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Abstract 16 

The WU-Minn Human Connectome Project (HCP) is a publicly-available dataset containing 17 

state-of-art structural, functional, and diffusion-MRI for over a thousand healthy subjects. While 18 

the planned scope of the HCP included an anatomical connectome, resting-state functional-19 

MRI forms the bulk of the HCP’s current connectomic output. We address this by presenting a 20 

full-cortex connectome derived from probabilistic diffusion tractography and organized into the 21 

HCP-MMP1.0 atlas. Probabilistic methods and large sample sizes are preferable for whole-22 

connectome mapping as they increase the fidelity of traced low-probability connections. We 23 

find that overall, connection strengths are lognormally distributed and decay exponentially with 24 

tract length, that connectivity reasonably matches macaque histological tracing in homologous 25 

areas, that contralateral homologs and left-lateralized language areas are hyperconnected, and 26 

that hierarchical similarity influences connectivity. We compare the diffusion-MRI connectome 27 

to existing resting-state fMRI and cortico-cortico evoked potential connectivity matrices and 28 

find that it is more similar to the latter. This work helps fulfill the promise of the HCP and will 29 
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 2 

make possible comparisons between the underlying structural connectome and functional 30 

connectomes of various modalities, brain states, and clinical conditions. 31 

 32 

Keywords: Diffusion MRI, structural connectome, tractography, Human Connectome Project 33 

 34 

Significance Statement 35 

The tracts between cortical parcels can be estimated from diffusion MRI, but most studies 36 

concentrate on only the largest connections. Here we present an atlas, the largest and most 37 

detailed of its kind, showing connections among all cortical parcels. Connectivity is relatively 38 

enhanced between frontotemporal language areas and homologous contralateral locations. We 39 

find that connectivity decays with fiber tract distance more slowly than predicted by brain 40 

volume and that structural and stimulation-derived connectivity are more similar to each other 41 

than to resting-state functional MRI correlations. The connectome presented is publicly 42 

available and organized into a commonly used scheme for defining brain areas in order to 43 

enable ready comparison to other brain imaging datasets of various modalities. 44 

 45 

Introduction 46 

In the 21st century, advances in computation, theory, and neuroimaging have spurred a broad 47 

and intense interest in the anatomical connections and physiological correlations among 48 

human brain areas. Bivariate functional connectivity has given way to full functional 49 

connectomes, the most comprehensive of which may be the WU-Minn Human Connectome 50 

Project’s (HCP) resting-state fMRI dense connectome (Van Essen et al., 2013). The planned 51 

scope of WU-Minn HCP also included a full anatomical connectome (Van Essen and Ugurbil, 52 

2017), and the project has collected, curated, and preprocessed diffusion imaging (dMRI) data 53 
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 3 

for 1,065 subjects. However, a structural connectome has to-date not been released for these 54 

data. This report seeks to address this omission by presenting a full-cortex anatomical 55 

connectome derived from local, probabilistic tractography.  56 

dMRI techniques detect white matter by registering the orientation biases of water 57 

molecule diffusion within myelinated axons. The majority of dMRI studies focus on differences 58 

in specific connections between treatment groups. In contrast, we seek here to present a 59 

robust, densely populated average connectivity matrix for the entire cortex using data from a 60 

large, healthy sample. Local dMRI fiber tract tracing algorithms can be broadly organized into 61 

two classes: deterministic e.g. dsi-studio (Yeh et al., 2013), and probabilistic e.g. probtrackX 62 

(Behrens et al., 2007). Deterministic tractography considers the most likely orientation at each 63 

voxel yielding the maximum likelihood tracts whereas probabilistic tractography considers the 64 

entire distribution of possible orientations, yielding a probability cloud of connections. As our 65 

goal is instead to explore all possible connections between regions, we employed local, 66 

probabilistic tractography (Behrens et al., 2007). This method has been validated against 67 

macaque retrograde tracers within-species (Donahue et al., 2016) and the dMRI protocol and 68 

equipment used for the WU-Minn HCP database were optimized in anticipation of this analysis 69 

