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Abstract 25 

Covid-19, caused by the SARS-CoV-2 virus, has reached the category of a worldwide pandemic. 26 

Even though intensive efforts, no effective treatments or a vaccine are available. Molecular 27 

characterization of the transcriptional response in Covid-19 patients could be helpful to 28 

identify therapeutic targets. In this study, RNAseq data from peripheral blood mononuclear 29 

cell samples from Covid-19 patients and healthy controls was analyzed from a functional point 30 

of view using probabilistic graphical models. Two networks were built: one based on genes 31 

differentially expressed between healthy and infected individuals and another one based on 32 

the 2,000 most variable genes in terms of expression in order to make a functional 33 

characterization. In the network based on differentially expressed genes, two inflammatory 34 

response nodes with different tendencies were identified, one related to cytokines and 35 

chemokines, and another one related to bacterial infections. In addition, differences in 36 

metabolism, which were studied in depth using Flux Balance Analysis, were identified. SARS-37 

CoV2- infection caused alterations in glutamate, methionine and cysteine, and 38 

tetrahydrobiopterin metabolism. In the network based on 2,000 most variable genes, also two 39 

inflammatory nodes with different tendencies between healthy individuals and patients were 40 

identified. Similar to the other network, one was related to cytokines and chemokines. 41 

However, the other one, lower in Covid-19 patients, was related to allergic processes and self-42 

regulation of the immune response. Also, we identified a decrease in T cell node activity and 43 

an increase in cell division node activity. In the current absence of treatments for these 44 

patients, functional characterization of the transcriptional response to SARS-CoV-2 infection 45 

could be helpful to define targetable processes. Therefore, these results may be relevant to 46 

propose new treatments.  47 
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Introduction 48 

The emerging coronavirus SARS-CoV-2 has rapidly expanded from its origin in Wuhan, China, 49 

to become a worldwide pandemic only after four months since its first identification. At 50 

September 20th of 2020, 30,675,675 cases and 954,417 deaths have been reported worldwide, 51 

according to the World Health Organization [1]. 52 

The most common symptoms are fever, cough, fatigue, shortness of breath, accompanied by 53 

elevated inflammatory biomarkers and pulmonary infiltrates. However, during the SARS-CoV-2 54 

infection, a fraction of patients will develop severe pneumonia, pulmonary oedema, severe 55 

acute respiratory syndrome (SARS) or multiple organ failure, ending in death [2]. These severe 56 

symptoms are associated with systemic inflammation related to an overproduction of 57 

macrophagic cytokines. Different treatments focused on these inflammatory processes are 58 

being investigated [3]. 59 

Recently, Xiong et al. analyzed the transcriptional response in samples from peripheral blood 60 

mononuclear cells (PBMCs) from patients diagnosed with SARS-CoV-2 and compared them 61 

with healthy controls. Based on the results, the authors suggested that patient’s lymphopenia 62 

may be caused by an activation of apoptosis in lymphocytes, and also that SARS-Cov-2 induced 63 

excessive cytokine production, which correlates with lung tissue injury [4]. However, these 64 

conclusions were based only in the functional enrichment analysis of differentially expressed 65 

genes.  66 

Probabilistic graphical models (PGMs) have demonstrated their utility in analyzing gene 67 

expression data by identifying relevant biological processes [5, 6]. These models allow making 68 

associations between genes according to their expression patterns across a series. 69 

Interestingly, the PGM networks have functional structure, allowing study expression data 70 

from a functional point of view. The main advantage of this type of models is that they offer an 71 

integrated view about what biological processes are involved in a disease, instead of the 72 

classical gene-based analysis which offers a list of differential genes without a context. Thus, 73 

we set out to re-analyze Xiong et al. data using PGMs, aiming for a deeper understanding of 74 

biological processes involved in SARS-CoV-2 pathogenesis.  75 
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Results 76 

Processing of RNA sequencing data 77 

After alignment of raw files, 13,398 expressed genes were identified. After applying the quality 78 

criteria of a detectable reading in at least 50% of the samples, 13,182 genes were used for the 79 

subsequent analyses. 80 

Analysis of differential genes between healthy controls and patients 81 

Using CuffDiff, 1,569 differentially expressed genes were determined between SARS-CoV-2 82 

patients and healthy controls. After applying the quality criteria of detectable measurements 83 

in at least 50% of the samples, 1,234 genes remained as differential ones. These genes were 84 

mostly related to inflammatory response, innate immune response, T cells, lysosomes, 85 

apoptotic processes and angiogenesis, among others. 86 

A PGM was used to organize these genes according to their biological functions. The resulting 87 

network was composed by eight functional nodes: metabolism, lysosomes, T cells, two nodes 88 

related to inflammatory response, two nodes related to response to virus, and one node with 89 

no overrepresented function (Fig 1, S1 File). 90 

Inflammatory response A, lysosome ad metabolism functional nodes activities were 91 

significantly differential between healthy controls and patients. Strikingly, one of the nodes of 92 

inflammatory response had a higher functional node activity in healthy controls than in 93 

patients, and the other node of inflammatory response had a functional node activity higher in 94 

patients than healthy controls. The same tendencies were shown in response to virus nodes. 95 

