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Summary 
Transcription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or DNA can 
alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies have profiled 
energetic effects of DNA mutations extensively, we lack similar information for TF variants. Here, we present 
STAMMP (Simultaneous Transcription Factor Affinity Measurements via Microfluidic Protein Arrays), a high-
throughput microfluidic platform enabling quantitative characterization of hundreds of TF variants simultaneously. 
Measured affinities for ~210 mutants of a model yeast TF (Pho4) interacting with 9 oligonucleotides (>1,800 Kds) 
reveal that many combinations of mutations to poorly conserved TF residues and nucleotides flanking the core 
binding site alter but preserve physiological binding, providing a mechanism for mutations in cis and trans to rewire 
networks without insurmountable evolutionary penalties. Moreover, biochemical double-mutant cycles across the 
TF-DNA interface reveal molecular mechanisms driving recognition, linking sequence to function.  

Introduction 
Regulation of gene expression is critical for proper organismal development and response to environmental stimuli. 
This regulation is accomplished primarily by transcription factor (TF) proteins that bind specific regulatory DNA 
sequences in the genome to activate or repress gene expression (Mitsis, et al., 2020). Reflecting this central role in 
cellular function, mutations to either DNA regulatory sequences or TF proteins have profound effects across 
evolution and medicine. Mutations that alter TF-DNA interactions in cis (DNA binding sites) or in trans (diffusible 
factors, e.g. TFs) drive organismal evolution by rewiring transcriptional networks and generating phenotypic 
variation (Signor and Nuzhdin, 2018; Wong, et al., 2018). In medicine, the majority of disease-associated mutations 
in humans are found within regulatory DNA (Maurano et al., 2012; Nishizaki, et al., 2020), and mutations in TFs 
often lead to cancers (Lambert M, et al., 2018; Lee and Young, 2013) and developmental disorders (Lee and Young, 
2013; Barrera, et al., 2016). A quantitative and predictive understanding of how mutations affect TF/DNA binding 
interactions would therefore have broad impacts for understanding biology. 

The probability of TF occupancy at a given genomic site is typically modeled as a function of  the Gibbs free energy 
of binding (ΔG) for that TF/DNA sequence combination and the effective concentration of free TFs in the nucleus 
(Foat, et al., 2006, Kim and O’Shea, 2008, Segal, et al., 2008; Gertz et al., 2009; Weirauch, et al., 2015; Zhao and 
Stormo, 2015; Le, et al., 2018). As a result, differences in binding site affinity and available TF concentrations can 
modulate the strength and timing of transcriptional programs (Crocker, et al., 2016). While much effort has focused 
on determining the highest affinity sites for a given TF (Chen, et al., 2016; Jolma, et al., 2010; Zykovich, et al., 2009), 
non-specific and low-affinity sites in the genome often play essential functional roles and are evolutionarily 
conserved (Farley, et al., 2015; Crocker, et al., 2016; Kribelbauer, et al., 2019). Given that even subtle changes in 
affinity can alter transcription (Meinhardt, et al., 2013; Rajkumar, et al., 2013; Le, et al., 2018), understanding how 
TF and DNA mutations affect binding requires the ability to measure affinities with high accuracy over a wide 
energetic range. 

Many prior efforts have comprehensively characterized how variation in underlying DNA sequence alters TF binding 
energies for up to 106 DNA variants in parallel (Le, et al., 2018). These studies have established that typical TF-DNA 
binding energies span nearly 2-3 orders of magnitude (~3 kcal/mol) (Nutiu, et al., 2011; Kribelbauer, et al., 2019), 
that mutations to nucleotides within or flanking the “core” consensus site can alter affinities over a wide range (Le, 
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et al., 2018; Maerkl and Quake, 2007), and that measured binding energies can predict levels of induction and rates 
of transcription in vivo (Gaudet and Mango, 2002; Aow, et al., 2013).  

By contrast, far less is known about how mutations throughout a TF protein alter DNA binding, even though binding 
energies depend on the sequences of both the underlying DNA and the TF. This lack of data likely stems from the 
technical challenges associated with high-throughput expression, purification, and quantitative biophysical 
characterization of large TF mutant libraries. As a result, previous studies have typically focused on limited sets of 
residues, such as those that directly contact the DNA sequence (Ferreiro, et al., 2008; Maerkl and Quake, 2009; 
Wang, et al., 2017), regulate dimerization of protein partners (Voronova and Baltimore, 1990), or are associated 
with human disease (Barrera, et al., 2016). While these studies have confirmed that mutations at strongly conserved 
residues typically dramatically alter DNA binding affinity, the effects of mutations at poorly conserved residues 
remain understudied (Meinhardt, et al., 2013). Large quantitative datasets describing the effects of mutations 
throughout and surrounding TF binding domains on DNA binding could reveal mechanistic insights not easily 
inferred from static crystal structures and provide critical information about binding interfaces for TFs recalcitrant 
to crystallization efforts (Fuxreiter, et al., 2011). In addition, such datasets would also provide an invaluable resource 
for optimizing computational methods designed to predict mutational effects for precision medicine (Ng and 
Henikoff, 2003; Adzhubei, et al., 2010; Choi, et al., 2012) and create synthetic transcriptional circuits.  

