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Abstract 

Although cancer is the leading cause of disease-related mortality in children, the relative rarity of 

pediatric cancers poses a significant challenge for developing novel therapeutics to further improve 

prognosis. Patient-derived xenograft (PDX) models, which are usually developed from high-risk tumors, 

are a useful platform to study molecular driver events, identify biomarkers, and prioritize therapeutic 

agents. Here we develop PDX for Childhood Cancer Therapeutics (PCAT), a new integrated portal for 

pediatric cancer PDX models. Distinct from previously reported PDX portals, PCAT is focused on pediatric 

cancer models and provides intuitive interfaces for querying and data mining. The current release 

comprises 324 models and their associated clinical and genomic data, including gene expression, 

mutation, and copy number alteration.  Importantly, PCAT curates preclinical testing results for 68 

models and 79 therapeutic agents manually collected from individual agent testing studies published 

since 2008. To facilitate comparisons of patterns between patient tumors and PDX models, PCAT curates 

clinical and molecular data of patient tumors from the TARGET project. In addition, PCAT provides 

access to gene fusions identified in nearly 1,000 TARGET samples.  PCAT was built using R-shiny and 

MySQL. The portal can be accessed at http://pcat.zhenglab.info or http://www.pedtranscriptome.org.  

 

INTRODUCTION 

Cancer is the leading cause of disease-related mortality in children. Approximately 300,000 children 

under age of 14 are diagnosed with cancer globally each year (1). In 2019, about 11,000 new diagnoses 

were reported in the US, with about 1,200 disease-caused deaths (2). Over the last five decades, 

intensive treatments combining surgical resection, radio- and chemotherapy have significantly improved 

the outcomes of pediatric cancer. For Instance, five-year survival rate has increased from 58% in mid 

1970s to 83% in 2014, with the mortality rates declined by 65% from 1970 to 2016 (2). However, 

prognosis for relapse patients remains poor, and intensive treatments cause long-term health problems 

such as secondary cancers, cardiovascular diseases, cognitive disabilities for brain tumors, etc. (3). Many 

pediatric cancers such as Ewing sarcoma lack targeted therapy. Therefore, continuous efforts on finding 

new therapeutic targets and developing less-toxic treatments for children with cancer are important for 

further improving prognosis and mitigating long-term health problems for survivors.  

Pediatric cancers constitute about 1% of annual new cancer diagnoses. This small population can be 

further split into many disease entities thus each has only a very small number of cases. This rarity poses 

a significant challenge for translational research, as collecting and testing agents in patients, especially 

those of ultra-rare subtypes, is difficult. Patient-Derived Xenograft (PDX) models have been used for the 
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past four decades to alleviate these difficulties. These models are generated by implanting patient 

tumors into immune-deficient rodents and have been shown to retain histological and genomic features 

of the original tumors (4,5). Preclinical testing of these models to therapeutic agents has generated 

highly valuable insights to guide clinical trials in patients. Moreover, advances in sequencing and other 

high throughput technologies now allow comprehensive molecular characterization of these models (6). 

The resulting genomic profiles provide a repertoire for guiding development of targeted therapies, 

identifying biomarkers for drug sensitivity, and for understanding the genetic basis of resistance.  

Here, we introduce PDX for Childhood cAncer Therapeutics (PCAT), a new database of pediatric cancer 

PDX models. PCAT currently stores information of 324 PDX models spanning all major cancer types seen 

in children, including some very rare subtypes. Of these models, 309 have at least one type of genomic 

profiling data (somatic mutation, n=289; expression/fusion, n=244; copy number, n=282). Preclinical 

testing data are available for 68 models across 79 therapeutic agents. To facilitate comparisons of PDXs 

and patient tumors, PCAT curated clinical and molecular data from TARGET so that patterns learned 

from PDXs can be easily replicated in patient tumors. User friendly interfaces were constructed for 

searching and data mining. PCAT is freely available without the need for registration at 

http://pcat.zhenglab.info or http://www.pedtranscriptome.org.  