(Sotiropoulos et al., 2013). 70 

The physiological relevance of a connectome is maximized if its nodes form functionally 71 

distinct areas. Within the scope of cortex, this amounts to selecting a parcellation scheme. The 72 

HCP multi-modal parcellation (HCP-MMP1.0) (Glasser et al., 2016) has several advantages: it’s 73 

boundaries are both functionally and anatomically guided, it has sufficient parcels (360) to 74 

generate a rich connectome while few enough that the parcels’ extents comfortably exceed the 75 

dMRI voxel size, and mechanisms exist (Fischl et al., 2004) for it to be readily applied to 76 

individuals. Most importantly, the HCP-MMP1.0 parcellation is publicly available and widely 77 
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adopted, facilitating the comparison of the generated matrices to other structural and 78 

functional connectomes. 79 

Given the computational intensity of dMRI fiber tractography and the field’s inclination 80 

towards elucidating specific connections, it is not surprising that the number of existing 81 

publicly available dMRI datasets exceeds that of finished, readily applicable connectivity 82 

matrices. However, there do exist some prior examples. The USC Multimodal connectivity 83 

database (http://umcd.humanconnectomeproject.org), contains two dMRI tractography 84 

connectomes with standard surface-based parcellations: Hagmann (Hagmann et al., 2008) and 85 

ICBM (Mori et al., 2008), with sample-sizes of 5 and 138, respectively. A third is available at 86 

http://www.dutchconnectomelab.nl which contains 114 controls. All of these use the Desikan-87 

Killiany atlas (Desikan et al., 2006) which consists of 68 cortical parcels and were produced 88 

with deterministic tractography. An atlas of major fiber tracts for the HCP 1200 cohort has 89 

recently released at http://brain.labsolver.org, (Yeh et al., 2018). However, this deterministic 90 

tractography connectome is spatially coarse, consisting of only 54 cortical parcels, and lacks 91 

dynamic range and statistical dispersion, as weaker connections are unrepresented, rendering 92 

the connectivity matrix nearly binary. The HCP-MMP1.0 atlas employed here has more than 93 

five times as many parcels while retaining the functional distinctness of areas. In contrast to the 94 

relatively sparse existing deterministic matrices, the probabilistic approach may better resolve 95 

weak or low probability connections leading to densely populated connectivity matrices like 96 

those found non-human primate tracing studies (Markov et al., 2014). Furthermore, the cohort 97 

studied is large and many other types of data are available for the same individuals including 98 

the NIH neuropsychological toolbox (Gershon et al., 2013), as well as fMRI and MEG data for 99 
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resting-state and cognitive tasks, permitting within-cohort comparison to functional 100 

connectivity.  101 

The following report presents a novel structural connectome of the human neocortex based 102 

on probabilistic diffusion tractography. The connectome is partially validated against 103 

retrograde tracing in macaques and the relationship between tract length and connection 104 

strength is quantified. Further validation is provided by reasonable connectivity properties 105 

between contralateral homologous parcels, within language cortex, and between parcels lying 106 

at similar levels of the cortical hierarchy. Finally, the dMRI connectome is compared to cortico-107 

cortico evoke potential (CCEP) and resting-state fMRI derived connectivity. 108 

 109 

Materials & Methods 110 

Subjects & data sources 111 

No new data was collected for this study, and the existing data used was gathered 112 

from publicly available databases. Individual subject’s high-resolution T1-weighted 113 

structural magnetic resonance volumes (MRI), Diffusion images (dMRI), and group 114 

average grayordinate resting-state function MRI (rs-fMRI) connectivity were gathered 115 

from the Human Connectome Project’s (HCP) WU-Minn 1200 release (Van Essen et al., 116 

2013) at https://db.humanconnectome.org. The diffusion imaging dataset consists of 117 

1065 individuals (575 women), aged 22-36+ years old. These datasets include some 118 

twin and non-twin siblings. However, individuals' family structure, as well as exact age, 119 

handedness, and ethnicity are access-restricted to protect the privacy of the subjects 120 

and these data were not requested as they are not critical to this study. Group-average 121 

dense T1w/T2w myelination index were gathered from the same source. Macaque 122 
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retrograde tracer connectivity was sourced from supplementary table 6 of (Markov et 123 

al., 2014). Parcel-by-parcel values were averaged across monkey and hemisphere. 124 

