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Abstract 

Recombineering has been developed to modify bacterial artificial chromosome (BAC) via 

homologous recombination. Nevertheless, as a screening strategy to identify the correct clone was 

not properly developed, it was difficult to obtain a correct clone within a limited time period. To 

address these issues, we developed a new screening method (a gain & loss screening system) that 

enables the efficient identification of the recombineered clone. Simple inoculation of cells into 

LB medium with appropriate antibiotics visually revealed the positive clones within 24 h. DNA 

sequencing confirmed 100% accuracy of this screening method by showing that all positive 

clones exhibited recombinant sequences. Furthermore, our new method allowed us to complete 

the entire procedure consisting of 1st recombineering, flip-out and 2nd recombineering in just 13 

days. Overall, our new strategy may provide a new avenue for BAC recombeerining, as 

evidenced by markedly increased accuracy and subsequently shortened recombineering duration. 
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INTRODUCTION 

The production of biopharmaceutical proteins has been a key topic in biotechnology with 

mammalian cell culture being a widely used method for their production (Wurm 2004). Currently, 

over 100 therapeutic proteins are being produced in mammalian systems, and their number is 

expected to increase dramatically as new therapeutic antibodies are developed (Rita Costa et al. 

2010). Thus, significant efforts have been made in the last decades to improve protein production 

in mammalian cell lines. Plasmid-based vectors are the most widely used tools for protein 

production. They include promoters that induce the expression of gene-of-interest (GOI). 

However, expression of GOI in plasmid-based vectors is greatly affected by surrounding 

chromatin at the integration site. Once the vector is integrated into a "silent chromatin" region, 

the expression tends to silence over time (i.e., positional chromatin effects) (Giraldo and 

Montoliu 2001). Accordingly, several strategies have been developed to avoid the local effects of 

chromatin. One of the most widely used methods is to use bacterial artificial chromosome (BAC) 

that can accommodate whole mammalian loci. BAC can accommodate a complete gene 

containing all cis-acting regulatory elements in their native configuration. Therefore, BAC is 

minimally affected by the surrounding chromatin at the integration site, so BAC can accurately 

deliver the expected expression pattern (Giraldo and Montoliu 2001). 

Nevertheless, since the BAC size is very large, their modification cannot be made using 

standard cloning procedures (e.g., restriction enzyme digestion or ligation). BAC recombineering 

only allows the exchange of genetic information between two DNA molecules in an accurate, 

specific, and faithful way, regardless of the size of the DNA. However, BAC recombineering is 

very labor-intensive and time-consuming due to a large number of false positive background 

colonies during screening procedure. Therefore, BAC recombineering constituted a substantial 

barrier for less experienced researchers to consider BAC suitable as expression vectors for protein 

production. 

Here we present a new screening method, the gain & loss screening system, which can 

provide markedly increased accuracy and shortened working time. This new strategy may provide 

powerful new tool for facilitating e.g. biopharmaceutical protein expression and other large-

vector applications, and rendering such approaches feasible for less experienced laboratories. 
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MATERIALS AND METHODS 

Bacterial strain and BAC clones 

SW105 bacteria: Genotype F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZ M15 ΔlacX74 deoR 

recA1 endA1 araD139 Δ(ara, leu) 7649 galU galK rspL nupG [λcI857 (cro-bioA) <> tet] [(cro-

bioA) <> araC-PBADflpe]. SW105 bacteria was generously provided by the Copeland laboratory 

at the National Cancer Institute. BAC clone (RP24-85L15) was purchased from BACPAC 

resources center (CHORI, Oakland, CA, USA).  

 

Preparation of BAC targeting cassette (BTC) and chloramphenicol (Cam) targeting cassette 

(CTC) 

BAC targeting vector (BTV) (Addgene, cat. no. 131589) and Cam targeting cassette (CTV) 

(Addgene, cat. no. 131590) are available from Addgene. Incubate BTV with XhoI & XmaI and 

CTV with BamHI & XhoI for 4 h at 37°C. Load the digested DNA onto a 0.2% agarose gel. Run 

the gel for 30 min at 100 V on a DNA electrophoresis device (Bioand, cat. no. Mini-ES). 