 

DATA CONTENT 

In the current release, PCAT hosts information of 324 pediatric cancer PDX models. These models reflect 

cancers commonly observed in children, including acute lymphocytic leukemia (ALL, n=95), 

osteosarcoma (OS, n=45), neuroblastoma (NBL, n=40), medulloblastoma (MBL, n=25), 

rhabdomyosarcoma (RMS, n=20), Wilms tumor (WT, n=14), atypical teratoid rhabdoid tumors (ATRT, 

n=12), glioblastoma (GBM, n=12), ependymoma (n=12), Ewing sarcoma (ES, n=11), and 36 others (Figure 

1A). In addition to diagnosis, demographic information is available for 294 models. The average age of 

the tissue donors was 8 years old. Thirty-seven percent of the models were derived from relapsed, post-

treatment, or progressing diseases, whereas 63% were derived from tumors at diagnosis.  

Mutation and copy number data were curated for 289 models either from PPTP (Pediatric Preclinical 

Testing Program) (7) or PPTC (Pediatric Preclinical Testing Consortium) (8). Gene level copy number 

changes were obtained by discretizing copy number values into homozygous deletion (-2), heterozygous 

deletion (-1), neutral (0), gain (1), and amplification (2) using GISTIC2 (9). RNA sequencing based gene 

expression and fusions were obtained from PPTC (8). Preclinical testing results of 68 models over 79 

therapeutic agents were manually collected from individual agent testing studies published since 2008. 

Drug responses are categorized into six levels,  progressive disease 1 (PD1, value 1); progressive disease 

2 (PD2, value 2);  stable disease (SD, value 3); partial response (PR, value 4); complete response (CR, 

value 5); maintained complete response (MCR, value 6). Detailed explanation of these six drug response 

levels for solid tumors and blood cancers can be found on the ‘help’ page of the website. A summary of 

PDX molecular data is shown in Figure 1B. A different visualization (UpSet plot) is provided in 

Supplementary Figure 1.    

In addition to PDX models, PCAT also curated patient tumor data from TARGET (Supplementary Figure 2). 

These data enable users to examine patterns observed from PDXs in patient tumors, and to further 

perform analyses that are not feasible using models such as survival analysis. Clinical, mutation, and 

expression data of the TARGET dataset were downloaded from GDC data portal (Supplementary Table 1). 

Copy number segmentation files were downloaded from TARGET Data Matrix and were further analyzed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.165282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.165282
http://creativecommons.org/licenses/by-nc-nd/4.0/


by GISTIC2 to ensure compatibility with those of PDXs (9). Only high confidence mutations called by at 

least two callers (MuSE (10), MuTect2 (11), SomaticSniper (12) and VarScan2 (13)) were included in our 

database.  

Gene fusions are a very important group of cancer drivers, particularly for childhood cancer. To 

catalogue gene fusions as a community resource, we employed our in-house fusion caller PRADA (14) 

and a well benchmarked tool STAR-Fusion (15) on 943 TARGET samples (Supplementary Table 2). This 

analysis identified a total of 8912 fusions by the two callers, with 3718 by PRADA, 5980 by STAR-fusion, 

and 786 called by both callers. We benchmarked our fusion identification using driver fusion events 

annotated for some ALL and AML patients in the clinical data. Of the 234 driver fusion events, PRADA 

identified 209 (89%) and STAR-Fusion identified 194 (83%). Combined, these two tools identified 90% of 

the total 234 fusions (Figure 2A). We next broke down these fusions by cancer type and sample type. As 

expected, considerable heterogeneity was observed in fusion loads in each cancer type (Figure 2B). 

Interestingly, post-treatment AML samples demonstrated significantly higher number of fusions than 

primary and recurrent samples (both p values < 0.001, Wilcoxon rank sum test), consistent with the 

anticipation that cytotoxic chemotherapy causes DNA breaks leading to increased fusion rates. Few 

post-treatment samples were available for other cancer types thus were excluded from this analysis.  