Here, we report the development of STAMMP (Simultaneous Transcription Factor Affinity Measurements via 
Microfluidic Protein Arrays), a microfluidic platform capable of measuring binding affinities for >1500 TF mutants 
simultaneously interactive with a DNA sequence of interest in a single experiment. As a first application, we 
systematically quantify mutational effects on DNA binding affinity and specificity for Pho4, a homodimeric basic 
helix-loop-helix (bHLH) TF in yeast that binds a 5'-CACGTG-3' E-box motif to drive gene expression in response to 
phosphate starvation (Ogawa, et al., 2000). We measured more than 1,800 binding affinities (Kds or ΔGs) for ~210 
Pho4 mutants interacting with oligonucleotides containing mutations within and flanking the core E-box site and 
found that a large fraction (>70%) of residue mutations have statistically significant effects on DNA binding. 
Strikingly, of the more than 1800 pairs of TF and DNA mutations assayed, nearly 70% of mutations that altered but 
did not ablate binding occurred at nucleotides outside of the core binding site and at residues that do not contact 
DNA nucleotides. These combinations of mutations in cis and in trans could tune affinities to enable network 
rewiring without large-scale deleterious effects, suggesting that previously unexplored residues and mutations may 
play an unexpected role in evolution of new function. Finally, biochemical double mutant cycles across the TF-DNA 
interface provide mechanistic insight into the interactions that govern recognition, quantifying the energetic 
contributions of contacts predicted from the crystal structure and revealing additional residues required for 
specificity. We anticipate that STAMMP and the presented data will be broadly useful for future development of 
quantitative models designed to link TF sequence to structure and function. 

Results 
STAMMP enables high-throughput characterization of the functional effects of TF mutations on DNA binding. 
High-throughput functional characterization of large numbers of TF mutants requires the ability to recombinantly 
express and purify hundreds of TFs in parallel. To accomplish this task, STAMMP affinity measurements take place 
within a microfluidic device containing 1,568 valved reaction chambers, each of which contains a “plasmid” 
compartment and a “binding reaction” compartment (Figs. 1A, S1) (Fordyce, et al., 2010; Maerkl and Quake, 2007). 
Three sets of valves control fluid flow within and between reaction chambers: “neck” valves (Fig. 1A, green) 
separate plasmid and binding compartments, “sandwich” valves (Fig. 1A, red) physically sequester reaction 
chambers from one another to prevent cross-contamination, and “button” valves (Fig. 1A, blue) in the binding 
compartment enable selective surface patterning within the device and trap macromolecular binding interactions 
at equilibrium for quantitative affinity measurements.  

To program each reaction chamber with a specific TF variant, microfluidic devices are aligned to spotted plasmid 
arrays (Fig. 1B). Each plasmid encodes expression of a TF variant fused to a C-terminal monomeric eGFP tag 
(Zacaharias, et al., 2002), with the identity of each mutant encoded by its position in the array. After alignment, 
device surfaces are specifically patterned with anti-eGFP antibodies (anti-GFP) beneath the “button” valve and 
coated elsewhere with biotinylated bovine serum albumin (bBSA) to prevent non-specific adsorption. All TF variants 
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are then expressed in parallel via introduction of cell-free extract into each chamber and incubation of the device 
for 1 hour at 37°C. After expression, TFs are purified via recruitment to antibody-patterned surfaces (Figs. 1B, S2). 
Subsequent closing of the “button” valves allows extensive washing and trypsin digestion to remove any 
nonspecifically bound TFs and remove cell-free expression components while protecting surface-immobilized 
protein; the final eGFP fluorescence intensity in each chamber reports on the amount of immobilized TF (Fig. 1B,C).  

To measure full binding isotherms for all expressed TFs interacting with a particular oligonucleotide sequence, we 
iteratively introduce fluorescently-tagged DNA duplexes at multiple concentrations across all chambers (Figs. 1C, 
S2). After allowing reactions to come to equilibrium, we again close the “button” valves in each chamber, thereby 
trapping all bound TF-DNA complexes. After washing, we image all reaction chambers across the device to quantify 
TF and DNA intensities and estimate fractional occupancies (Fig. 1C). We then fit estimated fractional occupancies 
as a function of the effective concentration of free DNA in solution (calculated from intensities using per-chamber 
calibration curves, Fig. S3) to a Langmuir isotherm to extract binding affinities (Kds) and relative differences in 
binding affinities (ΔΔGs) for all TFs in parallel (Fig. 1D). 

A library of Pho4 mutants designed to probe mechanisms of binding site recognition. 
Basic helix-loop-helix (bHLH) TFs are highly abundant in eukaryotes, representing the third most abundant TF 
structural class in the human genome (Lambert, et al., 2018). Pho4 is one of eight bHLHs in S. cerevisiae (Chen and 
Lopes, 2007), and prior work has established that Pho4 binds the E-box core motif (5’-CACGTG-3’) element to drive 
gene expression in response to phosphate starvation. In addition to this well-characterized and inducible biological 
function, Pho4 has a well-characterized DNA binding interface (Shimizu, et al., 1997; Cave, et al., 2000) and a wealth 
of prior biophysical data describing how mutations to the underlying DNA sequence affect affinity (Maerkl and 
Quake, 2007; Fordyce, et al., 2010; Le, et al., 2018). Comparisons between the Pho4 crystal structure and those of 
other bHLH proteins (Shimizu, et al., 1997; Brownlie, et al., 1997; Parraga, et al., 1998) also show structural 
similarity, suggesting that Pho4 can serve as a model for understanding how bHLH specificity is encoded in protein 
sequence.  