Following electrophoresis, cut out the DNA band containing the BTC and CTC under a LED 

trans illuminator (Maestrogen, cat. no. SLB-01W). Purify the DNA using a gel extraction kit 

(Qiagen, cat. no. 28704). Measure the DNA concentration using Nanodrop spectrophotometer 

(Denovix, cat. no. DS-11) and dilute the DNA to 8–10 ng/μl using DW. 

 

Overview of the procedure 

The comprehensive details on the methodology is describe in the Supplementary Material. To 

provide comprehensive details on the methodology, we have organized the BAC recombineering 

process into five consecutive stages, which are illustrated in a general flow-chart (Supplementary 

Fig. 1). In the first stage (steps 1–8), the identification of the desired BAC and the preparation of 

SW105 bacteria containing the BAC was performed. In the second stage (steps 9–15), the 1st 

recombineering was conducted to introduce a BTC into the predetermined region of BAC. In the 

third stage (steps 16–18), flip-out was conducted to delete the selection marker, kanamycin 

resistance (KanR) gene. In the fourth stage (steps 19–23), the 2nd recombineering was conducted 

to introduce a CTC. In the final stage (steps 24–27), maxi-preparation of BAC DNA was 

conducted.  
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RESULTS 

1st gain & loss screening system 

Two different BAC recombineering systems are widely used including those based on bacterial 

phage-encoded recombinases; one uses episomal plasmids to supply RecET of the Rac phage 

(Zhang et al. 1998; Muyrers et al. 2000) and the other utilizes a temperature-sensitive lamda 

repressor to control the expression of lamda-red recombinase (Yu et al. 2000; Lee et al. 2001). 

Lamda-red recombinase appears to be at least 50- to 100-fold more efficient than the RecET 

system (Zhang et al. 1996). Thus, methodology based on the lamda-red recombinase was selected 

in this study.  

SW105 bacteria strain has been genetically modified to have the lamda-red recombinase 

system. It has a PL operon encoding lamda-red recombinase (exo, bet, and gam) that plays a 

crucial role in the recombineering process. The PL operon is under strict control of the 

temperature-sensitive lamda repressor (cI857). At low temperatures in the range of 30–34°C, 

cI857 is active and binds to the operator site thereby preventing transcription of the recombinant 

genes. Thermal upshift to 42°C reversibly inhibits the activity of cI857, thereby activating 

transcription of the recombinant genes. 

For the recombineering, a 5 homology region (HR) and 3 HR was introduced into the 

BAC targeting vector (BTV, Addgene ID: 131589) containing GOI and a kanamycin resistant 

gene (KanR) (Fig. 1A). To purify BAC targeting cassette (BTC), the BTV with HRs was cut with 

appropriate XhoI and XmaI (Fig. 1A). As BTC contains KanR with two flanking FRT sites, the 

recombination of BTC with a BAC clone after brief heat shock at 42°C will result in a positive 

clone, which has dual antibiotic resistant genes, KanR (from BTC) and chloramphenicol resistant 

gene (CamR; from the BAC). 

Following the recombineering, a LB plate containing Cam and Kan was used to 

discriminate the candidate clone(s). The number of candidate colonies appeared after 48 h 

incubation at 32°C was summarized in Fig. 1B. As BTV in supercoiled form cannot be efficiently 

cleaved with restriction enzymes, non-cleaved BTVs may be included in the purified BTC. BTV 

contamination will result in a non-recombinant clone, which has triple antibiotic resistant genes, 

an ampicillin resistant gene (AmpR; from BTV), KanR (from BTV) and CamR (from the BAC). 

To identify the clones derives from the desired recombination, the 1st gain & loss screening 

system was applied (Fig. 1C). The candidate clones on the plate was inoculated in the 1st gain & 

loss screening system and incubated for 24 h (Fig. 1C). This system will exhibit the three possible 

cases (Fig. 1C). 