 

WEB INTERFACE AND DATA DOWNLOAD 

PCAT web interface is organized into a resource and two analysis sections.  Each analysis section consists 

of several functional modules. The resource section is the interface to the major data stored on PCAT, 

including the 324 PDXs and gene fusions. When searching for PDXs, users can specify histology, 

mutation, or gene fusion as search criteria. Results will be returned in a tabular format divided into 

clinical information, mutation, fusion, and preclinical testing if available. An example of the PDX 

summary page is shown in Figure 3A. Similarly, fusion search results will be returned also in a tabular 

format listing fusion and the case ID where this fusion is found. Clicking each fusion links to a page that 

summarizes the prevalence of the fusion in disease cohorts. The fusion detail page displays technical 

parameters of the fusion identification, a circos plot illustrating all fusions identified in the sample, and 

the expression of the two partner genes (Figure 3B).  

The analysis modules are designed to enable exploration of genomic and preclinical data of PDXs and 

patient tumors. In the current release, PCAT is focused on gene expression data analysis because 

childhood cancers harbor far fewer mutations than their adult counterparts according to recent large-

scale genomic studies (16,17). “Single gene analysis” modules allow users to correlate expression of the 

input gene with histopathological parameters, patient prognosis, and genomic alterations (copy number 

and mutation). It also allows users to find genes that share co-expression patterns with the input gene in 

a selected dataset. “Multiple gene analysis” modules allow users to visualize expression patterns of the 

input genes (“visualization” module). The “single sample gene set enrichment (ssGSEA) analysis” module 

allows users to aggregate the expression of an input gene set into a single score. The co-expression 

module returns pairwise expression correlation based on the select dataset. If users choose to remove 

lineage effect, PCAT will z-score transform the expression data for each tissue of cancer origin before 

calculating expression correlation. Finally, PCAT allows correlation of gene expression and mutation with 

preclinical testing results in the “preclinical testing” module.  
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For all modules, PCAT provides download links for returned results so that users have the opportunity to 

reproduce and customize figures for publications and other purposes. Fusion results for TARGET can be 

found in Supplementary Table 2.  

 

ANALYSIS MODULES 

We use examples to demonstrate the utility of the analysis modules in generating and testing 

hypotheses. First, we show expression of PDGFRA, a marker of mesenchymal stem cells, in PDX models 

(Figure 4A). As expected, PDGFRA is highly expressed in cancers of mesenchymal origin including 

extracranial rhabdoid cancer and osteosarcoma. This pattern is replicated across TARGET cohorts 

(Supplementary Figure 3). Next, we show the correlation between CDKN2A deletion and expression. 

CDKN2A is a well-established tumor suppressor and is frequently deleted in cancer. In ALL models, 

CDKN2A deletion is strongly associated with decreased expression (Figure 4B). The same pattern is 

observed in osteosarcoma (data not shown), a cancer type with high genomic instability (18). These data 

collectively show DNA deletion is a common mechanism to inactivate CDKN2A in cancer.  

The “survival analysis module” allows users to perform survival analysis using both clinical parameters 

and gene expression. PCAT supports univariate and multivariate survival analysis by deploying the R 

package survminer. When no query gene is input, users can perform survival analysis using clinical 

parameters. To correlate gene expression with clinical outcome, PCAT provides four methods to divide 

gene expression into groups, including auto-calculated threshold, mean value, median value, and 

customized cutoff. The auto-calculated threshold is calculated by testing all possible cut-off values 

between the top 20% and bottom 20% samples based on the expression of the gene and adopts the 

value that best separates the clinical outcomes of the high and low groups. Kaplan‐Meier plot is 

generated for visualization. Users may also choose one or several clinical parameters as co-variates to 

conduct multivariate survival analysis. A forest plot will be generated to show the hazard ratio of each 

variate generated in the analysis. To demonstrate the utility of this module, we use TERT and 

neuroblastoma as an example. High TERT expression, an indicator of active telomerase, predicts high 

risk tumors in neuroblastoma (19). Using either mean or median to split the cohort, PCAT shows high 

TERT expression is significantly associated with worse overall survival in the TARGET neuroblastoma 

dataset (Figure 4C). This correlation holds even when MYCN amplification is added as a covariate to the 

analysis (Supplementary Figure 4), suggesting TERT expression is an independent prognostic factor.  