Group average, parcellated cortco-cortico evoked potential (CCEP) connectivity was 125 

gathered from the v1903 release of the Functional Brain Tractography project (F-126 

TRACT) (David et al., 2013; Trebaul et al., 2018) at https://f-tract.eu. 127 

 128 

Cortical parcellation & functional networks 129 

The HCP multimodal parcellation scheme (HCP-MMP1.0), consisting of 180 cortical parcels 130 

per hemisphere, was projected from the Workbench (Marcus et al., 2011) 32k grayordinate 131 

template brain to the FreeSurfer (Fischl, 2012) ico5 fsaverage template as per (Coalson et al., 132 

2016). Using the FreeSurfer reconstruction directories gathered from the database, surface-133 

based fsaverage parcel labels were mapped onto each individual’s white matter surface using 134 

spherical landmark registration (fs_label2label), (Fischl et al., 1999). Grayordinate rs-fMRI 135 

connectivity values were morphed to the ico5 fsaverage template then averaged within each 136 

parcel. Finally, individual’s surface-based parcel labels were converted to binary volumes 137 

marking the gray matter — white matter boundary (mri_label2vol) to serve as seed and 138 

target regions for probabilistic tractography. Workbench and FreeSurfer functions were 139 

sourced from releases 1.2.3 and 6.0, respectively.  140 

To facilitate interpretation of the connectome, parcels were ordered and grouped into 141 

functional networks adapted from (Ji et al., 2019), which applied iterative Louvain clustering 142 

(Blondel et al., 2008; Rubinov and Sporns, 2010) and other criteria to a resting-state fMRI 143 

connectivity. These functional groupings and parcel order were selected as they were also 144 

generated using (a subset of) the WU-Minn HCP dataset and the HCP-MMP1.0 parcellation 145 

scheme. For this study the parcels of the left and right hemispheres were separated and the 146 
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 7 

order and groupings of the left hemisphere in (Ji et al., 2019) were used for homologous 147 

parcels in the both right and left hemisphere, respectively. Two pairs of the original networks 148 

(primary and secondary visual, ventral and posterior multimodal) contained too few parcels for 149 

effective analysis and were highly inter-related. These network pairs were simplified by 150 

combining them into visual and multimodal groups, yielding 10 functional networks per 151 

hemisphere, see table 2.  152 

 153 

Probabilistic tractography  154 

All analysis of diffusion imaging data was performed with FSL (Behrens et al., 2007; Jenkinson 155 

et al., 2012) release 6.0.1. Analyses were performed identically for each subject and broadly 156 

follow (Burns, 2014). The diffusion and bedpostX precursor directories made available from the 157 

HCP database were used as inputs without modification.  The WU-Minn HCP diffusion data are 158 

is correction for eddy currents and movement with FSL eddy (Andersson and Sotiropoulos, 159 

2016). Subjects’ estimated displacement over time from their initial position is written to the 160 

eddy_restricted_movement_rms output. Using these data , a scalar index of each subject’s 161 

motion was derived by integrating their displacement over time. 162 

Fractional anisotropy (FA) analysis was performed using dtifit. The resulting FA volumes 163 

were not analyzed but only used for registering the FreeSurfer and dMRI volumes (flirt), as is 164 

necessary to map the parcel masks into dMRI space (probtrackx2 arguments --xfm --165 

seedref). Non-invasive probabilistic tractography was performed with probtrackx2 in voxel-166 

by-parcel mode (--os2t --s2tastext). In this configuration, the number and length of 167 

streamlines (--ompl --opd) is estimated from each voxel in the seed parcel to each target 168 

parcel as a whole. To aid parallelization of these computationally intensive processes, the list 169 

of target parcels (--targetmasks) was quartered into four sub-lists. Therefore probtrackx2 170 

was invoked 1440 times per subject, estimating the connectivity between 1 seed parcel and 90 171 
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 8 

target parcels in each invocation. The default ½ voxel step length, 5000 samples and 2000 172 

steps were used (--steplength 0.5 -P 5000 -S 2000). To avoid artifactual loops, 173 

streamlines that loop back on themselves were discarded (-l) and tractography was 174 

constrained by a 90° threshold (-c 0) for maximal curvature between successive steps. Within-175 

parcel connectivity and cotico-subcortical connectivity were not examined in this study. All 176 

post-hoc analyses and visualization of connectivity data were performed in Matlab 2019b 177 

