database. The input to 100

the DFA is the agent-held suspect’s STR profile. The DFA computation ends in an accepting state if the 101

suspect’s profile is a CODIS match to the central database profile; otherwise, the DFA computation ends 102

in a rejecting state. 103

Our protocol now proceeds as follows. At the beginning, the agent knows the initial state of the DFA as 104

well as the suspect’s STR profile (hidden from the central database). The central database holds the DFA 105

corresponding to a database entry (hidden from the agent). Using a cryptographic protocol called 106

“oblivious transfer20,21,” the agent and the central database now jointly perform the evaluation of the 107

DFA on the agent’s input STR profile. 108

Specifically, at each step of the DFA evaluation, the central database enumerates all possible states of 109

the DFA that the agent might be in and all possible states the agent will end up in based on the next bit 110

of the agent’s input. These statements are of the form “if you are in state 𝑋 and the next bit of your 111

input is 0, then you will proceed to state 𝑌.” Using the oblivious transfer protocol, the agent can secretly 112

choose to learn exactly one of these statements without revealing which one she chose to the database 113

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

server. In this case, the agent chooses the statement corresponding to her current state and the next bit 114

of her input; this in turns reveals to the agent her next state in the DFA evaluation. The oblivious 115

transfer protocol hides all of the other statements from the agent, so the agent cannot learn what 116

would have happened had she been in a different state or had a different input. 117

At the very end of the protocol, the agent arrives at either an accepting state or a rejecting state, which 118

indicates whether the STR profile she provided matched against the central database’s profile or not. As 119

described so far, the agent learns the full execution path in the DFA as well as whether her input profile 120

matches the database profile or not. To ensure that the execution path does not leak additional 121

information about the profiles on the database server, the central database additionally encrypts all of 122

the intermediate steps of the computation (in a way that still enables the above evaluation procedure). 123

Then, at each of the intermediate steps, the agent no longer knows where she is in the actual DFA 124

execution. The central database only provides a single intelligible state: the very last state which reveals 125

whether the two profiles match or not match. 126

By repeating the above protocol with each profile in the central database, while changing the encryption 127

of intermediate states every run, the agent has learned just one thing: the database indices of any and 128

all profile matches. She learns nothing else about any of the centrally-stored profiles. On the flip side, 129

the central database learns nothing at all about the suspect’s STR profile; at every step, they only 130

provide an exhaustive list of “if you are here, and have this bit next, then go there.” We have thus 131

achieved the desired goal of Figure 1C. We encourage our readers to refer to the Online Methods for 132

the full technical details and security analysis. 133

Performance measurements 134

With our protocol implementation, an agent in the field in Northern California can privately query a 135

CODIS database containing 1 million STR records located 3,000 miles away in Northern Virginia in just 38 136

seconds, using 180 MB of online communication. In our experiments, we represent each STR profile as a 137

vector of 20 biallelic components (212 bits in total) based on the current US CODIS specification2. Our 138

protocol additionally requires preparing 116 million oblivious transfer correlations20,21 and 122 MB of 139

client-side storage (see Online Methods and Supplementary Table 2). These can be generated in a 140

separate preprocessing phase on commodity hardware in about a minute using existing state-of-the-art 141

oblivious transfer extension protocols22. Since these correlations are independent of both the query and 142

the database contents, they can be prepared concurrently with the 90 minutes needed for STR profile 143

derivation9,10, and thus, contributes no extra latency. 144

We also measured the performance of our protocol on CODIS specifications reported for the UK14, the 145

EU14,18, and China15 (see Online Methods for specifications details). In all cases, the cost of the protocol is 146

smaller or comparable to that of the US CODIS system (up to 40 seconds and under 200 MB of 147

communication; see Table 1). To illustrate the scalability of our approach, we also measured the 148

performance for a CODIS system with 40 loci and an encoding length of 492 bits, a setting based on a 149

system previously tested by NIST23. Performing a CODIS search in this setting over a database of a million 150

records completes in just 72 seconds and requires only 340 MB of communication. Thus, our protocol 151

also scales favorably to future scenarios with an expanded set of STR loci. 152

 153

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

We also tested the performance of our protocol on central databases of different sizes (Figure 2). Both 154

the online bandwidth and execution time of our protocol scale linearly with the size of the STR profile (a 155

function of both the number of loci and the number of bits needed to represent the allele values at each 156

locus) and with the size of the central database. For example, our protocol can search over a 20-STR U.S. 157

database with 10 million records in just under 6 minutes. 158

Discussion 159

DNA profiles are an extremely powerful tool in forensics and crime solving24. Our law enforcement 160

agencies have a duty to both serve and protect their communities. How can they use DNA databases to 161

find criminals while simultaneously protecting the privacy of innocent individuals who make up the 162

majority of each society12? It is natural to think that searching a suspect’s DNA profile against a master 163

database either requires the database to see the suspect’s profile, or for the agent holding the suspect 164

profile to have a local copy of the master database. Both scenarios compromise privacy (Figure 1). Here 165

we show a third way, whereby a field agent searches the remote master database without learning 166

anything about it except any possible match. Moreover, the central database aids the search while 167

learning nothing about the suspect’s profile. Should the search come up empty, if the field agent 168

disposes of the sample, they have both served their community and protected its privacy. 169

DNA profiling machines can now routinely produce a searchable profile in a matter of 90 minutes, and 170

can even be carried to the field8. Integrating our privacy-preserving protocol with such a system adds 171

minimal overhead and can easily fit into existing workflows. In fact, the computational requirements to 172

run the protocol are so modest, it is likely they can be performed on a modern smartphone. The 173

performance of our protocol also compares favorably against generic approaches for privacy-preserving 174

computation. For instance, a direct implementation of a query protocol using Yao’s garbled circuits25 175

would require communicating, storing, and evaluating a circuit that is around 8 GB (≈ 260 million AND 176

gates) in size for a database with 1 million profiles (and increase to 80 GB of communication and storage 177

for a 10 million entry database). In comparison, our protocol requires less than 125 MB of offline storage 178

for the OT correlations (which can be generated in about a minute22) for a database of 1 million profiles. 179

Our implementation follows the CODIS guidelines for high-stringency matching (the default mode of 180

searching)17,18.The deterministic finite automata at the root of our approach can be easily extended to 181

also support moderate and low-stringency matches as well as partial match queries, with modest 182

increases in computation time and communication. In fact, similar operations like paternity testing and 183

ethnicity identification can also be formulated as a similar string-matching problem and implemented 184

using a similar approach. In all cases, the correct answer is obtained while the input DNA profiles to the 185

computation remain private. 186

Our protocol is relevant not only in the US, but also in any of dozens of countries that use a CODIS-like 187

system3. It scales well with the size of the central database (Figure 2), on current hardware that will only 188

get faster, and most importantly, it gives the agent in the field or local office, the ability to destroy an 189

exonerated profile that has yielded no incriminating match. Whether they are instructed to do so or not 190

is a civil rights matter that each country must resolve for itself11,12,26,27. The importance of our work is in 191

showing that accurate practical implementations to enable these fundamental rights are already doable. 192