The DNA binding domains (DBDs) of all bHLH TF superfamily members contain a helical basic region (which directly 
contacts DNA) and two additional helices separated by an unstructured loop of variable length (Fig. 2A). Four 
residues within the basic region directly contact nucleobases within the major groove of the E-box recognition site 
and are strongly conserved throughout organisms, including yeast and humans (R252, H255, E259, and R263 in 
Pho4); additional residues within the loop contact the DNA backbone (Fig. 2A, Fig. S4). Pho4 binds DNA as a 
homodimer (Fig. 2B), with conserved hydrophobic residues in the helix 1 and helix 2 regions promoting stable 
dimerization (Fig. 2A). 

To systematically probe how residues throughout and immediately surrounding the DNA binding domain (DBD) 
contribute to binding affinity and specificity, we generated a library of 223 Pho4 mutants comprised of systematic 
substitutions, variants from other bHLH orthologs, known disease-associated variants from human orthologs, and 
a selection of mutants designed to probe mechanisms of binding (Fig. 2C). For systematic substitutions, we 
introduced alanine and valine residues at each site, thereby ablating side chains and substituting a hydrophobic 
moiety, respectively. To probe disease-associated and evolutionary variants, we introduced mutations from the 
human bHLH MAX previously observed in tumor samples and made substitutions to residues observed in orthologs 
across ascomycetes, humans, and C. elegans (DeMasi, et al., NAR, 2011) at the corresponding Pho4 positions. 
Finally, we tested the effects of altering the electrostatic charge of amino acids on Pho4 binding by substituting 
charged residues for those with the opposite charge or by substituting uncharged residues for positively charged 
residues.  

After on-chip expression, immobilization, and purification, expressed TFs were visible as high-intensity spots within 
each reaction chamber in the eGFP channel, while chambers lacking plasmid typically showed no fluorescence (Fig. 
2D). A small fraction of chambers lacking plasmid yielded observable intensities, providing a sensitive readout of 
potential cross-contamination between chambers that was used to set a lower threshold for identifying chambers 
with successful expression. Overall, 216 of 223 mutants (~97%) successfully expressed at least once (Fig. 2E) and 
205 of 223 mutants (~92%) expressed consistently across the 26 experiments in this study (Fig. 2E).  
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Most mutations throughout Pho4 have statistically significant effects on DNA binding. 
First, we tested which residues contribute to Pho4 DNA binding by quantifying the effects of amino acid mutations 
on measured binding affinity for 5'-C CACGTG A-3', a  cognate DNA sequence with medium-affinity flanking 
nucleotides chosen to enhance the ability to observe beneficial and deleterious effects on binding (Le, et al., 2018). 
We generated fluorescently-labeled DNA constructs by annealing an Alexa647-labeled primer to a universal 
sequence at the 3’ end of each DNA and extending constructs using Klenow polymerase fragment (Fig. 3A). 
Measured binding affinities were highly reproducible between experimental replicates (Fig. S5), allowing reliable 
determination of mutations that both increased and decreased affinity relative to wildtype Pho4. To estimate 
affinities for deleterious variants with Kd values above concentrations probed experimentally, we globally fit all 
binding curves to a Langmuir isotherm with a single shared saturation value and individually-fit Kd values (Fordyce, 
et al., 2010; Fordyce, et al., 2012; Nguyen, et al., 2019). Extracted Kd and ΔΔG values for all mutants across 
experiments were highly reproducible over an energetic range of ~4 kcal/mol (Kd: r2 = 0.96, RMSLE = 0.22 nM; ΔΔG: 
r2 = 0.96, RMSE = 0.31 kcal/mol) (Figs. 3B,C, S5). We designated mutants with measured ΔΔG values not statistically 
significantly different (using a two-tailed t-test with a Bonferroni correction) from those for a mutant lacking DNA-
binding activity (A299D, which likely disrupts the dimerization interface) as binding-deficient (see Methods, Fig. S6, 
S7). 

A large fraction of mutations to residues within and outside of the DNA binding domain had statistically significant 
effects on DNA binding (~56%), including at positions not in contact with DNA (Fig. 3D). As expected, mutating 
residues outside of the DNA binding domain generally had little to no effect, while mutations to nucleotide- and 
backbone-contacting residues typically reduced binding to below the limit of detection (Figs. 3D,E). Despite poor 
sequence conservation of the bHLH loop region (Fig. 2A), mutations to residues in the loop close to either helix 1 
or helix 2 had strong effects on binding, likely due to either proximity to the DNA molecule and known backbone 
contacting residues or via disruption of essential secondary structure (Fig. S8). Although mutations to strongly 
conserved residues tended to be more deleterious overall (r2 = 0.41), effects were strongly mutation dependent, 
with different substitutions at a given position yielding changes in binding affinities that varied by ~2 kcal/mol (Figs. 
S8, S9). PROVEAN, a computational algorithm designed to predict the functional effects of mutations, was 
moderately successful at predicting whether mutations with large energetic effects were damaging or benign using 
a discrete cut-off (AUC = 0.82); however, the overall correlation between the magnitudes of predicted and observed 
effects was relatively poor (r2 = 0.35) (Figs. S9). Taken together, these results indicate that phylogeny alone is not 
sufficient to predict observed mutational effects on affinity. 