(Mathworks) except for figure 1C which was rendered in fsleyes. 178 

  179 

Normalization & symmetrization 180 

Raw streamline counts were averaged across all subjects, then normalized and symmetrized 181 

following procedure developed for non-human primate histological tracing (Donahue et al., 182 

2016; Theodoni et al., 2020). Briefly, fractionally scaled values are defined as the ratio of the 183 

number of streamlines originating at parcel A and terminating at parcel B to the total number of 184 

streamlines that either originate at parcel A or terminate at parcel B while excluding within-185 

parcel connections. 186 

 187 

Eq. 1 𝐹"𝐷𝑇𝐼!,#& =
$%&!,#

∑ $%&!,$%
$&' (∑ $%&(,#%

(&'
, 𝑤ℎ𝑒𝑟𝑒	𝑥 ≠ 𝑖	&	𝑦 ≠ 𝑗 188 

 189 

Fractional scaling is one of several plausible normalization strategies. Because we used 190 

5000 samples (-P 5000) and voxel-by-parcel mode (--os2t) in our probtrackX invocation, the 191 

maximum possible raw streamline count between any two parcels is 5000N where N is the # of 192 

voxels in the seed parcel. Note that because, for probtrackX, all parcels were defined as a 193 

single layer of 1mm isotropic voxels at the white matter — gray matter interface, Ni is also 194 

equivalent to the area of the seed parcel, in mm2. As shown in extended data figure 1-1, We 195 
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 9 

examined four strategies for normalizing the raw streamline counts: (1) dividing by the number 196 

of samples, 5000, (2) dividing by the number of samples and seed area, 5000Ni, (3) dividing by 197 

the number of samples and the areas of both the seed and target parcels, 5000Ni
0.5Nj

0.5, and (4) 198 

fractional scaling, see Eq. 1. These approaches yield similar connectivity matrices, distributions 199 

of pairwise connectivity, and rates of connectivity fall-off with fiber tract distance. The choice of 200 

normalization does shift the absolute scale of pairwise connectivity strengths, but as this effect 201 

is mostly homogenous across all connections, subsequent analyses are not greatly affected. 202 

The correlation coefficient of connectivity strengths between normalization techniques exceeds 203 

0.97 for all pairwise comparisons, and exceeds 0.99 if the samples-only normalization 204 

approach is excluded (data not shown). 205 

While diffusion tractography is not sensitive to the directionality of connections, because 206 

parcel A to B and parcel B to A streamlines are computed separately minor asymmetries arise. 207 

Connectivity matrix symmetry is enforced by taking the arithmetic mean of the A-B and B-A 208 

fractionally scaled connection weights.  209 

 210 

Eq. 2 𝐹!,# =
)!,#()#,!

*
 211 

 212 

Because probabilistic tractography values span several orders of magnitude, and are 213 

approximately log-normally distributed (Fig. 1-1 B), data were log-transformed (log10) prior to 214 

subsequent analyses.  The CCEP and rs-fMRI connectivity matrices were (re)normalized 215 

following the same procedure. However the rsMRI connectivity values were not log-216 

transformed because these data are already approximately normally distributed, if bimodal,  in 217 

linear space, see figure 9B. 218 

 219 
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Network theory metrics 220 

All network theoretic measures were computed in matlab using the Brain Connectivity Toolbox, 221 

2019-03-03 release (Rubinov and Sporns, 2010). It is available at http://www.brain-222 

connectivity-toolbox.net or https://www.nitrc.org/projects/bct. The definitions for the metrics 223 

used (for binary and undirected networks) are repeated below. 224 

 225 

Precursor measures 226 

 227 

Eq. 3  𝑑!,# = ∑ 𝑎+,,-),*∈/!↔#  228 

 229 

Where di,j is the shortest path length, a basis for measuring integration, between nodes i and j, 230 