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Online Methods 193

STR profiles and representation 194

The US National Institute of Standards and Technology (NIST) has enumerated all possible allele values 195

for each STR core locus in the current US system14. While over 50 other countries reportedly use a local 196

variant of the same CODIS system3, details of each country’s system, or even a list of these 50+ countries 197

are not easily found. Possibly current versions of the EU and UK systems are described by NIST14, while a 198

partial description of the Chinese system is provided in a paper co-authored by officials from the 199

Chinese Ministry of Justice15. Similarly, the high-stringency matching rule with at most one mismatching 200

locus is published for the US17 and EU18. As the exact CODIS system parameters are immaterial for the 201

essence of our proposed solution, when necessary, we infer the number of possible values at a locus 202

based on the existing NIST standards, and also assume a default search configuration of high-stringency 203

matching of all but one locus for all systems. 204

In 2017, the US 13 loci system was replaced by the 20 loci system3. It is unclear if or when this set will be 205

expanded on. For purposes of illustrating the scalability of our solution we use a 40 loci system 206

described in a NIST paper partly funded by the FBI23. 207

Security model 208

We work in a two-party setting where the server holds a profile 𝒗 = (𝑣1, … , 𝑣𝑛) and the client holds a 209

query vector 𝒘 = (𝑤1, … , 𝑤𝑛), where each of the components 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ can be represented by ℓ-210

bit strings. We define the “threshold matching” function TM𝑘(𝒗, 𝒘) to be the following Boolean-valued 211

function: 212

TM𝑘(𝒗, 𝒘) = {
1, |{𝑣𝑖 ≠ 𝑤𝑖 | 1 ≤ 𝑖 ≤ 𝑛}| ≤ 𝑘

0, |{𝑣𝑖 ≠ 𝑤𝑖 | 1 ≤ 𝑖 ≤ 𝑛}| > 𝑘
 213

In words, TM𝑘(𝒗, 𝒘) outputs 1 if the vectors 𝒗 and 𝒘 disagree on at most 𝑘 components. In this work, 214

we design a secure protocol such that at the end of the protocol, the client learns the value of 215

TM𝑘(𝒗, 𝒘) and nothing more about the server’s profile 𝒗, while the server learns nothing about the 216

client’s query 𝒘. Importantly, the client only learns whether the number of differing components 217

between 𝒗 and 𝒘 is greater than 𝑘 or not, but nothing about the exact number of differing components 218

or the indices of the differing components. 219

We can naturally extend this notion to the setting where the server holds a database with many vectors 220

{𝒗1, … , 𝒗𝑡} and the client’s goal is to learn all of the indices 𝑖 ∈ {1, … , 𝑡} where TM𝑘(𝒗𝑖, 𝒘) = 1, but 221

nothing more about the vectors 𝒗1, … , 𝒗𝑡. Since a protocol for private evaluation of TM𝑘(𝒗, 𝒘) for a 222

single entry 𝒗 suffices for searching over a database of values (by repeating the protocol for each 223

database entry 𝒗1, … , 𝒗𝑡), we focus on the single-instance setting for the remainder of this section. 224

Throughout this work, we assume that the client and the server are semi-honest or “honest-but-225

curious;” namely, both the client and the server will follow the protocol as described, but may try to 226

infer additional information about the other party’s private inputs based on the messages they receive 227

in the protocol. We note that our protocol actually ensures privacy of the client’s query even against a 228

malicious database server that may arbitrarily deviate from the protocol execution, provided that the 229

underlying “oblivious transfer” protocol we use (see below) is secure against a malicious sender. 230

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Oblivious transfer and the OT-hybrid model 231

An oblivious transfer (OT) protocol20,21,28 is a two-party protocol between a sender and a receiver. In a 1-232

out-of-𝑘 OT protocol on 𝑡-bit messages, the sender holds 𝑘 messages 𝑚1, … , 𝑚𝑘 ∈ {0,1}𝑡 while the 233

receiver holds an index 𝑖 ∈ {1, … , 𝑘}. At the end of the protocol, the receiver learns the 𝑖th message 𝑚𝑖 234

and nothing else about any of the remaining messages, while the sender learns nothing. To facilitate the 235

analysis of our protocol, we will work in the “OT-hybrid” model where we assume that the parties have 236

access to a trusted party that implements the above 1-out-of-𝑘 OT functionality20. We can then replace 237

the trusted party with a cryptographic implementation of a 1-out-of-𝑘 OT protocol28. If our protocol 238

provides semi-honest security in the OT-hybrid model, and we instantiate the OT protocol with a 239

cryptographic protocol that is secure against semi-honest adversaries, then the overall protocol is also 240

secure against semi-honest adversaries (without relying on any trusted party)29. 241

Oblivious transfer correlations 242

We can significantly reduce the online cost of oblivious transfer by first precomputing input-independent 243

“oblivious transfer correlations” in an offline (or preprocessing phase). Because the correlations are 244

input-independent, they can be precomputed without knowledge of the client’s query or the server’s 245

database. These OT correlations can be generated efficiently using a technique called OT extension in a 246

separate input-independent preprocessing step30 (this can even be done with low communication using 247

a recent approach called silent OT extension31). Alternatively, they can be generated ahead of time by a 248

trusted dealer or a secure hardware platform (observe that in both of these settings, the party 249

generating the correlations does not need to know anything about the query or the database entries). 250

Very briefly, a 1-out-of-𝑘 OT correlation for 𝑡-bit messages consists of the following: (1) a tuple of 𝑘 251

random values 𝑟1, … , 𝑟𝑘 ∈ {0,1}𝑡 for the server; and (2) a random index 𝛽 ∈ {1, … , 𝑘} together with the 252

value 𝑟𝛽 for the receiver. Once the client and server have this OT correlation, it is straightforward to 253

implement a 2-message 1-out-of-𝑘 OT (on an arbitrary collection of sender messages 𝑚1, … , 𝑚𝑘 ∈254

{0,1}𝑡 and receiver index 𝑖 ∈ {1, … , 𝑘}). We recall the construction below: 255

 Receiver message: The receiver sends the index 𝑗 = 𝑖 + 𝛽 (mod 𝑘) to the sender. Observe that 256

since 𝛽 is uniformly random over {1, … , 𝑘} and unknown to the sender, this message perfectly 257

hides the receiver’s index 𝑖. For notational convenience, we will consider the output of 258

arithmetic modulo 𝑘 to be a value between 1 and 𝑘 (as opposed to 0 and 𝑘 − 1). 259

 Sender response: On input an index 𝑗 ∈ {1, … , 𝑘} from the receiver, the sender computes the 260

blinded message 𝑐𝑖 ← 𝑚𝑖 ⊕ 𝑟𝑗−𝑖 (mod 𝑘), where ⊕ denotes the bitwise exclusive-or operator 261

(i.e., bitwise xor). The sender sends the blinded messages 𝑐1, … , 𝑐𝑘 to the receiver. Since 262

𝑟1, … , 𝑟𝑘 are uniform over {0,1}𝑡 and the receiver knows exactly one of these values (i.e., 𝑟𝛽), 263