Lysosome and metabolism had a higher functional node activity in patients than in controls. 96 

Finally, T cell functional node activity was higher in healthy individuals than in patients (Fig 2).  97 

Metabolism functional node 98 

Metabolism node was composed of 102 genes, 19 of them related with metabolism pathways. 99 

This node contained the genes PKM (pyruvate kinase) and PDHB (pyruvate dehydrogenase), 100 

both implicated on glycolysis, and several ATPases from the mitochondrial complex, 101 

responsible for H+ transporting. There were also genes related to drug metabolism such as 102 

PAPSS1 or CES1. 103 

Inflammatory response A functional node 104 
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This node included 236 genes, of which 18 were implicated in an inflammatory response. This 105 

node mostly comprised chemokines such as CXCR2, CCR3, CXCR1, CXCL1 or CXCL8, widely 106 

associated with SARS-CoV-2 infection. 107 

Inflammatory response B functional node 108 

This node included 129 genes, of which 17 were involved in inflammatory response. This 109 

functional node included three toll-like receptors, TLR2, TLR5 and TLR4. Among other 110 

functions, TLR2 promotes apoptosis in response to bacterial lipoproteins. TLR5 protein 111 

recognizes bacterial flagellin, the principal component of bacterial flagella. Additionally, TLR4 112 

has been implicated in signal transduction events induced by lipopolysaccharide found in most 113 

gran negative bacteria. This node also contained AOAH and CD14, both genes implicated in 114 

response to bacterial lipopolysaccharides as well. Finally, this functional node included VNN1 115 

which plays a suppressive role in influenza virus replication in human alveolar epithelial cells 116 

[7]. Therefore, this node is mostly related to the response to bacterial infections. 117 

Lysosome functional node 118 

Lysosome node included 112 genes, of which 12 were related to lysosomal processes. Most of 119 

these genes are lysosomal enzymes such as CTSH, NAGA or PLA2G15, but this node also 120 

included HPSE, which is the gene that encodes an enzyme that cleaves heparan sulfate 121 

proteoglycans to allow cell movement through remodeling of the extracellular matrix, or 122 

DRAM1, which encodes a lysosomal membrane protein that is requires for the induction of 123 

autophagy. 124 

Metabolic modeling 125 

FBA was performed to characterize in depth metabolic alterations caused by SARS-CoV-2 126 

infection (S2 File). Glutamate metabolism, methionine and cysteine metabolism, and 127 

tetrahydrobiopterin metabolism flux activities were differential between healthy controls and 128 

Covid-19 patients (Fig 3). In addition, several tendencies in other metabolic pathways such as 129 

TCA cycle and steroid metabolism that need to be confirmed were shown (S1 Figure). 130 

Functional characterization based on the 2,000 most variable genes 131 

We obtained an alternative PGM network, now based on the 2,000 most variable genes 132 

according to their SD and functionally characterized. The resulting network was divided into 133 

nine functional nodes: apoptosis, oxygen binding, blood coagulation, response to the virus, T 134 

cell, cell division, and three nodes related to an inflammatory response (Fig 4, S3 File). 135 
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Cell division and inflammatory response B functional node activities were differential between 136 

controls and patients. On the one hand, patients had a higher activity of response to virus, cell 137 

division, and one of the inflammatory functional nodes. On the other hand, healthy individuals 138 

had a higher activity of T cell and two out of the three functional nodes related to 139 

inflammatory processes (Fig 5). 140 

Inflammatory response A functional node 141 

This node is composed of 77 genes, of which 28 were related to an inflammatory response. 142 

Most of these genes were cytokines, chemokines and toll-like receptors, whose function is the 143 

modulation of the inflammatory response. This functional node included toll-like receptors 144 