Multiple mutations to residues near DNA contacts and outside of the DNA-binding domain significantly increased 
DNA affinity, including H255R, which corresponds to a hotspot cancer variant in the human MAX protein (Cerami, 
et al., 2012; Gao, et al., 2013; Wang, et al., 2017). These results suggest that this particular variant may exact its 
deleterious effects by increasing nonspecific binding to DNA in the genome. This is also consistent with prior 
suggestions that TFs are evolutionarily selected to have moderate affinities in vivo to enable dynamic transcriptional 
responses to changing nuclear TF concentrations (Gaudet and Mango, 2002; Wang, et al., 2017; Kribelbauer, et al., 
2019) (Figs. 3D,E). The removal of positively charged residues in the N-terminal intrinsically disordered tail (Fig. S10) 
yielded small but statistically significant increases in DNA binding affinity, suggesting that charged residues outside 
the DBD might play a role in DNA binding in Pho4 as reported for other TFs (Vuzman and Levy, 2010; Vuzman and 
Levy, 2012; Shammas, 2017). 

Systematic mutagenesis coupled to high-resolution affinity measurements can reveal secondary structure. 
Many TFs, including bHLHs, include large disordered regions that are thought to assume a folded 3D structure only 
upon binding DNA and therefore pose technical challenges for crystallization. We therefore sought to assess 
whether systematic mutational scans coupled with quantitative affinity measurements could reveal clues regarding 
secondary structures in the absence of crystal structures or NMR data. Observed periodic effects of mutations 
within helix 1 mapped to the reference crystal structure (Shimizu, et al., 1997) revealed that deleterious mutations 
lie at the protein dimerization interface while benign mutations can be found at the solvent-exposed exterior (Fig. 
3F). Moreover, valine substitutions tended to be more deleterious compared to alanine mutations at the DNA 
interface (likely due to their steric bulk) while alanine substitutions were disfavored compared to valine mutations 
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at the protein-protein interface (likely due to disruptions in hydrophobic packing) (Fig. S11). Scanning mutagenesis 
with amino acid substitutions of varied biochemical properties coupled to high-resolution energetic measurements 
may therefore have utility for guiding computational structural predictions and for explaining mechanisms of 
residue function within a host protein.  

Comparing effects of TF mutations across oligonucleotide sequences reveals residues involved in modulating 
affinity and specificity. 
TF mutations may alter transcriptional regulation by uniformly modulating DNA binding affinity (i.e. altering affinity 
to all DNA sequences equally), modulating DNA specificity (i.e. differentially affecting affinity for some DNA 
sequences), or a combination of the two. To distinguish between affinity and specificity effects, we systematically 
measured effects of TF mutations on binding to 8 additional DNA sequences comprised of single-residue mutations 
within the core 5’-CACGTG-3’ E-box motif as well as the first flanking nucleotide on either side (Fig. 4A, Figs. S12-
14). Consistent with the known Pho4 position weight matrix (PWM) and a variety of previous reports, we observed 
that mutations to the core E-box motif significantly reduced affinity and a 5’ C flanking nucleotide was preferred 
(Fisher and Goding, 1992; Maerkl and Quake, 2007; Le, et al., 2018; Spivak and Stormo, 2012). Measured affinities 
were ~6-fold weaker than seen previously (Maerkl and Quake, 2007), likely due to low levels of nonspecific 
adsorption of expressed TFs on chamber walls (see Methods); ΔΔGs are a relative measurement and are therefore 
unaffected. 

To identify TF mutants with affinity or specificity effects across multiple DNA sequences, we quantified the spread 
in measured DNA binding affinities (standard deviation) normalized by the median affinity for each oligo 
(log10(Kd)i,j/<log10(Kd)j> where i is a particular TF mutation and j is a particular oligonucleotide mutation ) (Fig. 4B). 
Overall, standard deviations increase as measurements diverge towards very high or low affinity (particularly for 
core mutations), reflecting increased measurement noise towards the dynamic range limits of the assay. Several 
mutants (H255R, A289R, and A289K) increase the median affinity without increasing the standard deviation, likely 
by positioning positively charged residues in proximity to the negatively charged DNA backbone (Figs. 4B, S15). 
Several mutations to critical DNA-contacting residues, R262Y and H255N, both of which are observed in the 
phylogenetic record (Kim, et al., 1995; Shimizu, et al., 1997; del Olmo Toledo, et al., 2018; Figure 2A) appeared to 
increase the variance in measured affinities, suggesting that these mutations may primarily alter specificity (Fig. 
4B). 