𝑘 − 1 out of the 𝑘 values are perfectly hidden from the receiver. 264

 Receiver reconstruction: The receiver computes its message as 𝑐𝑖 ⊕ 𝑟𝛽. 265

Correctness of the protocol follows from the following simple relation: 266

𝑐𝑖 ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝑗−𝑖 (mod 𝑘) ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝑖+𝛽−𝑖 (mod 𝑘) ⊕ 𝑟𝛽 = 𝑚𝑖 ⊕ 𝑟𝛽 ⊕ 𝑟𝛽 = 𝑚𝑖. 267

To summarize, a 1-out-of-𝑘 OT correlation on 𝑡-bit values yields a 1-out-of-𝑘 OT on 𝑡-bit messages in 268

two rounds of interaction where the total communication is ⌈log 𝑘⌉ + 𝑘𝑡 bits. The only necessary 269

computation is integer arithmetic and bitwise operations, so this is a very lightweight protocol. 270

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

Representing threshold matching as a deterministic finite automaton 271

Given two vectors 𝒗 = (𝑣1, … , 𝑣𝑛) and 𝒘 = (𝑤1, … , 𝑤𝑛) where 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ, our objective is to 272

securely compute the threshold matching function TM𝑘(𝒗, 𝒘) defined above. In our setting, we assume 273

the database server holds 𝒗 while the client holds 𝒘. The starting point of our design is to express the 274

computation of TM𝑘 as a composition of two deterministic finite automatons (DFAs): 275

 The first DFA checks equality of ℓ-bit strings. Namely, for a string 𝑣 ∈ {0,1}ℓ, the machine 276

computes the function 𝑔𝑣(𝑤) that outputs 1 if 𝑣 = 𝑤 and 0 otherwise. 277

 The second DFA computes a threshold function. Namely, for a target sequence of bits 278

𝑎1, … , 𝑎𝑛 ∈ {0,1} and a threshold 𝑘, the machine computes the function ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) 279

that outputs 1 if 𝑎𝑖 ≠ 𝑏𝑖 on at most 𝑘 indices 1 ≤ 𝑖 ≤ 𝑛 and 0 otherwise. 280

By definition, the threshold matching function TM𝑘 can now be expressed as 281

TM𝑘(𝒗, 𝒘) = ℎ(1,1…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)). 282

We note that while we can construct a single DFA that combines both functionalities, decomposing the 283

computation into two separate steps enables a more efficient privacy-preserving protocol. 284

We now show how to construct simple DFAs for computing the functions 𝑔𝑣 and ℎ(𝑎1,…,𝑎𝑛),𝑘. For both 285

functions, we design a “layered” DFA, which can be more efficiently computed in a privacy-preserving 286

manner. First, a DFA consist of a tuple 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆), where 𝑄 denote the set of states, Σ is the 287

alphabet, 𝛿: 𝑄 × Σ → 𝑄 is the state-transition function, 𝑞0 ∈ 𝑄 is the start state, and 𝑆 ⊆ 𝑄 is the set of 288

accepting states. On input 𝑥 = 𝑥1𝑥2 ⋯ 𝑥𝑛 ∈ Σ𝑛, the output 𝑀(𝑥) is 1 if 𝛿(𝑞𝑛−1, 𝑥𝑛) ∈ 𝑆 where 𝑞𝑖 =289

𝛿(𝑞𝑖−1, 𝑥𝑖) for all 1 ≤ 𝑖 < 𝑛, and 0 otherwise. Finally, we say that 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆) is a layered DFA if 290

the following properties hold: 291

 The set of states 𝑄 can be partitioned into ⋃ 𝑄𝑖
𝑛
𝑖=0 where 𝑄0, … , 𝑄𝑛 are pairwise disjoint, 𝑄0 =292

{𝑞0}, and 𝑆 ⊆ 𝑄𝑛. 293

 The state-transition function 𝛿 can be decomposed into a collection of functions (𝛿1, … , 𝛿𝑛) 294

where 𝛿𝑖: 𝑄𝑖−1 × Σ → 𝑄𝑖 and 𝛿(𝑞, 𝜎) = 𝛿𝑖(𝑞, 𝜎) for all 1 ≤ 𝑖 ≤ 𝑛, 𝑞 ∈ 𝑄𝑖−1, 𝜎 ∈ Σ. 295

In words, a layered DFA is one whose states can be partitioned into a collection of 𝑛 + 1 pairwise 296

disjoint sets (i.e., “layers”) 𝑄0, … , 𝑄𝑛. On input 𝑥 ∈ Σ𝑛, the state of the DFA after reading the first 𝑖 bits 297

of 𝑥 is contained in layer 𝑖 (i.e., in the set 𝑄𝑖). We now describe how to represent 𝑔𝑣 and ℎ(𝑎1,…,𝑎𝑛),𝑘 as 298

layered DFAs: 299

 Let 𝑔𝑣(𝑤) denote the function that outputs 1 if 𝑣 = 𝑤 and 0 otherwise, where 𝑣, 𝑤 ∈ {0,1}ℓ. It 300

is easy to construct a layered DFA for the equality function. The DFA consists of two branches, 301

each with ℓ states: an “accept” branch that corresponds to a matching input and a “reject” 302

branch that corresponds to a non-matching input. Evaluation begins on the accept branch and 303

successively compares the bits of 𝑤 to the bits of 𝑣 (encoded in the DFA transitions). If a 304

mismatch is encountered, the DFA transitions to the reject branch. The output is 1 if the final 305

state is on the accept branch and 0 otherwise. We illustrate this in Figure 1. Thus, for 𝑣 ∈ {0,1}ℓ, 306

the function 𝑔𝑣 can be computed by a layered DFA with ℓ + 1 layers, each containing up to 2 307

states. Note that the vector 𝑣 is entirely encoded in the transition function 𝛿 of the DFA. Our 308

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

protocol for privacy-preserving layered DFA evaluation assumes that the topology of 𝑀 is public, 309

but will hide the transition function 𝛿 (and thus, the value of 𝑣) from the client. 310

 Let ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) be the threshold function that outputs 1 if there are at most 𝑘 indices 311

1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑖 ≠ 𝑏𝑖 and 0 otherwise. It is also straightforward to construct a layered DFA 312

for ℎ(𝑎1,…,𝑎𝑛),𝑘. Namely, we consider a DFA with 𝑘 + 2 branches. We label each branch with an 313

integer 𝑗 = 0,1 … , 𝑘, 𝑘 + 1, corresponding to the number of mismatches encountered thus far. 314

Evaluation begins on branch 0 and whenever the DFA reads in an input bit 𝑏𝑖 ≠ 𝑎𝑖, then the 315

state transitions from branch 𝑗 to branch 𝑗 + 1; otherwise, evaluation continues on branch 𝑗. All 316

state transitions on the final branch 𝑗 = 𝑘 + 1 (corresponding to an input that differs on more 317

than 𝑘 indices), remain on the branch irrespective of the input bit. We illustrate this in 318

Supplementary Figure 2 (for the case where 𝑘 = 1). Thus, the function ℎ(𝑎1,…,𝑎𝑛),𝑘 can be 319

implemented by a layered DFA with 𝑛 + 1 layers, each containing up to 𝑘 + 2 states. Note that 320

the sequence of bits (𝑎1, … , 𝑎𝑛) is entirely encoded in the transition function 𝛿 of the DFA. The 321

topology of the DFA is a function of the dimension 𝑛 and the threshold 𝑘, both of which will be 322

assumed to be publicly known in our protocol; our final protocol will require that the target bits 323