N is the set of all nodes in the network, n is the number of nodes, and au,v is the binarized 231 

connectivity between nodes u and v. 232 

 233 

Eq. 4  𝑡! =
0
*
∑ 𝑎!,#𝑎!,1𝑎#,1#,1∈2  234 

 235 

Where ti is the number of triangles, a basis for measuring integration, around node i. 236 

 237 

Eq. 5 𝑘! = ∑ 𝑎!,##∈3  238 

 239 

Where ki is the number of degree, or number of links, connected to node i. 240 

 241 

Mean Clustering Coefficient (MCC) 242 

 243 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.06.22.166041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.166041
http://creativecommons.org/licenses/by-nc/4.0/


 11 

Eq. 6 𝐶! =	
1
4
∑ *5!

6!(6!80):!∈3  244 

 245 

Where Ci is the clustering coefficient of node i. (Ci = 0 for ki < 2), (Watts and Strogatz, 1998). 246 

 247 

Eq. 7 MCC =	0
4
∑ 𝐶!!∈3  248 

 249 

Characteristic Path Length (CPL) 250 

 251 

Eq. 8 𝐿! =
1
4
∑

∑ ;!,#,
#&',#-!

480!∈3  252 

 253 

Where Li is the number of the average distance between node 𝑖 and all other nodes, (Watts and 254 

Strogatz, 1998). 255 

 256 

Eq. 9 𝐶𝑃𝐿 = 0
4
∑ 𝐿!!∈3  257 

 258 

Global Efficiency  259 

 260 

Eq. 10 𝐸! =
1
4
∑

∑ ;!,#
.',

#∈0,#-!

480!∈3  261 

 262 

Where Ei is the efficiency of node 𝑖. 263 

 264 

Eq. 11 𝐸 = 0
4
∑ 𝐿!!∈3  265 

 266 
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Where E is the global efficiency of the network, (Latora and Marchiori, 2001). 267 

 268 

Modularity  269 

 270 

Eq. 12 𝑄 = 0
<
∑ @𝑎!,# −

6!6#
<
B!,6∈3 𝛿=!,=# 271 

 272 

Where l is the number of links in the network, mi is module containing node 𝑖, 𝛿mi,mj = 1 if mi = 273 

mj, and 0 otherwise, and Q is the global efficiency of the network, (Newman, 2004). 274 

 275 

Gamma (normalized MCC) 276 

 277 

Eq. 12 𝛾 = >??
>??12,3

 278 

 279 

Where MCCrand is the MCC of a random network of the same statistical makeup.  280 

 281 

 282 

Lambda (normalized CPL) 283 

 284 

Eq. 13 𝜆 = ?@A
?@A12,3

 285 

 286 

Where CPLrand is the CPL of a random network of the same statistical makeup. Note that this 287 

measure is unrelated to the length constant λ. 288 

 289 

 290 
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Small Worldness 291 

 292 

Eq. 14 𝑆 = B
C
 293 

 294 

Where S is the network small-worldness (Humphries and Gurney, 2008). 295 

 296 

Transitivity 297 

 298 

Eq. 15 𝑇 = 	 ∑ *5!!∈0
∑ 6!(6!80)!∈0

 299 

 300 

Where T is the transitivity of the network (Newman, 2003). 301 

 302 

Assortativity 303 

 304 

Eq. 16 𝑟 = 	
<.' ∑ 6!6#(!,#)∈6 8D<.'∑ '

7E6!(6#F(!,#)∈6 G
7

<.'∑ '
7H6!