TLR6, TLR8, TLR5, TLR1, and TLR4. 145 

Inflammatory response B functional node 146 

This node was formed by 69 genes, 6 of them related to the inflammatory response. These six 147 

genes were CCR3, CCL4L2, TNFRSF18, NCR3, CCL5, and MS4A2. CCL5 and CCL4L2 are 148 

chemokine ligands, and CCR3 and MS4A2 are implicated in an allergic response. 149 

Inflammatory response C functional node 150 

This functional node had 77 genes, 6 of them related to inflammatory processes. These genes 151 

were CCL4, CXCR2, FPR2, IL1RAP, CXCL8, and ORM1, mostly of them chemokines. 152 

T cell functional node 153 

This functional node was composed of 210 genes, 6 of them related to T cells, more concretely 154 

with T cell receptors, including GATA3 gene, which plays a vital role in nasopharyngeal virus 155 

detection. 156 

Cell division functional node 157 

This node was composed of 141 genes, 5 of them involved in cell division. These genes were 158 

CDK1, CENPW, CCNB1, UBE2C, and CCNB2, mostly related to M-phase promoting factor 159 

complex and microtubules. 160 

Response to virus functional node 161 

This node had 130 genes, nine related to response to virus ontology. This node contained two 162 

genes whose proteins are induced by interferon, IFI44L and IFITM3.  163 

164 
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Discussion 165 

SARS-CoV-2 infection has reached the category of a pandemic. Tremendous efforts have been 166 

made to find a suitable vaccine and to determine effective treatments but till the date there 167 

are neither of them [8]. 168 

We have re-analyzed the work of Xiong et al. [4] with a different functional inference 169 

approach. Coincidences between both results were expected. Xiong et al. described an up-170 

regulation of genes related to cell cycle and cytokines in SARS-CoV-2 patients, which agreed 171 

with the higher functional node activity that we observed in cell division node and one of the 172 

inflammatory nodes, mostly composed by cytokines and chemokines. They also described a 173 

reduction of immune cells in blood patient samples, which may be related to the lower activity 174 

of T cell node in patients than in healthy controls. 175 

Additionally, our analysis offered complementary information. For instance, in the network 176 

that characterizes differences between healthy individuals and SARS-CoV-2 patients based on 177 

the 1,569 differential genes identified by CuffDiff, two functional nodes related to 178 

inflammatory response were identified. Strikingly, inflammatory response A functional node 179 

activity was higher in patients than in healthy controls. This node was composed by cytokines 180 

and chemokines. However, inflammatory response B node activity, that is related to response 181 

to bacterial infections, was higher in healthy controls than in patients. SARS-CoV-2 coexist with 182 

a bacterial co-infection of Mycoplasma pneumoniae so the study of those genes related to the 183 

presence of a bacterial infection in these patients may be relevant [9]. Metabolism node 184 

showed also a higher functional node activity in Covid-19 patients than in healthy controls. The 185 

increase in glycolysis reactions implies an increase in Krebs cycle reactions as well and 186 

therefore in ATP production, essential for the virus replication [10, 11]. The differences on the 187 

metabolism functional node suggested that a deeper analysis of metabolism, as Flux Balance 188 

Analysis, could supply more detail information. Glutamate metabolism showed differences 189 

between controls and Covid-19 patients. Interestingly, an alteration in glutamate metabolism 190 

caused by another RNA virus, the HIV-1, has been previously described [11]. Moreover, it has 191 

been previously suggested that methionine plays a relevant role in viral replication of other 192 

coronaviruses [12]. No alterations in tetrahydrobiopterin metabolism have been previously 193 

described related to SARS-CoV-2 infection. However, it is remarkable that tetrahydrobiopterin 194 

is a NO synthase cofactor which is involved in immune regulation and inflammation processes. 195 

It has been described that a blockade of tetrahydrobiopterin synthesis annuls T-cell mediated 196 

autoimmunity and allergic inflammation. On contrast, higher levels of tetrahydrobiopterin 197 
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increase CD4 and CD8 responses [13]. It has also been described that acute inflammatory 198 

stimulation increases levels of plasma BH4, in parallel with increased IL-6 [14], which it has 199 

been widely associated with SARS-CoV-2 infection and severity [15, 16]. Recent articles where 200 

plasma samples from Covid-19 patients were analyzed by metabolomics have shown 201 

differences in metabolism caused by SARS-CoV-2 infection, especially in steroid, aminoacid and 202 

mitochondrial metabolism [17].  203 

Lysosomes have been previously associated with coronaviruses. In 1984, a study described 204 

virus-containing electron-dense bodies in lysosomes of coronavirus-infected cells as a defense 205 

mechanism [18]. Moreover, a study done in murine hepatitis virus, a prototype to study 206 

coronaviruses, established that the virus depends on the lysosomal traffic for a proteolytic 207 

cleavage site in the S protein, necessary for the intracellular fusion and entry [19]. In addition, 208 

this node contains the HPSE genes which it has been previously associated with viral infection 209 

and its activation is associated with a production of pro-inflammatory factors [20]. 210 