(𝑎1, … , 𝑎𝑛) be hidden, which holds as long as the protocol for layered DFA evaluation hides 𝛿. 324

It is easy to see that the two layered DFAs described above can be combined into a single layered 325

DFA for computing TM𝑘. However, the number of layers in the resulting DFA will be the product of 326

the number of layers in the two underlying DFAs. When developing our cryptographic protocol for 327

privacy-preserving layered DFA evaluation, both the round complexity and the communication 328

complexity scales with the number of layers. Thus, privately-evaluating two smaller DFAs yields a 329

significantly more efficient protocol compared with evaluating a single larger layered DFA. 330

Privacy-preserving evaluation of a layered DFA 331

We now describe how to use oblivious transfer to construct a privacy-preserving protocol for computing 332

TM𝑘. We leverage our implementation of the threshold matching function as a layered DFA to enable a 333

more efficient protocol. While there already exist protocols for private evaluation of general (i.e., not 334

necessarily layered) DFAs 32,33, in this work, we show that the layered structure of our DFAs are 335

amenable to a simpler and direct OT-based evaluation procedure (without needing to additionally rely 336

on heavier cryptographic primitives such as homomorphic encryption). 337

Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝑆) be a layered DFA: namely, 𝑄 = ⋃ 𝑄𝑖
𝑛
𝑖=0 and 𝛿 = (𝛿1, … , 𝛿𝑛). We will label the 338

states 𝑄𝑖 in layer 𝑖 by indices 1,2, … , |𝑄𝑖|. In our model, the server holds the layered DFA 𝑀 while the 339

client holds the input 𝑥 ∈ Σ𝑛. At the end of the protocol, the server should learn nothing while the client 340

should learn the value 𝑀(𝑥). In addition, we assume that the topology of the DFA 𝑀 is publicly-known 341

(i.e., the client knows the number of layers in 𝑀 as well as the number of states in each layer of 𝑀). 342

What is hidden is the transition function 𝛿. This assumption is true for the setting we consider in this 343

work: here, the CODIS algorithm itself is public (and this determines the topology of the DFA), but the 344

records within the server’s database determine the exact transition function, which is precisely what our 345

protocol hides. 346

Our protocol relies on the following simple observation: the transition function 𝛿𝑖 can be described by a 347

truth table of size |𝑄𝑖| ⋅ |Σ|. This yields the following general approach for evaluating 𝑀 privately: 348

 The client initializes her state to 𝑠0 ← 𝑞0 ∈ 𝑄0. 349

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

 Let 𝑥 ∈ Σ𝑛 be the client’s input. We maintain the following invariant. At the beginning of round 350
𝑖 = 1, … , 𝑛 − 1, the client knows the state 𝑠𝑖−1 ∈ 𝑄𝑖−1 of the DFA after reading the prefix 351
𝑥1 ⋯ 𝑥𝑖−1. The client wants to learn 𝑠𝑖 ≔ 𝛿𝑖(𝑟𝑖−1, 𝑥𝑖). To do so, the client and server run a 1-out-352
of-(|𝑄𝑖||Σ|) OT where the receiver’s input is (𝑠𝑖−1, 𝑥𝑖) and the server associates the message 353
𝑦𝑖 = 𝛿𝑖(𝑞, 𝜎) with index (𝑞, 𝜎) ∈ 𝑄𝑖−1 × Σ is. At the end of this protocol, the client learns the 354
state 𝑠𝑖 = 𝛿𝑖(𝑠𝑖−1, 𝑥𝑖) ∈ 𝑄𝑖 of the DFA after reading 𝑥1 ⋯ 𝑥𝑖. 355

 After 𝑛 − 1 rounds, the client learns the state 𝑠𝑛−1 ∈ 𝑄𝑛−1. For the final round, the client and 356
server run a 1-out-of-(|𝑄𝑛−1||Σ|) OT protocol where the client’s input is (𝑠𝑛−1, 𝑥𝑛) and the 357
server associates the value 1 with the index (𝑞, 𝜎) ∈ 𝑄𝑛−1 × Σ if 𝛿𝑛(𝑞, 𝜎) ∈ 𝑆 (i.e., 𝛿𝑛−1(𝑞, 𝜎) is 358
an accepting state) and value 0 for the remaining indices (𝑞, 𝜎) where 𝛿𝑛(𝑞, 𝜎) ∉ 𝑆. 359

Correctness of the above protocol follows by correctness of the underlying OT protocol. In particular, OT 360

is used to iteratively evaluate the layered transitioned functions 𝛿1, … , 𝛿𝑛. Moreover, privacy for the 361

client’s input is ensured by security of the OT protocol since the server’s view in the entire protocol 362

execution only consists of its view in the OT queries (which hide the client’s input). 363

However, this protocol does not provide privacy for the server. Namely, the client learns the sequence 364

of states corresponding in the DFA evaluation on her input, which could reveal information about the 365

state-transition functions. Consider for instance a layered DFA with 𝑘 branches where the node in 366

branch 𝑗 of layer 𝑖 is always labeled with the index 𝑗. Then, the sequence of states the client obtains by 367

executing the above protocol completely reveals which branch of the computation her input takes at 368

each step in the DFA evaluation. This in turns leaks information about the transition function 𝛿𝑖 (e.g., the 369

client learns whether 𝛿𝑖(𝑠𝑖−1, 𝜎) outputs a state in the same branch or in a different branch). In the case 370

of our threshold matching DFA, this in turn reveals to the client partial matches between her query and 371

the server’s database entry. 372

The above attack shows that additional randomization is necessary to ensure security for the server. The 373

fix is simple: the server simply blinds the index of each state in each round of the protocol. The full 374

protocol is described below: 375

1. The client initializes her current state to 𝑠0 ← 1. The server initializes 𝛼0 ← 0. 376
2. On round 𝑖 = 1, … , 𝑛 − 1 of the protocol, the client makes an OT query on the index (𝑠𝑖−1, 𝑥𝑖). 377

On round 𝑖 of the protocol, the server samples a random blinding factor 𝛼𝑖 ← {1, … , |𝑄𝑖|}. It 378
prepares a table of size |𝑄𝑖| ⋅ |Σ| where the message 𝑦𝑖 associated with index (𝑞, 𝜎) ∈ 𝑄𝑖−1 × Σ 379
is 𝑦𝑖 = 𝛿𝑖(𝑞 − 𝛼𝑖−1 mod |𝑄𝑖−1|, 𝜎) + 𝛼𝑖 mod |𝑄𝑖|. The server uses this collection of |𝑄𝑖| ⋅ |Σ| as 380
its set of messages in the OT protocol. Let 𝑠𝑖 ∈ {1, … , |𝑄𝑖|} be the client’s output in the OT 381
protocol. 382

3. On the final round of the protocol, the client and server run a 1-out-of-(|𝑄𝑛−1||Σ|) protocol 383
where the client’s input is (𝑠𝑛−1, 𝑥𝑛) and the server associates the message 1 with index 384
(𝑞, 𝜎) ∈ 𝑄𝑛−1 × Σ if 𝛿𝑛(𝑞 − 𝛼𝑛−1 mod |𝑄𝑛−1|, 𝜎) ∈ 𝑆 and 0 otherwise. 385
 386