7(6#
7I(!,#)∈6 8	D<.' ∑ '

7E6!(6#F(!,#)∈6 G
7 305 

 306 

Where L is the set of all links and r is the assortativity coefficient of the network (Newman, 307 

2003). 308 

 309 

Network  Density 310 

 311 

Eq. 17 𝐷 = <
4784

 312 

 313 
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Where D is the density of the network before thresholding and binarization.  314 

 315 

Results 316 

A whole-cortex structural connectome  317 

Figure 1A shows the group average parcel to parcel and probabilistic diffusion tractography 318 

connectome. This matrix consists of connectivity among 360 cortical parcels and is further 319 

organized into 10 functional groups (Ji et al., 2019) per hemisphere. The raw probabilistic 320 

tractography streamline counts have been normalized by fractionally scaling (Eq. 1) into log 321 

probabilities (Fpt) following procedures developed for tracing non-human primate connectivity. 322 

As dMRI reveals structural connections, the network is undirected and therefore symmetric. 323 

The main diagonal is masked as intra-parcel connectivity was not examined in this study. The 324 

upper left quadrant shows connectivity among the 180 parcels of the left hemisphere, the 325 

lower right quadrant the connectivity within the right hemisphere. The upper right and lower left 326 

quadrants are duplicates and show the inter-hemispheric, or callosal, connections. The 180th 327 

(or half-) diagonal is clearly visible (white arrows); this shows the connectivity between 328 

homologous parcels in the right and left hemispheres, which is greater than non-homologous 329 

callosal connectivity for most parcels.  330 

After log10 transformation, Fpt connectivity among all parcel pairs is approximately Gaussian 331 

in distribution with a mean -3.903 (CI95% = [-3.910 -3.897]), standard deviation 0.8111 (CI95% = 332 

[0.806 0.816]), skewness 0.627 (CI95% = [0.6082 0.6440]), and kurtosis 3.605 (CI95% = [3.5603 333 

3.6498]). In addition to bringing the range of Fpt values into the same order of magnitude, log10 334 

transformation is justified as it brings the distribution’s skewness significantly closer to zero 335 

(pre-log10: 9.047, CI95% = [8.719 9.469]), and kurtosis significantly closer to three, pre-log10: 336 

103.684 (CI95% = [93.991 117.026]) thus bringing the distribution closer to normality. See 337 
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extended data figure 1-1 B,C for a graphical comparison. Empirical confidence intervals were 338 

estimated via bootstrapping with 2000 iterations. The values of the group average and 339 

individual probabilistic dMRI connectivity matrices, as well as all other figure source data can 340 

be found at https://doi.org/10.5281/zenodo.4060485. 341 

 342 

Tract length strongly predicts connectivity strength, with exponential decay 343 

In addition to the connection strength, diffusion tractography estimates the fiber tract length 344 

between all pairs of parcels. As shown in figure 2, structural connectivity (10^Fpt) falls off as an 345 

exponential function of fiber tract length with the form 10^Fpt = α*e-d/λ where λ is the length 346 

constant, α the scaling coeffect, and d the tract length. Alternative functional forms were 347 

examined (see figure 2-2), but the exponential was selected for parsimony, goodness-of-fit, 348 

and concordance with histological tracing data (see Discussion). Note that λ is sometimes 349 

reported in inverted units of mm-1, e.g. (Markov et al., 2013; Theodoni et al., 2020), but we here 350 

use the λ convention from neuronal cable theory (Dayan and Abbott, 2001) which has more 351 

intuitive units (mm); the conventions are conceptually equivalent. For the group-average 352 

connectome, λ = 23.4 mm and the least squares exponential fit explains 84% of the variance in 353 

10^Fpt across all parcel pairs. Callosal connectivity, when isolated, decays more slowly with 354 

respect to tract length, λ = 32.8, and hews to the exponential expectation less consistently r2 = 355 

0.62. Because the tracing of long fiber tracts may be hampered by poor scan quality, we 356 

investigated the effects of subjects’ motion on λ. For each subject, λ was calculated for non-357 

zero connections in the same manner as the group average. While subjects’ motion within the 358 

scanner does reduce λ, this effect is modest, only explaining 1.96% of the inter-subject 359 

variance, see figure 2-2.  360 

 361 
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Inter-individual variability 362 

