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Abstract: 

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) uses the angiotensin 

converting enzyme (ACE)-2 as the host receptor for target cell entry. The extent and distribution 

of ACE-2 has been associated with the clinical symptoms of coronavirus disease (COVID)-19. 

Here we show by immunofluorescence analysis that the ACE2 is abundantly expressed in oral 

mucosa, particularly in the surface epithelial cells suggesting that these cells could represent 

sites of entry for SARS-CoV-2. Further, together with the reports on ACE2 ectodomain 

shedding, we discuss the rationale for the hypothesis that the ACE-2 measurement in saliva 

could be a marker for COVID-19 infection during early phase following SARS-CoV-2 exposure. 
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Introduction 

Coronaviruses (CoV) are a group of enveloped viruses with non-segmented, single-stranded, 

and positive sense RNA genomes. While most coronaviruses cause mild respiratory illnesses, 

the first epidemic was caused by the severe acute respiratory syndrome (SARS)-CoV-1 in 2003. 

SARS-CoV-1 spread to over two dozen countries affecting more than 8000 individuals with 

nearly 10% mortality1,2. The current pandemic caused by SARS CoV-2 has spread much more 

rapidly affecting nearly 7 million individuals globally with over 400,000 deaths as of June 2020.  

 

Both SARS-CoVs encode at least four major structural proteins including the spike protein, the 

membrane protein, the envelope protein, and the nucleocapsid protein. The spike protein that 

protrudes from the surface of the virus is a type I glycoprotein that binds specific host cell 

receptor via a receptor binding domain facilitating viral entry into target cells3.  The SARS-CoV-1 

has been shown to use a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) as 

a receptor for target cell entry4,5. Positive correlation between ACE2 expression and SARS-

CoV-1 infection has been observed6. Furthermore, ACE2 expression on non-permissive cells 

conferred susceptibility to SARS-CoV-1 infection, indicating that ACE2 is sufficient to allow viral 

entry7,8. Transgenic mice overexpressing human ACE2 in alveolar epithelial cells and other 

epithelia developed rapidly progressing respiratory illness following intranasal exposure of 

SARS-CoV-19. 

 

Genomic and structural studies have shown that the receptor binding domain of SARS-CoV-2 

exhibits similar molecular characteristics as that of SARS-CoV-110,11. In vitro cellular studies 

showed that that the SARS-CoV-2 used ACE2 and no other coronavirus receptors such as 

aminopeptidase for cellular entry11. Indeed SARS-CoV-2 has been shown to bind ACE2 with 
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higher affinity than the SARS-CoV-112. Upon binding ACE2, the spike protein of SARS-CoV-2 is 

cleaved by host proteases such as the TMPRSS2, thereby releasing the spike fusion peptide 

and facilitating host cell entry10,13. Replication within the target cells establishes the SARS-CoV-

2 infection mediating tissue damage. 

 

ACE2 is mainly expressed by epithelial cells of the lung, intestine, kidney, and colon (3). This 

may explain the high incidence of pneumonia and bronchitis in those with severe COVID-19 

infection5,14. Analyses of the publicly available RNA data sets and immunohistochemical studies 

suggest that the ACE2 is also highly expressed in the skin and mucous membranes including 

the oral mucosa15-17. Consistently, vesiculobullous lesions affecting the skin and the oral 

mucosa have been reported as clinical presentations in COVID-1918,19. Since the viral 

attachment and entry is critical for replication and infection, the state of cell differentiation and 

the surface expression of ACE2 can directly influence the SARS-CoV disease pathogenesis. 

Hence, the goal of this study is to investigate the localization of ACE2 in mucosa from different 

regions of the oral cavity.  

 

Materials and methods: 

Tissues: Archived paraffin embedded tissue blocks of buccal mucosa and tongue tissues with 

histological diagnosis of benign mucosal lesions such as fibroma and papilloma were obtained 

from the repository of the Oral Pathology Biopsy services at the Indiana University School of 

Dentistry. Hematoxylin and eosin stained sections were evaluated for the presence of sufficient 

amount of normal oral epithelium adjacent to the lesion in each tissue. Only tissues that 

possessed significant normal oral epithelium with no evidence of pathology were included for 

assessment of ACE2 expression. 
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Isolation of epithelial cells in saliva: Unstimulated whole saliva was collected by the drooling 

method for 5-10 minutes into a 15ml chilled centrifuge tube after obtaining informed consent as  

described20,21. All samples were centrifuged at 250g for 10 minutes at 4̊C. The cellular sediment 

obtained was reconstituted in isotonic saline supplemented with two drops of Zap-O globin to 

lyse blood corpuscles and centrifuged at 1400rpm for 10min at 4̊C.   After washing in saline, the 

cell suspension was passed through a 20µ filter.  The epithelial cell-enriched preparation was 

then assessed by light microscope for morphology. A thin smear of the cells was then 

maintained in a humid chamber and immunostained for ACE-2 along with the tissue section.    