We use a list of 20 MYCN targets identified by shRNA screening (20) to demonstrate utility of the 

“ssGSEA” module. We first ran ssGSEA using these genes in PDXs. The output clearly showed higher 

scores in neuroblastoma models than others, suggesting this group of genes is upregulated in 

neuroblastoma (Supplementary Figure 5).  We then re-ran ssGSEA using the TARGET neuroblastoma 

dataset. We observed that MYCN amplification was strongly enriched in samples with higher ssGSEA 

scores (hence higher expression of the target genes) (Figure 4D), verifying the positive regulation of 

these genes by MYCN. 

Finally, we use 19D12 (also known as SCH717454) inhibitor to demonstrate the utility of the preclinical 

testing module. SCH717454 is a fully human antibody inhibiting the insulin-like growth factor 1 receptor 

(IGF1R) (21). Correlating IGF1R expression and response to 19D12 reveals that maintained complete 

response (MCR) demonstrated by two osteosarcoma models (OS-1, OS-9) is associated with high IGF1R 

expression (Figure 5A). The same pattern was observed when limiting this analysis to osteosarcoma 

models only (Figure 5B). OS-2, another osteosarcoma model with much higher IGF1R expression, shows 

limited response to 19D12 (PD2). Interestingly, this model has much higher expression of IGF1 and IGF2 
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than the two sensitive models (Supplementary Figure 6). Despite a small sample size, these observations 

suggest that high IGF1/2 expression may be an escape mechanism to 19D12 inhibition for 

osteosarcomas.  

 

SUMMARY AND FUTURE DIRECTIONS 

In this work, we describe PCAT, a new resource for childhood cancer PDX models. Previously published 

portals such as PDXFinder (22) has a larger repository than PCAT. However, PCAT is distinct in its 

collection of childhood cancer PDXs. For instance, searching “neuroblastoma”, a malignancy of the 

peripheral nervous system commonly seen in children, found one model on PDXFinder, but 40 models 

on PCAT. Among the PCAT functions/features not provided by PDXFinder are the intuitive interface that 

has been developed to allow users to explore the genomic and preclinical testing data of these models, 

as well as facilitation of comparisons between patient tumors and PDX models by integrating TARGET 

datasets into the portal. The gene fusions of nearly 1,000 tumors is a unique resource that allows users 

to inquire and examine genes and their potential involvement in fusion events.  

The next step for PCAT is to expand its PDX collection. More than 100 new models generated by PPTC 

and CPRIT GCCRI Core (https://gccri.uthscsa.edu/services/pdx-core/) are currently in the pipeline and 

will be integrated into PCAT. Most of these models were derived from patients of Hispanic ethnicity thus 

reflecting a unique demographic patient group in south Texas. Meanwhile, more preclinical testing data 

and protocols of preclinical testing experiments will be gradually added to the portal.  

In addition, more functional modules will be added to facilitate data mining and visualization. For 

instance, new modules will be added to enhance users’ ability to explore mutations. More importantly, 

we will implement functions that allow users to compare their own samples to our PDX models so that 

results of PDX preclinical testing can be a reference to predict the query sample’s sensitivity to 

therapeutic agents. We envision these new modules will greatly enhance the usability and translational 

relevance of this resource.   
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A B

Figure 1. A summary of PDX models in the current PCAT release. (A) A pie chart illustrating histology of the 324 models. (B) An

overview of molecular and preclinical testing data of the 324 models. Each column represents one model. Tumors are separated into

liquid cancer (dark green) and solid tumors (maroon). Blue bar denotes data is available for the model.
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A

B

Figure 2. Gene fusions identified in TARGET samples. (A) Benchmarking of fusion identification against 234 driver events annotated

in ALL and AML clinical data. Each column represents one fusion. Solid color indicates the fusion was found by one of the tools. (B)