1) Case#1: positive in LB with Cam, positive with Amp, positive with Kan (no recombination) 

2) Case#2: negative in LB with Cam, positive with Amp, positive with Kan (no recombination) 

3) Case#3: positive in LB with Cam, negative with Amp, positive with Kan (recombination) 
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Case#3 only occurs if the recombineering is successful. The average efficiency of obtaining a 

case#3 was 31.94% (Fig. 1D). To confirm the correct recombination, colony PCR was conducted 

on all clones from case#3. The forward (Fwd) primer was located in the BAC vector and reverse 

(Rev) primer in BTC (Fig. 1E). The size of PCR product in 5 recombineered and 3 

recombineered region was approximately 280 bp and 500 bp, respectively, indicating the 

successful recombineering (Fig. 1F). Following PCR, DNA sequencing was performed to verify 

the recombinant region. All positive clones were found to exhibit recombinant sequences 

indicating 100% accuracy of 1st gain & loss screening system (Fig. 1F). Taken together, these 

results imply that simple inoculation of cells into the screening system visually displayed the 

positive clones with 100% accuracy. 

 

2nd gain & loss screening system 

During the 1st recombineering step, successful recombination was carried out through the 

introduction of KanR. However, KanR should be deleted for subsequent experiments. The SW105 

strain harbors an endogenous L-arabinose-inducible FLP gene. Since KanR is flanked by two 

FRT sites, the induced FLP gene in the presence of L-arabinose will delete KanR (Fig. 2A). 

Following FLP induction, a LB plate containing Cam was used to discriminate the 

candidate clone(s). The number of candidate colonies appeared after 48 h incubation at 32°C was 

summarized in Fig. 2B. The 2nd gain & loss screening system was used to determine whether the 

flip-out reaction was successful (Fig. 2C). The positive clones on the plate was inoculated and 

incubated for 24 h (Fig. 2C). This system will exhibit the two possible cases (Fig. 2C). 

1) Case#1: positive in LB with Cam, positive with Kan (no flip-out) 

2) Case#2: positive in LB with Cam, negative with Kan (flip-out) 

Case#2 only occurs if the flip-out is successful. The average efficiency of obtaining a case#2 was 

100% (Fig. 2D). To confirm the correct flip-out, colony PCR was conducted on all the clone from 

case#2. Two primers were located outside of the two FRT sites (Fig. 2E). The size of PCR 

product in flip-out region was approximately 100 bp, indicating the successful flip-out (Fig. 2F). 

Following PCR, DNA sequencing was performed to verify the flip-out region. All positive clones 

were found to exhibit recombinant sequences indicating 100% accuracy of 2nd gain & loss 

screening system (Fig. 2F). Taken together, these results confirmed the accuracy of the 2nd gain & 

loss screening system to 100%. 

 

3rd gain & loss screening system 

To facilitate integration of the BAC construct into the genome, the Tol2 transposon system was 

used (Suster et al. 2011). The Tol2 transposon system yields the highest rate of genomic 

integration in the germ lineage resulting in the increased production of desired proteins (Suster et 
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al. 2011; Balasubramanian et al. 2016). As CamR is located on a backbone vector of BAC clones, 

CamR was targeted to introduce the Tol2 transposon system. For the recombineering, a 5 & 3 

CamR HR was introduced into the Cam targeting vector (CTV, Addgene ID: 131590) containing 

inverted left & right Tol2 transposons, AmpR for gain & loss screening, and a neomycin 

resistance (NeoR) gene for a mammalian selection marker (Fig. 3A). To purify chloramphenicol 

targeting cassette (CTC), CTV was cut with BamHI and XhoI (Fig. 3A). 

As the recombination of CTC with a flip-out positive clone will lose CamR but acquire 

AmpR (from CTC), a LB plate containing Amp was used to discriminate the candidate clone(s). 

The number of candidate colonies appeared after 48 h incubation at 32°C was summarized in Fig. 

3B. As CTV in supercoiled form cannot be efficiently cleaved with restriction enzymes, non-

cleaved CTVs may be included in the purified CTC. CTV contamination will result in a non-

recombinant clone, which has double antibiotic resistant genes, AmpR (from CTV) and CamR 

(from the BAC). To differentiate whether the clone derives from the desired recombination, the 

3rd gain & loss selection system was used. The candidate clones on the plate was inoculated in the 

3rd gain & loss selection system and incubated for 24 h (Fig. 3C). This system will exhibit the 

three possible cases (Fig. 3C). 