Correctness. Let 𝑧0 = 1, 𝑧1, … , 𝑧𝑛 be the sequence of states in the evaluation of 𝑀(𝑥). Namely, 𝑧𝑖 =387

𝛿𝑖(𝑧𝑖−1, 𝑥𝑖) for each 1 ≤ 𝑖 ≤ 𝑛. First, we show that for each 0 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 − 𝛼𝑖 = 𝑧𝑖 mod |𝑄𝑖|. We 388

proceed inductively. The claim trivially holds for 𝑖 = 0. By correctness of the OT protocol, 389

𝑠𝑖+1 = 𝛿𝑖+1(𝑠𝑖 − 𝛼𝑖 mod |𝑄𝑖|, 𝑥𝑖+1) + 𝛼𝑖+1 mod |𝑄𝑖+1| = 𝛿𝑖+1(𝑧𝑖 mod |𝑄𝑖|, 𝑥𝑖+1) + 𝛼𝑖+1 mod |𝑄𝑖+1|. 390

Thus, 391

𝑠𝑖+1 − 𝛼𝑖+1 = 𝛿𝑖+1(𝑧𝑖, 𝑥𝑖+1) mod |𝑄𝑖+1| = 𝑧𝑖+1 mod |𝑄𝑖+1|, 392

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

and the claim holds. In the final OT, the output is 1 if 393

𝛿𝑛(𝑠𝑛−1 − 𝛼𝑛−1 mod |𝑄𝑛−1|, 𝜎) = 𝛿𝑛(𝑧𝑛−1, 𝑥𝑛) = 𝑧𝑛 ∈ 𝑆, 394

and 0 otherwise. Similarly, the output of 𝑀(𝑥) is 1 if and only if 𝑧𝑛 ∈ 𝑆, and correctness follows. 395

Security. We show that in the OT-hybrid model, the above protocol is secure in the presence of semi-396

honest adversaries. Recall that in the OT-hybrid model, the client and server interact with an “ideal” OT 397

functionality (i.e., the client sends an index 𝑖 ∈ {1, … , 𝑘} to the OT functionality, the server sends a 398

collection of messages 𝑚1, … , 𝑚𝑘, and the OT functionality replies to the client with 𝑚𝑖). If we then 399

instantiate the OT with any concrete protocol that is secure against semi-honest adversaries, we obtain 400

a secure protocol for evaluating layered DFAs. We consider client and server security separately: 401

 Client Security (Query Privacy). In the OT-hybrid model, the server only provides inputs to the 402

ideal OT functionality. It does not receive any message from either the client or the ideal OT 403

functionality. Thus, the view of the server is independent of the client’s query so security for the 404

client against a semi-honest server is immediate. 405

 Server Security (Function Privacy). In the OT-hybrid model, the client receives a sequence of 406

values 𝑠1, … , 𝑠𝑛 from the ideal OT functionality. From the above correctness analysis, we have 407

that 𝑠𝑛 = 𝑀(𝑥) ∈ {0,1}. By construction (and correctness of the OT protocol), each of the 408

intermediate indices 𝑠𝑖 for 1 ≤ 𝑖 < 𝑛 satisfies 𝑠𝑖 = 𝛿𝑖(𝑠𝑖−1, 𝑥𝑖) + 𝛼𝑖 mod |𝑄𝑖|. Here, the server 409

samples each 𝛼𝑖 uniformly from the set {1, … , |𝑄𝑖|}, and in particular, independently of 𝛿𝑖. This 410

means that the value of each 𝑠𝑖 is uniform and independent over {1, … , |𝑄𝑖|}. (Formally, we can 411

construct a simulator that on input 𝑀(𝑥) outputs random indices 𝑠𝑖 ← {1, … , |𝑄𝑖|} for 1 ≤ 𝑖 < 𝑛 412

and 𝑠𝑛 = 𝑀(𝑥). The output of this simulator is identically distributed as the receiver’s view in 413

the protocol. Thus, the protocol provides perfect security in the OT-hybrid model.) 414

Efficiency. For a layered DFA with 𝑛 + 1 layers, the protocol as described requires 𝑛 rounds of 415

communication, where on round 1 ≤ 𝑖 ≤ 𝑛, the client and server perform a single 1-out-of-(|𝑄𝑖−1||Σ|) 416

OT on ⌈log|𝑄𝑖|⌉-bit messages. Using precomputed OT correlation, the total communication in bits is then 417

∑ ⌈log(|𝑄𝑖−1||Σ|)⌉

𝑛

𝑖=1

+ ∑|𝑄𝑖−1||Σ|⌈log|𝑄𝑖|⌉

𝑛

𝑖=1

. 418

 419

Secure evaluation of the threshold matching function 420

We now describe how to use our layered DFAs evaluation protocol to obtain a secure protocol for the 421

threshold matching function TM𝑘(𝒗, 𝒘). As discussed above, we can write TM𝑘(𝒗, 𝒘) =422

ℎ(1,1,…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)) and also represent the functions 𝑔𝑣𝑖
 and ℎ(1,1,…,1),𝑘 as layered DFAs. 423

We can leverage our protocol for secure layered DFA evaluation to evaluate 𝑔𝑣𝑖
 and ℎ(1,1,…,1),𝑘. 424

However, directly applying our privacy-preserving protocol for layered DFAs does not yield a secure 425

protocol for evaluating TM𝑘 since such a protocol would leak the intermediate values 426

𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛) to the client. This means the client would learn the exact set of components that 427

match between its vector 𝒘 and the server’s vector 𝒗 (irrespective of whether the threshold is satisfied 428

or not). We address this by blinding the output of the equality-checking circuits. 429

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

As currently defined 𝑔𝑣𝑖
(𝑤𝑖) outputs 1 if 𝑣𝑖 = 𝑤𝑖 and 0 otherwise. We can blind the equality bit by 430

having the server sample a uniform bit 𝑎𝑖 ← {0,1} and define 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) = 𝑎𝑖 if 𝑣𝑖 = 𝑤𝑖 and 1 − 𝑎𝑖 431

otherwise. We make a few simple observations: 432

 If we have a layered DFA for computing 𝑔𝑣𝑖
, then the same DFA (from Figure 1) can be used to 433

compute 𝑔𝑣𝑖,𝑎𝑖
′ by swapping the accept and reject states in the final layer of the DFA. 434

 Let 𝛽𝑖 ← 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖). By construction, this means that 𝛽𝑖 ⊕ 𝑎𝑖 ⊕ 1 = 𝑔𝑣𝑖