Measured affinities plotted as a function of mutated residue position for all 1853 unique TF-DNA mutant pairs 
reveal several striking trends (Fig. 4C). In vivo, WT Pho4 binds both the reference E-box sequence (5’-CACGTG-3’) 
and a known biologically-relevant low-affinity site (5’-CACGTT-3’) (Barbaric, et al., 1996; Zhou and O’Shea, 2011); 
we therefore used these values as guidelines for establishing a range of physiologically relevant binding (Fig. 4C). 
For WT Pho4 and for mutations outside of the DBD, changes to less favorable flanking nucleotides or mutations in 
the core binding site typically reduced affinities by ~4- and 20-fold, respectively, preserving low-to-medium affinity 
binding. For many residues within the DBD (and particularly for those that make direct contacts with DNA), the 
combined effects of TF and DNA mutations reduced binding to that of the dynamic range floor (Fig. 4C). However, 
a large number of DBD mutants retained the ability to bind oligonucleotides containing flanking sequence 
mutations with a range of physiologically-relevant binding affinities. Overall, 128 of the 151 mutants with altered 
binding relative to the WT protein retained the ability to bind at least some oligonucleotides at levels above 
background. Moreover, some of these mutants have differential effects for different flanking sequences. This ability 
to ‘tune’ binding affinity via combinations of TF and DNA mutations provides a potential mechanism for rewiring 
regulatory networks in trans while avoiding unwanted pleiotropic effects. 

Differences in electrostatics and helical propensity modulate binding affinity. 
Closer examination of residues that significantly increased DNA binding affinity revealed that many appeared to 
introduce an additional positive charge near the DNA (~52%, as for H255R, A289K, and A289R) (Figs. 4D,E, S16). 
However, a large fraction did so without altering charge at DNA-contacting residues, including H257A and R301A 
(Figs. 4D,F). Approximately 33% of mutations found to enhance affinity were primarily alanine or valine 
substitutions at solvent-facing residues (Figs. 4D, 5A, S16), highlighting the role of non-contacting and distal amino 
acid residues in dictating binding affinity and spurring mechanistic questions regarding how they exert their effects. 
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Prior studies have revealed that helix 1 of Pho4 and other bHLH TFs are unstructured in the absence of DNA and 
adopt a primarily helical conformation upon binding cognate DNA (Cave, et al., 2000; Sauvé, et al., 2004). Prior work 
has shown that modulating the helical propensity of TF sequences can tune binding affinity for DNA sequences 
containing the E-box motif by stabilizing the helical conformation of the TF (Kunne, et al., 1997; Turner, et al., 2004) 
(Fig. 5B). To test if changes in helical propensity were sufficient to explain observed differences in measured binding 
affinity for alanine and valine mutants, we compared measured changes in Gibbs free energy of binding with 
previously determined changes in Gibbs free energy for helix formation (O’Neil and DeGrado, 1990) for all residues 
near DNA-contacting residues (Fig. 5A) and found that these were highly correlated (r2 = 0.58; RMSE = 0.70 kcal/mol) 
(Fig. 5C). As expected, measured ΔΔG values for mutations at nucleotide-contacting residues in helical regions were 
dominated by changes in hydrogen bonding and only weakly correlated with predicted changes in helical propensity 
(r2 = 0.27; RMSE = 2.0 kcal/mol; Fig S17A), and mutations to residues in the loop region, which remains unstructured 
regardless of DNA binding, showed no correlation (r2 = 0.0089; RMSE = 1.2 kcal/mol; Fig S17B). Together, these 
results strongly suggest that mutations in helical regions that modulate the equilibrium between unstructured and 
helical conformations can tune transcription factor binding. 

Double mutant cycles across the TF-DNA interface can reveal intermolecular interactions required for recognition 
Beyond simply cataloging effects, this set of 1,853 quantitative affinities provides a unique opportunity to measure 
the strength of inter-molecular interactions across the TF-DNA interface via biochemical double mutant cycles 
(Horovitz, 1996; Horovitz, et al., 2019). In general, we expect that mutating residue(s) essential for recognizing a 
particular nucleotide will be relatively less deleterious upon that nucleotide’s mutation. As a simplified example, 
consider a TF that binds a DNA sequence such that residue 1 does not directly contact any nucleotides but residue 
2 makes a direct contact with nucleotide 2 (Fig. 6A). For residue 1, mutating this residue will have the same relative 
effect on affinity regardless of the oligonucleotide sequence. For residue 2, mutating this residue will significantly 
reduce binding to the WT oligonucleotide but have a less deleterious effect for an oligonucleotide in which 
nucleotide 2 has been mutated. Systematic comparisons of the relative effects on affinity for all TF mutants for 
each DNA sequence can therefore provide a comprehensive method for revealing functional interactions required 
for specific recognition and binding. 

As a first application of this approach, we compared affinities measured for the Pho4 mutant library interacting 
with the biologically relevant low-affinity 5'-CCACGTTA-3' site and the WT reference E-box sequence (5’-
CCACGTGA-3’). The crystal structure for Pho4 bound to a DNA duplex containing a 5'-CCACGTGT-3' suggests a direct 
contact between the H255 residue and the final G nucleotide within the E-box (Fig. 6B, inset), predicting that 
mutating H255 should have differential effects for sequences containing a G or a T at this position. As expected, 
measured affinities were weaker overall for the mutant DNA sequence, with most mutants having similar effects 
(Figs. 6B, S18-19; r2 = 0.84). However, several mutants were significantly less deleterious for binding the mutated 
DNA sequence than the cognate DNA sequence, including the expected H255 mutants (H255R, H255N, H255V), 
H257T, and E259D. Inspection of measured concentration-dependent binding curves confirmed energetic non-
additivity for combined TF and DNA mutations (Fig. S19D). These additional observed energetic effects can be 
explained by previously observed structural contacts: the E259 residue contacts the C nucleotide base-paired with 
the G on the opposite strand, and H257 is a solvent-facing residue on the same helix as H255, suggesting that H257T 
might alter the conformation of DNA-contacting residues H255 and E259 or the overall helicity of the TF to 
modulate binding. These results therefore establish that double mutant cycles across the TF-DNA interface via 
STAMMP represent a high-throughput approach for detecting relevant functional interactions required for 
recognition. 