1) Case#1: positive in LB with Cam, negative with Amp (no recombination) 

2) Case#2: positive in LB with Cam, positive with Amp (no recombination) 

3) Case#3: negative in LB with Cam, positive with Amp (recombination) 

Case#3 only occurs if the recombineering is successful. The average efficiency of obtaining a 

case#3 was 75.69% (Fig. 3D). To confirm the correct recombination, colony PCR was conducted 

on all the clone from case#3. The Fwd primer was located in the BAC vector and the Rev primer 

in the CTC (Fig. 3E). If a recombineering occurred, the PCR product of 5 recombineered and 3 

recombineered region should be approximately 400 bp and 390 bp, respectively (Fig. 3F). 

Following PCR, DNA sequencing was performed to verify the recombinant region. All positive 

clones were found to exhibit recombinant sequences indicating 100% accuracy of 3rd gain & loss 

screening system (Fig. 3F). Taken together, these results also confirmed the accuracy of the third 

screening system to 100%. 

 

More strategies to increase recombination efficiency 

The efficiency of the 2nd BAC recombineering (75.69%) was 2 times higher than that of the 1st 

BAC recombineering (31.94%). This discrepancy is presumed to be due to the difference in HR 

length, the decisive for the recombination efficiency (Sharan et al. 2009; Kung et al. 2013). 

However, the length of 5 HR (473 bp) and 3 HR (486 bp) in BTV was longer than 5 HR (200 

bp) and 3 HR (200 bp) in CTV, so other factors may be involved in this discrepancy. Incomplete 

enzymatic digestion of the targeting vector increases the number of false positive clones, thereby 
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reducing recombination efficiency (Jacobus and Gross 2015). Strategies to induce complete 

enzymatic digestion are required, but incomplete digestion may occur due to several other factors 

including DNA methylation (23). Thus, we hypothesized that strategy to distinguish between 

linear DNA and uncut circular DNA would increase the recombination efficiency. As a low 

percentage of agarose gel can distinguish fast-moving linear DNA fragments from slow-moving 

circular DNA (Lee et al. 2012), we used 0.2% agarose gel and differentiated the linearized BTC 

(4.7 kb; red rectangle) from uncut BTV (7.6 kb; yellow rectangle) (Fig. 4A). Then, the 1st BAC 

recombineering was performed again. The efficiency of the 1st BAC recombineering increased 

from 31.94% to 59.38%, indicating that a strategy to purify the targeting cassette on a low 

percentage of agarose gel can be another decisive factor for the efficient recombineering (Fig. 

4A).  

Targeting vector is high copy number plasmid, while BAC is low copy number plasmid. 

A high copy number plasmid replicates autonomously from the bacterial chromosome and is 

generally present in more than one copy per cell, providing higher antibiotic resistance (Jahn et al. 

2016). CTV has AmpR for selection, so bacteria with uncut CTV with non-recombinant BACs 

can grow better than bacteria with recombinant BACs. Thus, we hypothesized that the selection 

of small colony will increase the recombination efficiency. Following the 2nd recombineering, the 

candidate clones were distinguished using LB plates containing Amp. After 48 h incubation at 

32°C, colonies appeared as shown graphically in Fig. 4B. To test our hypothesis, large colonies 

(larger than 1 mm) were selected from one group and small colonies (smaller than 1 mm) from 

the other group. The recombination efficiency obtained when selecting small colonies was 

increased by about 1.6-fold compared to when selecting large colonies (47.92% vs. 29.17%, Fig. 

4B). 
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DISSCUSSION 

The rapid and efficient screening system is crucial for the BAC recombineering procedure. The 

importance of the screening system was realized by a strategy to reduce the number of false 

positive clones by performing long digestion of the targeting vector (Carreira-Rosario et al. 2013). 

However, due to many false positive clones, it still takes too much time to find a real recombinant 

clone (Carreira-Rosario et al. 2013). Another strategy have been attempted to avoid false positive 

clones from non-cleaved targeting vectors using PCR amplification of the targeting vector with 

PCR primers containing HR (Sharan et al. 2009). This strategy was also hampered by a false 

positive clones derived from PCR templates or unavoidable PCR errors during PCR amplification 

of the targeting vector (Sharan et al. 2009). In the current study, we uncovered a novel strategy in 

which simple inoculation of cells visually revealed the positive clones within 24 h. This strategy 

is based on whether cells can survive in the medium with specific antibiotics. Combination of 

survival or non-survival in a medium containing antibiotics was used a tool to determine whether 

a clone has a real recombined BAC or comes from a false positive background. The accuracy of 

this screening was confirmed by DNA sequencing results showing that all positive clones 

exhibited recombinant sequences. To our knowledge, our study provides the first demonstration 

that new gain & loss screening scheme enables 100% accuracy opening a new horizon in the field 

of BAC recombineering. 