(𝑤𝑖). If the client and 435

server apply the privacy-preserving protocol for evaluating a layered DFA to 𝑔𝑣𝑖,𝑎𝑖
′ , then at the 436

end of the protocol, the client learns 𝛽𝑖 (and nothing more) while the server learns nothing. In 437

this case, 𝛽𝑖 is uniformly random (it is perfectly hidden by 𝑎𝑖), and thus, the client does not learn 438

anything about the value of 𝑔𝑣𝑖,𝑎𝑖
(𝑤𝑖). (More precisely, we say that the client and the server 439

have a “secret sharing” of the negated equality bit 𝑔𝑣𝑖,𝑎𝑖
(𝑤𝑖) ⊕ 1.) 440

 The client and server use the privacy-preserving protocol for computing layered DFAs to 441

compute the quantity 442

ℎ(𝑎1,…,𝑎𝑛),𝑘 (𝑔𝑣1,𝑎1
′ (𝑤1), … , 𝑔𝑣𝑛,𝑎𝑛

′ (𝑤𝑛)) = ℎ(1,1,…,1),𝑘 (𝑔𝑣1
(𝑤1), … , 𝑔𝑣𝑛

(𝑤𝑛)). 443

The overall protocol is now given as follows: 444

1. The server begins by sampling 𝑎1, … , 𝑎𝑛 ← {0,1}. For each 𝑖 = 1, … , 𝑛, the client and server 445

execute the protocol for layered DFA evaluation for the function 𝑔𝑣𝑖,𝑎𝑖
′ . On the 𝑖th iteration of 446

the protocol, the client provides 𝑤𝑖 as its input. Let 𝑏1, … , 𝑏𝑛 ∈ {0,1} be the client’s output in 447

the 𝑛 protocol executions. 448

2. The client and server execute the protocol for layered DFA evaluation for the function 449

ℎ(𝑎1,…,𝑎𝑛),𝑘 where the client uses 𝑏1, … , 𝑏𝑛 as its input. The output 𝑧 is the result of the threshold 450

matching function TM𝑘(𝒗, 𝒘). 451

Correctness. Correctness of the above protocol follows via correctness of the underlying layered DFA 452

evaluation protocol. Take any two inputs 𝒗 and 𝒘. Then, we have that 𝑏𝑖 = 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. 453

The client’s output at the end of the computation is 454

ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) = ℎ(𝑎1,…,𝑎𝑛),𝑘 (𝑔𝑣1,𝑎1
′ (𝑤1), … , 𝑔𝑣𝑛,𝑎𝑛

′ (𝑤𝑛)) = ℎ(1,1,…,1),𝑘(𝑔𝑣1
(𝑤1), … , 𝑔(𝑣𝑛)(𝑤𝑛), 455

which is precisely the value of TM𝑘(𝒗, 𝒘). 456

Security. Security of the protocol also follows by security of the underlying protocol for evaluating 457

layered DFAs. As before, we consider client and server security separately: 458

 Client Security (Query Privacy). The threshold matching protocol consists of 𝑛 + 1 invocations 459

of the protocol for layered DFA evaluation. Security of our protocol for layered DFA evaluation 460

ensures that the server does not learn anything about the client’s input in any of these protocol 461

executions, and security follows. (More formally, security of the layered DFA evaluation protocol 462

implies that the server’s view can be simulated without knowledge of the client’s input or 463

output, and correspondingly, the server’s view in the threshold matching protocol can be 464

simulated by simply running the simulator for the underlying layered DFA evaluation protocol). 465

 Server Security (Database Privacy). Security for the server follows similarly from security of the 466

underlying layered DFA evaluation protocol. In the above protocol, the client learns the values 467

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

of 𝑏1, … , 𝑏𝑛 and 𝑧. From the correctness analysis, we have that 𝑧 = TM𝑘(𝒗, 𝒘). Next, by 468

security of the layered DFA evaluation protocol (as applied to the computation of ℎ(𝑎1,…,𝑎𝑛),𝑘), 469

the client learns no additional information other than the value 𝑧. In particular, the protocol 470

does not leak any information about the values of 𝑎1, … , 𝑎𝑛 to the client. By correctness of the 471

layered DFA evaluation protocol, each bit 𝑏𝑖 the client obtains satisfies 𝑏𝑖 = 𝑔𝑣𝑖
(𝑤𝑖) ⊕ 𝑎𝑖 ⊕ 1. 472

Security of the layered DFA evaluation protocol (as applied to the computation of 𝑔𝑣𝑖,𝑎𝑖
′) implies 473

that the client learns nothing more about 𝑣𝑖, 𝑎𝑖 other than the value 𝑏𝑖 = 𝑔𝑣𝑖
(𝑤𝑖) ⊕ 𝑎𝑖 ⊕ 1. In 474

particular, this means that the client does not learn anything about the value of 𝑎𝑖 from the 475

layered DFA protocol executions. Since the server samples 𝑎𝑖 ← {0,1} to be a uniformly random 476

bit, the distribution of 𝑏𝑖 is also uniform (even conditioned on the client’s view of the protocol 477

execution, which is independent of 𝑎𝑖). As such, the client’s view in the protocol execution can 478

be described by a sequence of uniform random bits 𝑏1, … , 𝑏𝑛 together with the output 𝑧 =479

TM𝑘(𝒗, 𝒘). Thus, the client does not learn anything more about 𝑣 other than the value 480

TM𝑘(𝒗, 𝒘). (More formally, we can simulate the client’s view of the protocol based on the value 481

of 𝑧 = TM𝑘(𝒗, 𝒘) and then sampling the bits 𝑏1, … , 𝑏𝑛 ← {0,1}). 482

Efficiency. We now analyze the cost of privately computing TM𝑘(𝒗, 𝒘) for two 𝑛-dimensional 483

vectors 𝒗, 𝒘 with 𝑛-bit components where each component 𝑣𝑖 , 𝑤𝑖 ∈ {0,1}ℓ is an ℓ-bit string. 484

 Equality checking. Computing the (blinded) equality-check functions 𝑔𝑣𝑖,𝑎𝑖
′ (𝑤𝑖) requires 485

evaluating a DFA with ℓ + 1 layers, where each layer contains 2 nodes. This requires ℓ 486

rounds of communication and 6ℓ bits of communication. 487

 Thresholding. Computing the threshold function ℎ(𝑎1,…,𝑎𝑛),𝑘 requires evaluating a DFA with 488

𝑛 + 1 layers, where each layer contains 𝑘 + 2 nodes. This requires 𝑛 rounds of 489

communication and 𝑛(1 + (2𝑘 + 5)⌈log(𝑘 + 2)⌉) bits of communication. 490

Finally, we note that the equality checks can be conducted in parallel. Thus, the round complexity of the 491

complete protocol is 𝑛 + ℓ and the total communication (in bits) is 492

𝑛((2𝑘 + 5)⌈log(𝑘 + 2)⌉ + 6ℓ + 1) = 𝑂(𝑛𝑘 log 𝑘 + 𝑛ℓ). 493

We can achieve a tradeoff between communication complexity and round complexity by having each 494

DFA read multiple bits of the input at a time. This is equivalent to considering a DFA with a larger 495

alphabet (i.e., Σ = {0,1}𝑚 if the DFA is reading 𝑚 bits of the input for each state transition). Reading 496

multiple bits of the input per state transition decreases the number of layers in the DFA (thus decreasing 497

the round complexity of the private layered DFA evaluation protocol), but increases the size of the 498

transition table between each layer (thus increasing the communication complexity of the protocol). In 499

particular, if we consider DFAs that read 𝑚-bits of input per transition, then the overall round 500

complexity of the protocol becomes ⌈
ℓ

𝑚
⌉ + ⌈

𝑛

𝑚
⌉ while the communication complexity (in bits) is 501

⌈
ℓ

𝑚
⌉ 𝑛(𝑚 + 1 + 2𝑚+1) + ⌈

𝑛

𝑚
⌉ (𝑚 + (2𝑚(𝑘 + 2) + 1)⌈log(𝑘 + 2)⌉). 502

When ℓ and 𝑚 are even, then setting 𝑚 = 2 (i.e., reading 2 bits at a time) yields a protocol with smaller 503

round complexity compared to the 𝑚 = 1 setting (by roughly a factor of 2) and slightly smaller 504

communication complexity (compared to both the case where 𝑚 = 1 and all 𝑚 > 2). This is the setting 505

we use in our implementation. 506

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

Implementation and evaluation 507

We implemented the protocol in C++. For our benchmarks, we conducted experiments using two 508