On the other hand, in the network obtained for the 2,000 most variable genes, two functional 211 

nodes related to inflammatory response (inflammatory response A and inflammatory response 212 

B) were also identified. Inflammatory response A functional node was again mostly composed 213 

by cytokines and chemokines. Inflammatory response B functional node had a lower activity in 214 

SARS-CoV-2 patients. Interestingly, the inflammatory response B node was composed of genes 215 

related to allergic response and regulation of immunological self-tolerance. This fact may be 216 

related to the severe acute respiratory syndrome, associated with a dysregulation of the 217 

immune response [2]. 218 

In this inflammatory response B node is included CCR3, a chemokine highly expressed in 219 

eosinophils and basophils, and is also detected in TH1 and TH2 cells, as well in airway epithelial 220 

cells [21, 22]. This receptor may contribute to the accumulation and activation of inflammatory 221 

cells in allergic airway and it is also known to be an entry co-receptor for HIV-1. MS4A2 is also 222 

implicated in allergic processes [23]. Therefore, this node seems to be more related to the self-223 

control of the inflammatory response instead of the other inflammatory functional nodes, 224 

more related to chemokines and cytokines. 225 

Cell division functional node had a significantly higher activity in Covid-19 patients than in 226 

controls. This node is mainly composed by genes related to M-phase and mitosis process, 227 

which may be related to viral infection. An accumulation of G2/M phase cells in other 228 

coronaviruses has been previously described in order to promote favorable conditions for viral 229 

replication [24]. 230 
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As expected, functional nodes related to response to the virus were relevant in both networks. 231 

In the case of the network built based on the 2,000 most variable genes, this functional node 232 

was mainly related to interferon response. Remarkably, this node included IFITM3 gene, which 233 

codifying sequence is associated with immunity to other well-known viruses such as influenza 234 

A or dengue virus [25, 26]. IFITM3 protein has been described as related to the entry of MERS- 235 

CoV and SARS-CoV[27]. The first response to a viral infection of the immune system is 236 

mediated by interferons so it seems logical that these genes were overexpressed in patients 237 

infected by SARS-CoV-2. Additionally, interferon-mediated response has been associated with 238 

severe cases of Covid-19, so a study of the genes included in this functional node in a large 239 

cohort with different grades of severity of Covid-19 may be interesting [28]. 240 

In addition, in the T cell functional node appeared GATA3 gene which has been previously 241 

related to nasopharyngeal virus infections [29]. Since SARS-CoV-2 presents mainly respiratory 242 

tropism, GATA3  may play an essential role. 243 

Our study had some limitations. Probably the most important one was that the reduced 244 

number of samples limited the statistical power and the information that could be obtained by 245 

functional analyses. A larger number of samples will be useful to deepen into the molecular 246 

characterization of this disease. Also, a study based on a larger cohort stratified according the 247 

severity of the disease could be of much interest as it may help define how functional modules 248 

vary in relation to the virulence of the infection. 249 

In this study, some previously not described relevant processes in SARS-CoV-2 pathogenesis 250 

such as bacterial inflammatory response processes, tetrahydrobiopterin metabolism or allergic 251 

processes, were proposed. In the absence of treatments for these patients, molecular 252 

characterization of the disease could be helpful to improve the understanding of the 253 

mechanisms of the disease and to define targetable processes. The application of these type of 254 

analyses in larger cohorts may be useful not just to determine therapeutic targets but also to 255 

define predictors of immune response to  infection. Therefore, these results may be relevant 256 

to propose new therapeutic treatments in the future.  257 
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Materials and Methods 258 

Patient cohort 259 

Three samples from peripheral blood mononuclear cells (PBMCs) from three patients infected 260 

with SARS-CoV-2 and three samples from healthy controls were analyzed. These samples are 261 

all from the work of Xiong et al. [4] and raw data can be downloaded from SRA database. 262 

Processing of RNA sequencing data 263 

Before processing fragments per kilobase of exon model per million of reads (FPKM) data, we 264 

checked their quality using FastQC (v0.11.9, Brabaham, UK). Reads longer than 100 nt showed 265 

the presence of Illumina adapter sequences which were removed by trimming using Prinseq 266 