BAC recombination consists of time-consuming steps including 1st recombineering, flip 

out and 2nd recombineering. This time-consuming procedure has been a major obstacle for 

researchers starting BAC recombineering. Procedures to reduce BAC recombination duration are 

the most demanding criteria for researchers to conduct BAC recombination. The 100% accurate 

gain & loss screening system facilitated recombineering process by making each recombination 

process successful at once. Furthermore, the increased recombination efficiency by using long 

HR promoted recombination progress by allowing identification of the recombinant clones out of 

only 48 colonies per step. The efficiency of the 1st and 2nd BAC recombineering was 31.94% and 

75.69%, respectively, whereas that of traditional BAC recombineering with short HRs was less 

than 10% (Liu et al. 2003). Thus, our new strategy allowed us to complete the entire BAC 

recombineering procedure within just 13 days (Fig. 5). Taken together, considering short duration, 

we expect that this protocol will open a new path for laboratories with less experience in the field 

of BAC recombineering. 

Recombineering is a genetic and molecular biology technique based on homologous 

recombination systems, which mediate efficient recombination of linear DNA molecules flanked 

by long HR (Thomason et al. 2014). The significance of long HR is highlighted by the finding 

that the targeting cassette with long HR (200–500 bp) is more efficient for recombineering than 

the targeting cassette with short HR (approximately 50 bp) (Degryse 1996; Sharan et al. 2009; 
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Dickinson et al. 2015). Targeting vectors with long HR were linearized by restriction digestion 

and purified in preparation for subsequent use in BAC recombineering steps. Long-term DNA 

digestion is crucial for complete digestion, but incomplete digestion can occur if enzyme activity 

is blocked by DNA methylation (Snounou and Malcolm 1984). As non-cleaved targeting vectors 

are inevitable, a new strategy is needed to avoid false positive clones. Here, we found that a novel 

tool using a low percentage of agarose gel increased the likelihood of obtaining recombinant 

clones by effectively avoiding uncut targeting vectors. The significance of a novel approach was 

supported by the results showing that the 1st BAC recombination efficiency increased from 

31.94% to 59.38%. Taken together, our results imply that this new approach can be considered an 

alternative to solving problems that may arise when using long HR in targeting vectors. 

BAC is based on an F-factor plasmid that maintains a small number of copies in bacterial 

cells, while the targeting vector is a high copy number plasmid (Asami et al. 2011). A low copy 

number plasmid has only one or a few copies in each bacterium, so antibiotic resistance is low 

compared to high copy number plasmids (Jahn et al. 2016). Thus, bacteria with low copy number 

plasmid grow slower than bacteria with high copy number plasmid in the presence of antibiotics 

(Trivedi et al. 2014). In this study, we proposed a novel strategy that use the growth differences 

between bacteria with recombinant BAC and bacteria without recombinant BAC. Bacteria with 

recombinant BAC are presumed to grow slower than bacteria with both unrecombined BAC and 

targeting vectors. This strategy was validated by the results showing that the recombination 

efficiency obtained when selecting small colonies was 1.6 times higher than when selecting large 

colonies. Based on these findings, we conclude that a strategy using growth differences in the 

presence of antibiotics will be another alternative that promotes fast and efficient BAC 

recombination. 