Amazon EC2 instances (M4.2xlarge). Each instance has an 8-core 2.4 GHz Intel Xeon E5-2676 v3 509

(Haswell) processor and 32 GB of memory. The client instance is located on the West Coast (Northern 510

California region) while the server is located on the East Coast (Northern Virginia region) to simulate a 511

wide-area network (WAN). The network latency between the two instances is roughly 60ms and the 512

bandwidth is roughly 25 MB/s. We use a single-threaded execution environment for all of our 513

experiments. 514

Code availability 515

All code will be made publicly available on Github for non-commercial use upon publication. 516

Author Contributions 517

JAB, KAJ, GB, and DJW designed the study, analyzed results, and wrote the manuscript. JAB wrote 518

software for the analysis with input from KAJ, GB, and DJW. 519

Competing Interests 520

The authors declare no competing interests. 521

Acknowledgements 522

We thank Benton Case and Dan Boneh for helpful discussions in an early phase of this project and Aviv 523

Regev for support (K.A.J.). This work was also supported by the Joint University Microelectronics 524

Program (JUMP) Undergraduate Research Initiative (J.A.B), the Stanford A.I. Lab (G.B), NSF CNS-1917414 525

(D.J.W) and a University of Virginia SEAS Research Innovation Award (D.J.W). 526

 527

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

References 528

1. Arnaud, C. Thirty years of DNA forensics: How DNA has revolutionized criminal 529

investigations. Chemical and Engineering News vol. 95 16–20 (2017). 530

2. CODIS - NDIS Statistics. Federal Bureau of Investigation 531

https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics. 532

3. Combined DNA Index System (CODIS). Federal Bureau of Investigation 533

https://www.fbi.gov/services/laboratory/biometric-analysis/codis. 534

4. Ransom, J. & Southall, A. ‘Race-Biased Dragnet’: DNA From 360 Black Men Was 535

Collected to Solve Vetrano Murder, Defense Lawyers Say. The New York Times (2019). 536

5. Ransom, J. & Southall, A. N.Y.P.D. Detectives Gave a Boy, 12, a Soda. He Landed in a 537

DNA Database. The New York Times (2019). 538

6. Dickerson, C. U.S. Government Plans to Collect DNA From Detained Immigrants. The New 539

York Times (2019). 540

7. Murphy, H. Coming Soon to a Police Station Near You: The DNA ‘Magic Box’. The New 541

York Times (2019). 542

8. Crowley, M. How Commandos Could Quickly Confirm They Got Their Target. The New 543

York Times (2019). 544

9. What is Rapid DNA? ANDE Rapid DNA https://www.ande.com/what-is-rapid-dna/. 545

10. RapidHIT ID System for Human Identification - US. 546

https://www.thermofisher.com/us/en/home/industrial/forensics/human-547

identification/forensic-dna-analysis/dna-analysis/rapidhit-id-system-human-548

identification.html. 549

11. Wee, S.-L. China Is Collecting DNA From Tens of Millions of Men and Boys, Using U.S. 550

Equipment. The New York Times (2020). 551

12. Joly, Y. et al. Establishing the International Genetic Discrimination Observatory. Nat. Genet. 552

52, 466–468 (2020). 553

13. NYPD’s ‘Knock-and-Spit’ DNA Database Makes You a Permanent Suspect. Newsweek 554

https://www.newsweek.com/police-dna-database-nypd-swab-testing-collection-new-york-555

1326722 (2019). 556

14. NIST. Core STR Loci Used in Human Identity Testing. 557

https://strbase.nist.gov/coreSTRs.htm. 558

15. Wang, Z. et al. Developmental Validation of the Huaxia Platinum System and application in 559

3 main ethnic groups of China. Sci. Rep. 6, 31075 (2016). 560

16. Norrgard, K. Forensics, DNA Fingerprinting, and CODIS. Nat. Educ. 1, 35 (2008). 561

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

17. Frequently Asked Questions on CODIS and NDIS. Federal Bureau of Investigation 562

https://www.fbi.gov/services/laboratory/biometric-analysis/codis/codis-and-ndis-fact-sheet. 563

18. ENFSI DNA Working Group. Matching rules. in DNA DATABASE MANAGEMENT 564

REVIEW AND RECOMMENDATIONS 22–25 (ENFSI, 2017). 565

19. Hopcroft, J. E., Motwani, R. & Ullman, J. D. Introduction to Automata Theory, Languages, 566

and Computation. (Pearson, 2006). 567

20. Kilian, J. Founding Cryptography on Oblivious Transfer. in STOC 20–31 (1988). 568

21. Rabin, M. O. How To Exchange Secrets with Oblivious Transfer. IACR Cryptol. EPrint 569

Arch. 2005, 187 (2005). 570

22. Kolesnikov, V., Kumaresan, R., Rosulek, M. & Trieu, N. Efficient Batched Oblivious PRF 571

with Applications to Private Set Intersection. in ACM CCS 818–829 (2016). 572

23. O’Connor, K. L., Butts, E., Hill, C. R., Butler, J. & Vallone, P. Evaluating the effect of 573

additional forensic loci on likelihood ratio values for complex kinship analysis. in 574

Proceedings of the 21st International Symposium on Human Identification 10–14 (2010). 575

24. Doleac, J. L. The Effects of DNA Databases on Crime. Am. Econ. J. Appl. Econ. 9, 165–201 576

(2017). 577

25. Yao, A. C.-C. Protocols for Secure Computations. in FOCS 160–164 (1982). 578

26. Hazel, J. W., Clayton, E. W., Malin, B. A. & Slobogin, C. Is it time for a universal genetic 579

forensic database? Science 362, 898–900 (2018). 580

27. Joly, Y., Marrocco, G. & Dupras, C. Risks of compulsory genetic databases. Science 363, 581

938–940 (2019). 582

28. Naor, M. & Pinkas, B. Oblivious Transfer and Polynomial Evaluation. in STOC 245–254 583

(1999). 584

29. Canetti, R. Security and Composition of Multiparty Cryptographic Protocols. J Cryptol. 13, 585

143–202 (2000). 586

30. Ishai, Y., Kilian, J., Nissim, K. & Petrank, E. Extending Oblivious Transfers Efficiently. in 587

CRYPTO 145–161 (2003). 588

31. Boyle, E. et al. Efficient Two-Round OT Extension and Silent Non-Interactive Secure 589

Computation. in ACM CCS 291–308 (2019). 590

32. Troncoso-Pastoriza, J. R., Katzenbeisser, S. & Celik, M. U. Privacy preserving error resilient 591

dna searching through oblivious automata. in ACM CCS 519–528 (2007). 592

33. Sasakawa, H. et al. Oblivious Evaluation of Non-deterministic Finite Automata with 593

Application to Privacy-Preserving Virus Genome Detection. in Workshop on Privacy in the 594