Distribution of fusion events across cancer types and sample types (NBL, neuroblastoma; RT, rhabdoid tumor; ALL, acute

lymphoblastic leukemia; AML, acute myeloid leukemia; WT, Wilms tumor; CCSK, clear cell sarcoma kidney). Each dot represents a

cancer sample. Fusion counts of post-treatment samples are significantly higher than primary and recurrent samples in ALM (both p

values < 0.001, Wilcoxon rank sum test).
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Figure 3. The display page of PDX and fusion search results. (A) PDX Information is displayed in a tabular page divided into clinical,

mutation, fusion, and preclinical testing data if available. (B) Fusion page displays identification information (evidence, junctions, etc),

a circos plot illustrating all fusions identified in this case, and a scatter plot showing expression of the two partner genes. BCR-ABL1 is

used in this example (red in circos plot).
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Figure 4. Examples demonstrating the utility of the analysis modules. (A) Expression of PDGFRA, a mesenchymal stem cell marker, across PDX models. (B)

Correlation of CDKN2A expression and deletion in ALL PDXs. ”-2”, homozygous deletion; “-1”, shallow deletion; “0” copy number neutral. (C) Correlation of

TERT expression and patient overall survival in TARGET neuroblastoma. TERT expression is divided into high and low based on median expression. (D) ssGESA

results for top 20 MYCN targets in TARGET neuroblastoma. The color bar on top of the heatmap indicates MYCN status per clinical data annotation. Samples are

ordered ascendingly per ssGSEA score, as indicated by the top bar.
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Figure 5. Molecular correlates of drug responses. (A) Model response to 19D12, an IGF1R antibody inhibitor, is correlated with high expression of the target

gene IGF1R. X axis reflects the RECIST criteria: 1-2, progressive disease; 6, maintained complete response. (B) Limiting the analysis to osteosarcoma models

only sustains the association, suggesting it is not a tissue effect i.e. osteosarcoma has high IGF1R expression and the drug works better on osteosarcoma. In

both figures, a minimum of two samples was required per each response group.
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Supplementary Figure 1. A summary of PDX data currently hosted at PCAT. The bars on the left show the total number of samples

for each data type. Bars on top show the number of samples with the overlapping data indicated by the solid connecting dots.

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted June 23, 2020. 
; 

https://doi.org/10.1101/2020.06.22.165282
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.06.22.165282
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2. A summary of the TARGET data that have been integrated into PCAT. The bars on the left show the total

number of samples for each data type. Bars on top show the number of samples with the overlapping data indicated by the solid

connecting dots.
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Supplementary Figure 3. PDGFRA expression across TARGET cohorts. Similar to observations made in PDX models,

PDGFRA is highly expressed in cancers of mesenchymal origin including osteosarcoma and rhabdoid cancer but very low in

blood cancers.
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Supplementary Figure 4. Multivariate survival analysis. This example tests the correlation between TERT expression and

neuroblastoma prognosis. MYCN amplification status is included to demonstrate that the prognostic value of TERT

expression is independent of MYCN.
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Supplementary Figure 5. ssGSEA analysis of MYCN targets in PDXs. The top 20 genes positively regulated by MYCN were

downloaded from Valentijn et al. PNAS 2012. These genes were identified from shRNA screening in the original study. Each

column represents one PDX model. Samples are odered from low to high based on ssGSEA scores.
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Supplementary Figure 6. Molecular correlates of drug responses. (A) Although OS-1 and OS-9 show MCR to IGF1R inhibitor 19D12, another osteosarcoma

model OS-2 shows no response (progressive disease) despite higher IGF1R expression. This figure shows OS-2 also has higher expression of IGF1 than the two

responsive models. X axis reflects the RECIST criteria: 1-2, progressive disease; 6, maintained complete response. (B) OS-2 has higher IGF2 expression than OS-

1 and OS-9. Note that in this figure the y axis is in log scale.
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