Double mutant cycles reveal TF residues required to specify flanking nucleotide preferences 
For Pho4, preferences for nucleotides flanking the core consensus site play a critical role in dictating in vivo 
occupancies, rates of gene activation, and levels of induction (Aow, et al., 2013; Gordân, et al., 2013; Rajkumar, et 
al., 2013; Le, et al., 2018). However, the residues responsible for mediating this specificity remain unknown. While 
the crystal structure of Pho4 suggested that DNA contacting residues R252 and H255 mediate specificity (Shimizu, 
et al., 1997), mutagenesis studies of Pho4 studies have implicated residues outside of the DNA binding domain 
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(Fisher and Goding, 1992) and demonstrated that mutations in orthologous TFs corresponding to the Pho4 A258 
residue can alter flanking nucleotide specificity (Beltran et al., 2004). 

To investigate the origins of flanking nucleotide specificity, we compared measured affinities for a sequence in 
which the first 5’ flanking nucleotide was mutated to a T (5'-T CACGTG C-3') with those for a 5’-G CACGTG C-3' 
variant (Figs. 6C, S20). Although measured affinities for the mutant oligonucleotide were slightly weaker for nearly 
all mutants, a small set of mutants bound the flanking 5’ T nucleotide more tightly. This set included multiple 
mutations to H255, consistent with previous findings that this residue helps mediate flanking nucleotide specificity 
(Shimizu, et al., 1997). However, we also detected enhanced binding for the A258R, H257T, Q260R, and Q260K 
variants (Shimizu, et al., 1997; Beltran, et al., 2004) (Figs. 6C, S20D), establishing that mutations within the DNA 
binding domain can alter specificity (Fig. 6C). These substitutions include both aliphatic and positively charged 
residues, suggesting that introducing steric bulk at the DNA interface (as for A to R and Q to K substitutions) may 
modulate flanking nucleotide specificity (Fisher and Goding, 1992).  

Repeating this analysis for mutations throughout the core binding site recapitulated many contacts predicted by 
the known crystal structure (Fig 6D, S19-24). For mutations that abolish binding across all oligonucleotides (e.g. 
mutations at R263 and most back-bone contacting residues) (Figs. 6D, S21-23), double mutant cycle analysis cannot 
quantify epistasis; however, these critical contacts are typically easily identified from phylogeny. In many other 
cases, double mutant cycle analysis reveals functional consequences that could not be predicted purely from static 
structures. Here, R262Y, located at a known DNA backbone contact, was the only mutant at either position 262 or 
263 still capable of binding DNA, consistent with phylogenetic data showing that the human bHLH family member 
SREBP1 contains a tyrosine at the orthologous position and that this mutation enhances conformational flexibility 
to allow binding to varied E-box sequences (del Olmo Toledo, et al., 2018; Parraga, et al., 1998; Fig. S25). In addition, 
this analysis identified specificity-altering mutations (e.g. H255N and R262Y) that cannot be predicted from a crystal 
structure crystallized in the presence of a single DNA sequence. High-throughput thermodynamic measurements 
can therefore complement and supplement traditional structural analysis for identifying macromolecular contacts. 

Discussion 
Here, we present STAMMP, which enables quantitative measurements of DNA binding affinities across >1,500 TF 
variants within a single experiment. Using this system, we measured absolute and relative binding energies for ~210 
Pho4 mutants interacting with multiple DNA sequences, including substitutions at positions spanning the core 
binding site and the 5’ and 3’ flanking nucleotides. In total, 76% (n=163) of TF mutations led to statistically significant 
differences in DNA binding; of these, 80% (n=133) preserved binding above background levels. A large fraction of 
these residues does not directly contact DNA (either nucleobases or the backbone), suggesting that many poorly 
conserved positions that were previously unexplored experimentally may play critical roles in specifying and 
remodeling transcriptional responses. 