 

Immunofluorescence:   The paraffin-embedded sections were dewaxed and rehydrated by 

sequential incubation in decreasing alcohol concentrations. The sections were then subjected to 

heat induced antigen retrieval in Tris-EDTA buffer for 10 minutes. The slides were allowed to 

cool, washed with 1XTBS buffer and then incubated with 3% H2O2 for 10min to quench 

endogenous peroxidase activity followed by washing and incubation in 5% goat anti-serum to 

minimize non-specific binding. The sections were then incubated with the primary anti-human 

ACE2 mouse monoclonal antibody (1:500, Catalog number: 66699-1-Ig, Clone No.: 2F12A4, 

Proteintech, Chicago) overnight at 4̊C7. After washing, the sections were incubated in dark with 

Alexa Fluor 488 conjugated goat anti-mouse secondary antibody (Jackson ImmunoResearch 

Inc., PA) at room temperature for 2h. Nuclei were stained with propidium iodide (1:1000, BD 

Biosciences, CA). The tissues were washed and mounted with ProLongTM gold antifade 

mounting medium (Thermofisher, CA). Immunostained sections were scanned with a NIKON 

multiphoton microscope attached with a DS Ri2 Camera (NIKON Instruments Ind, Melville, 

USA). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.165035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.165035
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results and discussion: 

Membrane bound ACE2 is the port of entry for SARS-CoVs to the target cells. ACE2 transcript 

and protein expression has been reported in several human tissues by reverse transcriptase 

polymerase chain reaction and immunohistochemistry respectively5,14,16. We observed strong 

ACE2 expression in the epithelial cells of the oral mucosa. The expression was higher in the 

keratinized surface epithelial cells than in the spinous or basal cells. This was more evident in 

the tongue tissues than that of the buccal mucosa (Fig 1A, D). Merged images with the nuclei 

staining propidium iodide (Fig 1B, E) showed prominent expression of ACE2 localized to the cell 

membranes (Fig 1C, F). The exfoliated epithelial cells in the saliva also exhibited significant 

ACE2 expression (Fig 2A). Merged images with nuclei staining propidium iodide (Fig 2B) shows 

that ACE-2 expression is observed on the membranes of the epithelial cells in saliva (Fig 2C).  

 

Epithelia are the primary barrier to microbial infection transmitted by contact with the exposed 

environment. As such, the epithelial cells express cell surface receptors that allow attachment to 

and penetration of the cell membrane by the microbes20,22. The distribution and density of the 

attachment receptors have been shown to be related with the degree of differentiation of the 

epithelia. Pertinent to SARS-CoV, the differentiated airway epithelial cells that abundantly 

express ACE2 have been shown to be more easily infected with the virus7. Indeed, in-vitro 

studies showed that SARS-CoV-1 virus enters by binding the ACE2 receptor abundantly 

expressed on the apical surface of the well-differentiated airway epithelia, especially the ciliated 

cells. Following replication, the virions are released from the basal surface of the infected 

cells7,23. In the skin, high expression of ACE2 has been observed in keratinocytes suggesting a 

percutaneous transmission potential for SARS-CoV24. Our observation of predominant 

expression of ACE2 in the surface epithelial cells of the tongue and buccal mucosa is consistent 

with these reports and support potential infection of the oral epithelial cells with SARS-CoV.  
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Structurally, ACE2 is a type I transmembrane protein with a short C-terminal cytoplasmic tail, a 

hydrophobic transmembrane region, and a glycosylated amino terminal ectodomain containing 

the active site4,5. A soluble form of ACE2 (sACE2) has been shown to be released either 

constitutively or induced by inflammation. The sACE2 arises from proteolytic cleavage of the 

ectodomain of the membrane bound ACE2 by the metalloproteinase ADAM-17, also known as 

TNF-α converting enzyme (TACE)25. Circulating levels of sACE2 has been shown to be low in 

children of both sexes, but increases with age, more so in healthy males than in females, so that 

as adults serum sACE2 is higher in men than in women 26.  

 

In-vitro studies and animal experiments have shown critical roles for both membrane-bound 

ACE2 and sACE2 in the acute lung injury mediated by SARS-CoV27. The SARS-CoV spike 

protein not only binds the cell surface ACE2 but also has been shown to induce cleavage of 

ACE2 ectodomain together with the host protease TACE to achieve target cell entry25. The 

ACE2 shedding induced by the spike protein is tightly associated with the TNF-α production. 

Silencing of TACE with siRNA prevented viral entry suggesting that the SARS-spike protein 

induced TNF-α secretion and consequent TACE mediated ACE2 shedding is critical for 

infection28. Indeed, sACE2 has been suggested as a prognostic marker for SARS-CoV2 

infection29. 

 

In this context, our observation of ACE2 in the epithelial cells in saliva can be extended 

hypothetically as a potential marker for SARS-CoV-2 infection. It is likely that the surface 

epithelial cells of the oral mucosa that exhibit high expression of ACE2 act as initial sites of 

SARS-CoV-2 entry. Either the TNF-α induced by the viral attachment and/or released by the 

mild state of inflammation of the oral mucosa in health, may facilitate the SARS-spike protein 

mediated shedding of ACE2. Longitudinal observations in few SARS-CoV-2 positive cases have 

shown that the viral load in saliva was consistently higher during the symptomatic phase30-32. It 
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is likely that the persistent infection could increase ACE2 ectodomain shedding from oral 

epithelial cells. Collectively, it can be postulated that the ACE2 levels in saliva could correlate 

with the SARS-CoV-2 viral load and potentially be predictive of symptom development in 

COVID-19 (Fig 3).   

 

Conclusions: In a review of over 700 publications on diagnostic approaches of viral infections, 

the authors observed that the application of non-invasive sampling methods such as the use of 

saliva for diagnosis and monitoring of viral diseases need to be widely investigated33. This is 

particularly critical for respiratory infections such as SARS-CoV-2, in which the viral load in 

saliva has been shown to be higher in early phase of the disease31,32,34.   Based on our 

histological observations and the rationale discussed, we postulate that the assessment of 

SARS-CoV-2 viral load and ACE2 in the saliva could represent potential biomarkers for COVID-

19 diagnosis and prognosis. 
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