[30]so all samples were matched to 2x100 format. Then, reads were mapped against the 267 

human genome (GRCh38.96) using TopHat, using an estimated paired-end inner size of 25 and 268 

finally FPKM data were obtained using CuffDiff. All these programs were accessed using the 269 

integrated GPRO suite (Biotechvana, Valencia, Spain) [31].  270 

After FPKM processing, Perseus v1.6.5 software was used to filter RNAseq data [32]. Log2 was 271 

calculated and only those genes with at least 50% of the detectable readings were used for the 272 

subsequent analyses. 273 

Probabilistic graphical models 274 

2,000 most variable genes were selected according to their standard deviation (SD) of 275 

expression across the series and used to build a PGM network. RNAseq expression data was 276 

used without other a priori information. 277 

The resulting network was divided into functional nodes by gene ontology analyses. These 278 

gene ontology analyses were performed in DAVID webtool v8 using “Homo sapiens” as 279 

background and KEGG, Biocarta and GOTERM-FAT as categories [33]. 280 

The same analysis pipeline was used to characterize the differential genes defined by CuffDiff, 281 

i.e. a network was built using the genes defined as significantly differential between healthy 282 

controls and patients. 283 

These analyses was done using grapHD package [34] and R v3.2.5. Network visualization was 284 

done in Cytoscape [35]. PGMs were built in two steps, first, the spanning tree with the 285 

maximum likelihood was found, and then, the edges were refined based on the minimization 286 

of the Bayesian Information Criterion (BIC) [36].   287 
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Statistical analysis 288 

Functional node activities were calculated as previously described [6]. Briefly, the mean 289 

expression of those genes of each node related to the overrepresented function in this node 290 

was calculated. Then, functional node activities were compared between healthy individuals 291 

and patients using a T-test. 292 

Flux Balance Analysis and metabolic models 293 

Flux Balance Analysis (FBA) allows metabolic modeling from gene expression data. It is widely 294 

used in microbiology and cancer [37]. The complete human metabolic reconstruction Recon 3D 295 

was used to perform these analyses. It contains 10,600 reactions, 5,835 metabolites and 5,939 296 

Gene-Protein-Reaction rules (GPRs), which contain information in the form of Boolean 297 

expressions about which genes are involved in each metabolic reaction. GPRs were solved 298 

using a modification of Barker et al. algorithm [38, 39], solving “AND” expressions as the 299 

minimum and “OR” expressions as the sum. Then, the obtained values were introduced as the 300 

reaction bounds by a modified E-flux algorithm based on the Max-min function [39, 40]. 301 

Finally, FBA was solved using COBRA Toolbox library  v2.0 [41] and MATLAB. 302 

The 10,600 metabolic reactions are grouped into 103 metabolic pathways or subsystems. In 303 

order to compare metabolic activity between controls and Covid-19 patients, flux activities 304 

were calculated as previously described as the sum of fluxes of the reactions contained in a 305 

concrete metabolic pathway [5, 42]. To compare flux activities between control and patients a 306 

T-test was used.   307 
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Figure legends 466 

Fig 1: Probabilistic graphical model based on the expression of 1,234 differential genes 467 

between healthy individuals and patients. 468 

Fig 2: Functional node activities from the network based on the expression of the 1,234 469 

genes defined as significantly differential by CuffDiff. In the Y axis the activity of the 470 

functional node in arbitrary units, understanding as the mean expression of those genes in 471 

each node that were related to the overrepresented function in the node. In the x axis, healthy 472 

controls and Covid-19 patients. **, ≤ 0.01 ; * ≤  0.05. 473 

Fig 3: Differential flux activities between healthy controls and patients. a.u. = arbitrary units. 474 

* p < 0.05. 475 

Fig 4: Probabilistic graphical model based on the expression of the 2,000 most variable 476 

genes. 477 

Fig 5: Functional node activities from the network based on the expression of the 2,000 most 478 

variable genes. In the Y axis the activity of the functional node in arbitrary units, 479 

understanding as the mean expression of those genes in each node that were related to the 480 

overrepresented function. In the X axis, healthy controls and Covid-19 patients. ***, ≤ 0.001; 481 

** , ≤ 0.01 ; * ≤  0.05. 482 

Supporting information 483 

S1 File: Genes included in the probabilistic graphical model based on the expression of 1,234 484 

differential genes between healthy individuals and patients. 485 

S2 File: Genes included the probabilistic graphical model based on the expression of the 2,000 486 

most variable genes. 487 

S3 File: Flux Balance Analysis results. 488 
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