The inter-individual variability of connectivity was assessed by deriving the across-subject 363 

coefficient of variation, CV, for each pairwise connection Fpt, see figure 3. For this analysis, the 364 

normalization, symmetrization, and log10-transformation of raw connectivity values was 365 

performed on each subject. Pairwise connections with zero streamlines were not log-366 

transformed in order to avoid infinities. While there is no clear relationship between fiber tract 367 

distance and inter-individual variability, the most consistent connection appear in two clusters 368 

of around 50-100 mm and 170-225 mm (Fig. 3B) . When the most consistent quintile of 369 

connections is isolated (Roberts et al., 2017), connectivity falls off more slowly with tract 370 

distance, with λ increasing to ~28 mm (Fig. 3D). Since the proportional size of V1/V2 varies ~3-371 

fold across individuals and is highly heritable (Yoon et al., 2019), we hypothesized that the 372 

ipsilateral V1-V2 connection would also be highly variable, with that variability being correlated 373 

across hemispheres. Indeed, we find that the ipsilateral V1 – V2 connection is very strong, with 374 

~1.8 fold variability which is strongly correlated across hemispheres (r=0.70). The scatter-plot 375 

of right vs. left Fpt values for this connection across subjects (Fig. 3F) does not reveal obvious 376 

outliers which would be indicative of subject-specific artifacts. This analysis of inter-individual 377 

variability should be considered preliminary. The WU-Minn HCP dataset is rich in individual 378 

data, including the NIH neuropsychological toolbox (Gershon et al., 2013), twin and non-twin 379 

siblings subsets, and genotypic data (dbGaP phs001364.v1.p1), though the latter two data 380 

types are only available by application in order to ensure subject anonymity. With access to 381 

these data, a full examination of  inter-individual variability, including  assessing the heritability 382 

and genetic correlates of the strength of specific connections could be made.  383 

 384 
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Probabilistic dMRI tract tracing in humans reasonably corresponds with histological fiber 385 

tracing in macaques 386 

The development of both the HCP-MMP1.0 human cortical atlas (Glasser et al., 2016) and FV91 387 

macaque parcellation scheme (Felleman and Van Essen, 1991) were led by David Van Essen and 388 

the parcel definitions of the human atlas were informed by human-macaque homology. As such, 389 

the parcel names of these atlases have considerable overlap, particularly for visual and visual 390 

association areas as well as the non-visual parcels 1, 2, 25, and 44. We therefore assumed that 391 

parcels with the same name were roughly homologous and limited the scope of the inter-species 392 

comparison to these parcels. Furthermore, the macaque FLne values found in (Markov et al., 393 

2014) are directly comparable to fractionally scaled Fpt values (Donahue et al., 2016). Comparing 394 

the pairwise connectivity between species, we found a Pearson correlation of r = 0.35 (p = 395 

0.0013), see figure 4. Considering that for macaques, Donahue and colleages (2016) found a 396 

within-species, between-technique correlation of r = 0.59 when comparing retrograde tracing 397 

and probabilistic diffusion tractography, we find the magnitude of between-species correlation 398 

to be reasonable supporting evidence for the efficacy of the technique.  399 

 400 

Contralateral connectivity exceeds ipsilateral connectivity in some regions   401 

On the whole, cortical connectivity is dominated by ipsilateral connections. This effect is 402 

readily-observed by comparing the ipsilateral and contralateral quadrants of figure 1A. 403 

However, there are exceptions to this rule. The differential connectome of ipsi- vs. contra-404 

lateral connections is shown in figure 5. This is achieved by subtracting the mean of left-right 405 

and right-left contralateral connectivity from the mean of the right and left ipsilateral 406 

connectivity, i.e. subtracting the mean of the first and third quadrants from the mean of the 407 

second and fourth. A cingulo-parietal somatomotor region (parcels 5m, 5L, 24dd, and 24dv) 408 
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are more strongly connected to most contralateral cortex than ipsilateral cortex. Lateromedial 409 

connectivity in select prefrontal (a10p, a9-46v, a10p, p10p, p47r, p9-46v, 11l, IFSa, IFJp, a24, 410 

d32, p32, 10r) and postcentral – superior parietal lobule (LIPv, VIP, 7AL, 7PC, 1, 2, 3a, 6d, 31a, 411 