Mutations in cis have long been considered the primary drivers of evolutionary variation (Nelson, et al., 2013; Wong, 
et al., 2018), as TF mutations can have pleiotropic effects on cellular function that limit evolvability and 
diversification of genetic networks (Signor and Nuzhdin, 2018.). These conclusions have been further bolstered by 
experimental evidence that mutations to DNA-contacting residues or core consensus nucleotides often ablate 
binding (Maerkl and Quake, 2009; De Masi, et al., 2011), creating large fitness penalties that pose evolutionary 
barriers. Here, the ability to assess many mutations in parallel and measure even subtle differences in affinity 
suggests that effects of mutations in trans could be compensated for by concomitant changes in nucleotides 
flanking cis-regulatory elements to preserve transcriptional responses (Beltran, et al., 2004; Rogers and Bulyk, 
2018). In addition, the observation that mutations may stabilize helical conformations to promote DNA binding 
suggests that these residues could allow formation of permissive binding intermediates (Bloom, et al., 2010; Gong, 
et al., 2013; Jalal, et al., 2019; McKeown, et al., 2014; Starr, et al., 2017).  The higher affinity binding of these 
permissive binding intermediates could allow TFs to acquire and accommodate additional TF or DNA mutations that 
would otherwise reduce binding to non-physiological levels, making otherwise inaccessible evolutionary 
trajectories feasible.  
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Beyond providing evolutionary insights, we demonstrate here that STAMMP measurements can provide 
information that can be used to better predict structures for TFs refractory to crystallization. Obtaining structures 
for TFs is often technically challenging because many TFs assume a folded conformation only upon interacting with 
a consensus binding site and contain large, intrinsically disordered domains. Reflecting this, of 1639 predicted TFs 
in the human genome, only 185 (~11%) have crystal structures available (Lambert, et al., 2018). Of these structures, 
most are solely composed of the DBD alone and are crystallized only in the presence of a single high-affinity DNA 
sequence. STAMMP can provide critical functional information about residues within intrinsically disordered 
regions previously shown to be important for DNA binding and dynamic protein-DNA recognition (Levy, Cave, et al., 
2000; Shammas, 2017; Ferreiro, et al., 2008; Fuxreiter, et al., 2011). Moreover, the ability to return quantitative 
affinity measurements for multiple oligonucleotide sequences provides critical information required to probe the 
mechanistic origins of specificity and extract energetic information from crystallized structures (Farrel, et al., 2016).  

The experimental difficulty of quantitatively assaying effects of protein mutations has led to the development of 
various computational algorithms that use combinations of phylogeny (Ng and Henikoff, 2003; Hopf, et al., 2017; 
Choi, et al., 2012), structure (Adzhubei, et al., 2010; Blanco, et al., 2018), and prior experimental measurements 
(Pelossof, et al., 2015) to predict mutational effects on DNA binding. While these computational models have shown 
some success in predicting if particular disease-associated mutations ablate DNA binding, comparisons between 
computational predictions and the experimental data generated here establish that prediction accuracies are 
modest at best and typically underestimate effects of mutations to poorly conserved, non-contacting residues 
(Miller, et al., 2017; Reeb, et al., 2020). In future work, we anticipate that STAMMP datasets may serve as critical 
resources for testing, revising, and refining computational algorithms. Furthermore, systematic studies of TFs at 
this resolution may reveal context dependencies for effects of TF mutations and mechanisms by which sequence 
variation within structurally related TFs give rise to differences in sequence preference (Berger, et al., 2008; 
Salisbery, et al., 2011).  

Within the cell nucleus, TF-DNA interaction affinities over a wide physiological range precisely specify 
transcriptional programs (Farley, et al., 2015; Kribelbauer, et al., 2018; Le, et al., 2018), and even subtle decreases 
or increases to affinity can alter transcription rate and disrupt overlying genetic circuits (Gaudet and Mango, 2002; 
Meinhardt, et al., 2013; Farley, et al., 2015; Crocker, et al., 2016; Wang, et al., 2017; Bhimsaria, et al., 2018; Le, et 
al., 2018; Nishizaki, et al., 2020). For most mutations attempting to recapitulate disease-associated human variants, 
binding affinity was reduced to background levels as previously reported (Wang, et al., 2017). However, one mutant 
designed to mimic disease-associated orthologs (H255R) increased DNA binding affinity across a broad spectrum of 
DNA sequences, suggesting that enhanced affinity may drive disease by altering transcriptional programs. This 
observation is consistent with prior studies suggesting TF affinities must be appropriately tuned for function and 
that very high-affinity DNA binding sites can be statistically significantly underrepresented within genomes (Le, et 
al., 2018; Bruno, et al., 2019). Moreover, these results imply that in some cases, appropriate therapeutic 
interventions could attempt to disrupt (rather than restore) binding. 