Electronic Society (WPES) 21–30 (2014). 595

 596

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

Tables and Figures 597

Table 1 598

CODIS System End-to-End Time (seconds) Bandwidth (MB)

US System, current (20 STRs) 38.4 172.4
US System, pre-2017 (13 STRs) 27.7 114.9

UK-like System (11 STRs) 23.4 97.3
EU-like System (16 STRs) 34.1 154.5

Chinese-like System (20 STRs) 40.0 189.0
 599

Table 1. Runtime and network communication needed to privately compare a suspect CODIS profile in 600

the field to a central office database far away. End-to-end protocol execution time and communication 601

required to privately query a central database of 1,000,000 entries for CODIS systems deployed at 602

different countries (see Online Methods). Here, the client and server are Amazon EC2 instances, with 603

the client located on the West Coast of the U.S. and the server located on the East Coast of the U.S. 604

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

Figure 1

Figure 1. A novel privacy-preserving CODIS DNA profile matching protocol. Rapid STR profiling technologies enables genetic testing and

matching from the field. They provide a valuable tool for crime solving but raise significant civil rights concerns regarding data retention and

racial profiling. (A) Today, STR profiles collected from potentially innocent individuals are sent to a central CODIS database to check for matches.

Here, the central database learns the full query profile and has the option to retain it, irrespective of whether the search yields any match or not.

(B) To try and provide anonymity to exonerated (unmatched) profiles, one may load a private copy of the central database onto every field

device. This way, an unmatched suspect profile may be destroyed in the field to retain suspect privacy. However, this approach risks exposure of

all or parts of the sensitive central database to malicious parties who get ahold of a field device. (C) Our privacy-preserving search protocol

enables a new approach where agents can still query a central CODIS database as in (A), but in a way that completely hides the query from the

central database. The agent still learns the outcome of the query as before. However, an innocent profile, not matching anything in the database

may safely be destroyed in the field. The central database can no longer store it, as it has learned nothing about it through the query.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Figure 2

Figure 2. Single query search performance against an entire CODIS database as a function of database

size. The number of STR loci and number of precision bits assumed for each system are described in

Supplementary Table 1.

0

100

200

300

400
P

ro
to

co
l E

xe
cu

ti
o

n
 T

im
e

(s
)

Database Size (in millions)

US (current) US (pre-2017) UK EU China

0

400

800

1200

1600

2000

C
o

m
m

u
n

ic
at

io
n

 (
M

B
)

Database Size (in millions)

US (current) US (pre-2017) UK EU China

0 1 5 10

0 1 5 10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

Supplementary Tables and Figures

Supplementary Table 1
CODIS System # of Loci # of Bits Bits per Locus Breakdown

US System, current 20 212 10 bits (17 loci); 14 bits (3 loci)
US System, pre-2017 13 142 10 bits (10 loci); 14 bits (3 loci)

UK-like System 11 126 10 bits (7 loci); 14 bits (4 loci)

EU-like System 16 178 10 bits (12 loci); 14 bits (3 loci); 16 bits (1 locus)

Chinese-like System 20 224 10 bits (14 loci); 14 bits (6 loci)

NIST 40 Loci System 40 492 10 bits (17 loci); 14 bits (23 loci)

Supplementary Table 1. Approximate CODIS system specifications for select countries. Number of STR

loci and number of bits used to encode alleles at each locus for a handful of the 50+ countries using the

CODIS system (See Online Methods).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

Supplementary Table 2
 Precomputation Size (MB) # of OT Correlations
CODIS System Client Server (in millions)

US System, current (20 STRs) 122 923 116
US System, pre-2017 (13 STRs) 87 616 78

UK-like System (11 STRs) 71 574 73
EU-like System (16 STRs) 104 763 96

Chinese-like System (20 STRs) 122 969 122

NIST 40 Loci System (40 STRs) 260 2105 266

Supplementary Table 2. Offline precomputation cost for each setting. Number of oblivious transfer

(OT) correlations, and the memory footprint of the OT correlations for the client and server needed to

implement a single CODIS search query against a database with 1,000,000 records. Using state-of-the-

art OT extension protocols22, it is possible to setup 224 > 16 million OT correlations in 7.5 seconds over

a wide-area network. For system specifications, see Online Methods.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

Supplementary Figure 1

Supplementary Figure 1. Layered DFA for equality test. This DFA computes the equality-check function
𝑔𝒗(𝒘) that outputs 1 if 𝒗 = 𝒘 and 0 otherwise. In particular, for a vector 𝒗 = (𝑣1, … , 𝑣𝑛) ∈ {0,1}𝑛, this
DFA only accepts the input 𝒘 = (𝑤1, … , 𝑤𝑛) ∈ {0,1}𝑛 where 𝑣𝑖 = 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. We use this DFA
to decide whether there is a match at a single STR locus. If we denote the single start state as “layer 0”,
the two states one can arrive at from layer 0 after reading the first bit as “layer 1”, etc. we see that this
DFA has 𝑛 + 1 layers, such that after reading 𝑖 bits, it can only be in one of the two states in layer 𝑖.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

Supplementary Figure 2

Supplementary Figure 2. Layered DFA for thresholding. This DFA computes the threshold function
ℎ(𝑎1,…,𝑎𝑛),𝑘 for the 𝑘 = 1 case. Namely, ℎ(𝑎1,…,𝑎𝑛),𝑘(𝑏1, … , 𝑏𝑛) outputs 1 if 𝑎𝑖 = 𝑏𝑖 for all but at most 𝑘

indices 1 ≤ 𝑖 ≤ 𝑛. In other words, for any sequence of bits (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛, this DFA accepts if the
input 𝑏1, … , 𝑏𝑛 satisfies 𝑏𝑖 = 𝑎𝑖 for all but at most one index 𝑖. For instance, in this work, we use this
DFA to decide whether a DNA profile matches against a database record on at least 19 out of 20 loci

(i.e., the setting where 𝑘 = 1 and 𝑛 = 20) as well as the other configurations. Here, the 𝑖𝑡ℎ input bit

𝑏𝑖 ∈ {0,1} is the (blinded) equality bit denoting whether there is a match in the 𝑖𝑡ℎ STR locus (between
the agent’s query and the central database’s record). In our protocol, this (blinded) equality bit is
computed using the equality-test DFA from Supplementary Figure 1. The bits 𝑎1, … , 𝑎𝑛 in the function
description ℎ(𝑎1,…,𝑎𝑛),𝑘 are the blinding values chosen by the server. Recall that the blinding is

introduced to hide from the client all information on whether there was a match at STR locus 𝑖 between
the database server’s profile and the client’s query. The client only learns whether her query matches
the record or not, and nothing more. Much like Supplementary Figure 1, this DFA has 𝑛 + 1 layers, such
that after reading 𝑖 bits, the computation can only be in one of the (at most) 3 states of layer 𝑖.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.22.164095doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.22.164095
http://creativecommons.org/licenses/by-nc-nd/4.0/