In summary, we have developed a new strategy that makes it easy to visually confirm the 

success of BAC recombineering and reduce the overall processing time to less than two weeks 

(13 days) (Fig. 5). This new screening system will provide significant advances in current 

methodologies for BAC recombineering and might be of broad interest to many researchers in 

different fields including biopharmaceutical protein expression and other large-vector 

applications for various transgenic animals. 
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FIGURE LEGENDS 

Fig. 1. Detailed procedure and results for the 1st recombineering. (A) Overview of the BAC 

targeting vector (BTV, Addgene ID: 131589) and BAC targeting cassette (BTC). (B) Summary of 

colony numbers in LB plates containing Cam and different concentrations of Kan following the 

1st BAC recombineering. (C) Illustration of the 1st gain & loss selection system for identifying 

recombinant clones. Red asterisk (*) indicates the recombineering-positive clone. (D) Efficiency 

of the 1st recombineering after performing the 1st gain & loss selection system. Means ± S.D., N = 

3. (E) 1st recombineering scheme and position of colony PCR primers for recombination 

confirmation. (F) Picture of agarose gel electrophoresis showing colony PCR results. PCR 

product was only amplified in the recombineering-positive clone. Chromatogram results showing 

that the sequence of the amplified PCR product was conserved compared to the reference 

sequence at the genome-BTC boundary. 

 

Fig. 2. Detailed procedure and results for the flip-out reaction. 

(A) Overview of the flip-out reaction. In the presence of L-arabinose, the endogenous L-

arabinose-inducible FLP gene in the SW105 strain will delete KanR flanked by two FRT sites. 

(B) Summary of colony numbers in LB plates containing Cam after the flip-out reaction. (C) 

Inoculation of positive clones into the 2nd gain & loss selection system. (C) Illustration of the 2nd 

gain & loss selection system for identifying recombinant clones. Red asterisk (*) indicates a flip-

out positive clone. (D) Efficiency of flip-out reaction after performing the 2nd gain & loss 

selection system. Means ± S.D., N = 3. (E) Flip-out scheme and location of colony PCR primers 

for confirming flip-out reaction. (F) Picture of agarose gel electrophoresis showing colony PCR 

results. PCR product was only amplified in the flip-out positive clone. Chromatogram results 

showing that the sequence of the amplified PCR product was conserved compared to the 

reference sequence at the border where flip-out was completed. 

 

Fig. 3. Detailed procedure and results for the 2nd recombineering. (A) Overview of Cam targeting 

vector (CTV, Addgene ID: 131590) and Cam targeting cassette (CTC). (B) Summary of colony 

numbers in LB plates containing different concentrations of Amp after the 2nd BAC 

recombineering. (C) Illustration of the 3rd gain & loss selection system for identifying 

recombinant clones. Red asterisk (*) indicates the recombineering-positive clone. (D) Efficiency 

of the 2nd recombineering after performing the 3rd gain & loss selection system. Means ± S.D., N 

= 3. (E) 2nd recombineering scheme and position of colony PCR primers for recombination 

confirmation. (F) Picture of agarose gel electrophoresis showing colony PCR results. PCR 

product was only amplified in the recombineering-positive clone. Chromatogram results showing 

that the sequence of the amplified PCR product was conserved compared to the reference 
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sequence at the genome-CTC boundary. 

 

Fig. 4. More strategies to increase recombination efficiency. (A) Picture of agarose gel 

electrophoresis showing the uncut BTV (7.6 kb; yellow rectangle), the linearized BTC (4.7 kb; 

red rectangle) and the vector backbone of BTV (2.9 kb; blue rectangle) after enzyme digestion of 

BTV with XhoI and XmaI. Efficiency of the 1st recombineering after performing the 1st gain & 

loss selection system. Means ± S.D., N = 2. (B) Illustration of colonies in LB plate containing 

Amp after the 2nd BAC recombineering. After 48 h incubation at 32°C, colonies appeared. Large 

colonies (larger than 1 mm) were selected from one group and small colonies (smaller than 1 

mm) from the other group. Efficiency of the 2nd recombineering after performing the 3rd gain & 

loss selection system in a larger or smaller colony-selected group. Means ± S.D., N = 3. 

 

Fig. 5. Summary of the experimental procedure and timing for each step. 

 

Supplementary Fig. 1. Overview of the experiment procedure and estimated timing of each step. 

 

Supplementary Fig. 2. Identification and procurement of the desired BAC. 

 

Supplementary Fig. 3. Identification and procurement of the desired BAC. 

 

Supplementary Fig. 4. Identification and procurement of the desired BAC. 

 

Supplementary Fig. 5. Identification and procurement of the desired BAC. 

 

Supplementary Fig. 6. Identification and procurement of the desired BAC. 
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