In future work, the ability to express and functionally characterize hundreds of TF mutants in a single experiment 
at low cost enables a wide variety of precision medicine applications. STAMMP could be used to systematically 
assess effects of disease-associated TF variants, thereby providing a high-throughput method for assessing 
functional consequences of variants of unknown significance. STAMMP could also be extended towards testing 
compounds for their potential to drug transcription factors and serve as new cancer therapeutics (Struntz, et al., 
2019; Lambert, M., et al., 2018). 
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Figure 1. STAMMP: microfluidic platform for high-throughput TF expression and assays. (A) Photograph of MITOMI device 
showing plasmid (labeled as “PC”) and binding reaction compartments (labeled as “RC”) and annotated pneumatic valves 
(“button”, “sandwich”, and “neck”). (B) Workflow for device surface functionalization and in situ expression and purification 
of TF libraries and final schematic of components used for surface-immobilization of eGFP-tagged TFs (right). (C) Workflow 
illustrating iterative introduction, equilibration, and trapping of TF-bound fluorescently-labeled DNA to quantify 
concentration-dependent binding; final ratios of DNA and TF fluorescence are proportional to fractional occupancy. Image 
contrast was enhanced to improve visibility for display purposes. (D) Langmuir isotherms fit to DNA/TF fluorescence intensity 
ratios as a function of free DNA concentration yield interaction binding affinities. Example raw binding data (grey markers 
and fit lines) and calculated median fit curves (red lines) for 2 mutants are shown at right; Kd values represent median values 
± SEM for statistical replicates. 
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Figure 2. Pho4 mutant library design and expression. (A) Protein sequence alignment for bHLH proteins across yeast and 
humans. (B) Pho4 structure (PDB: 1A0A) with regions within DNA-binding domain labeled. (C) Pho4 library mutants 
categorized by scan, presence in other bHLH proteins, representation in disease variants, and other types of mutations 
(charge modulation, etc.). (D) Plasmid map of full-length Pho4 construct fused to c-terminal GFP tag (left); sample image of 9 
of 1568 device chambers showing measured fluorescence intensities for chambers containing Pho4-eGFP plasmid and empty 
chambers (red) (middle); and measured intensities for all 1568 chambers in a representative device (right). (E) Binary tree 
summarizing mutant outcomes for all 223 mutants in the library. 
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Figure 3. Many mutations throughout the Pho4 DBD alter DNA binding. (A) Workflow for creating fluorescently-labeled DNA 
duplexes for binding assays. (B) Pairwise comparison of measured Kd values (median ± SEM) for all TF mutants interacting 
with a 5’-CCACGTGA-3’ sequence assayed across two separate devices (n=190); WT Pho4 is shown in blue. Grey and red 
dashed lines indicate a linear regression and the identity line, respectively. Affinity measurements were log-transformed and 
fitted to a linear model; RMSLE was then calculated from log-transformed values. (C) Pairwise comparison of measured DDGs 
(median ± SEM) for Pho4 mutants; WT Pho4 is shown in blue. Grey and red dashed lines indicate a linear regression and the 
identity line, respectively. (D) Median DDG of binding (± SEM) for all Pho4 mutants interacting with a 5’-CCACGTGA-3’ 
sequence; known crystal structure contacts, amino acid conservation, and predicted intrinsic disorder are shown. (E) Median 
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DDG of binding for all mutations binned by interaction with DNA based on crystal structure (right) and labeled by statistical 
difference from wildtype Pho4 and background binding. (F) Periodicity of effects on DNA binding (top) and indicated 
positions on Pho4 crystal structure (bottom). Data reflects median DDG (± SEM) for DNA binding; dashed line passes through 
alanine mutants.  
 
 

 
Figure 4. Effects of Pho4 mutations on DNA affinity and specificity. (A) PWM logo and list of DNA sequences studied alongside 
effects on binding affinity for all Pho4 variants studied. Black datapoints reflect affinity of wildtype Pho4 for DNA sequence; 
vertical dashed line indicates median affinity of WT Pho4 for the reference oligo 5’-C CACGTG A - 3’. (B) Normalized standard 
deviation versus normalized affinities for all Pho4 mutants indicating mutants with effects on affinity and/or specificity. (C) 
Measured median binding affinities across experimental replicates for all TF mutations interacting with all oligonucleotides. 
Blue arrow indicates median wildtype Pho4 affinity for the low-affinity 5’-C CACGTT A-3’ sequence; red arrow indicates 
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median wildtype Pho4 affinity for the DNA sequence (5’-G CACGTG C-3’). Points are colored by oligo identify, as in Fig. 4A.  
(D) Proportions of mutations that statistically significantly enhance DNA binding affinity. (E) Binding affinities for WT Pho4 
and H255R, A289K, and A289R mutants (median affinity ± SEM). (F) Binding affinities for Pho4 H257A (Helix 1) and R301A 
(Helix 2) interacting with DNA sequences containing flanking nucleotide mutations (median affinity ± SEM).  
 
 

 
Figure 5. Solvent-facing residues modulate affinity by tuning helical propensity. (A) Crystal structure of Pho4 with basic region 
and Helix 1 highlighted (cyan); right, inset of solvent-facing residues in this region. (B) Schematic reaction coordinate diagram 
for WT (solid black line) and mutated Pho4 (cyan dashed line) in which the mutant construct has a higher helical stability. (C) 
Measured change in DNA binding affinity (ΔΔG, median ± SEM) for the 5’-C CACGTG A-3’ reference oligonucleotide vs. 
previously measured changes in helical propensity for individual residue substitutions (O’Neil and DeGrado, 1990); dashed line 
indicates linear regression. 
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Figure 6: Pairwise affinity comparisons reveal determinants of binding specificity. (A) Example cartoon illustrating how 
epistasis between Pho4 and DNA mutations can be detected by comparing energetic effects of TF mutations across different 
DNA sequences. (B) Pairwise comparison between measured binding affinities (log10(Kd), median ± SEM) for Pho4 mutants 
interacting with a low-affinity mutant sequence (5’-CCACGTTA-3’) vs. the medium affinity reference sequence (5’-CCACGTGA-
3’) (left); inset of crystal structure with outlier TF residues labeled. (C) Pairwise comparison between measured binding 
affinities (log10(Kd), median ± SEM) for 2 DNA sequences with 5’ flanking nucleotide mutations (left); inset of crystal structure 
indicating residues H257, A258, and Q260 (right). (D) Comparison between identified energetic couplings identified in this 
study and known crystallographic contacts. 
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