31pd, PCV) regions is stronger between hemispheres than within them. We speculate that a 412 

possible commonality between these three regions is that they have been broadly implicated in 413 

the unitary processes of somatosensory object recognition, emotion, and spatial cognition, 414 

respectively. Conversely, the entire auditory network and superior temporal cortices (STGa, 415 

STSda, DTDdp, A5, and TPOJ1) as well as the operculum and temporoparietal junction (Ig, MI, 416 

FOP1-FOP5, OP1-OP4, PF, PFcm, PFop, PI, PoI1, PoI2, and 43) have pronounced hyper-417 

ipsilateral connectivity, consistent with the low transmission latency required for auditory 418 

processing, the left-lateralization of language, and the right lateralization of attention.  419 

 420 

With the exception of some language areas, most parcels are disproportionately 421 

connected to their contralateral homologs 422 

The two hemispheres of the cortex have a high degree of functional and anatomical symmetry. 423 

It follows then that most regions will have greater connectivity to their contralateral homologs 424 

than other contralateral areas, in order to coordinate their overlapping processing tasks. This is 425 

hinted at by the visibility of the 180th, (or half-) diagonal in figure 1A. To further quantify this 426 

effect, for all 180 parcels we compared the connectivity between interhemispheric homologs to 427 

the mean of all other callosal connectivity. Bonferroni corrected, empirical 95% confidence 428 

intervals were estimated via bootstrapping with 2000 iterations. As detailed in extended data 429 

figure 6-1 and visualized in Figure 6, 147 parcels are hyperconnected to their contralateral 430 

homologs, 18 are hypoconnected, and 15 have homologous callosal connectivity not 431 

significantly different than their callosal mean connectivity. Interestingly, parcels that are not 432 
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hyper-connected to their contralateral homologs are concentrated within and adjacent to the 433 

language network, consistent with the greater degree of lateralization in these areas.  434 

 435 

The language network is hyper-connected at long distances and left lateralized 436 

In order to investigate distance-resolved left laterality in connections among language-437 

implicated cortex, pairwise connections were binned by fiber tract length in 15 mm increments. 438 

Within each bin, connections were grouped as being within the combined language and 439 

auditory network, or between the combined networks and the rest of the cortex. For each 440 

subject, the Fpt of grouped connections within each bin was averaged before being log-441 

transformed. The grand-averages of these within- and between- language/auditory cortex in 442 

each distance bin for each hemisphere are shown in figure 7A. Bonferroni corrected, empirical 443 

95% confidence intervals for these grand-averages were estimated via bootstrapping with 444 

2000 iterations. Within-language connectivity is slightly attenuated at distances less that 100 445 

mm, but strongly amplified at distances above 100 mm, especially ~100-140 mm connections 446 

in the left hemisphere. A plurality of these are between frontal and temporoparietal language 447 

areas (18/45 connections between 100 and 140mm). The differential traces of between- vs. 448 

within-language connectivity (Fig. 7B) clearly show the left-hemisphere dominance of this 449 

effect.  450 

 451 

Connectivity is influenced by the cortical hierarchy 452 

Hierarchy is a central organizing principle of the cortex (Burt et al., 2018; Felleman and Van 453 

Essen, 1991; Markov et al., 2014; Theodoni et al., 2020). Higher order areas, e.g. supporting 454 

abstract processing, have low myelination, and lower order areas, e.g. supporting unimodal 455 

sensory processing, have high myelination. Furthermore, areal myelination is indexed by the 456 
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ratio between T1- and T2-wieghted MRI contrast (Glasser and Van Essen, 2011). The WU-Minn 457 

HCP 1200 release includes smoothed group-average myelination indices for all vertices in the 458 

32k grayordinate template brain. These values were averaged for each parcel in the HCP-459 

MMP1.0 atlas (Glasser et al., 2016) to yield a group-average parcel-wise index of myelination.  460 

The relationship between cortical hierarchy and connectivity was assessed in two ways. We 461 

first examined whether regions of similar level in the cortical hierarchy are better connected, as 462 

predicted by (Barbas, 2015). An index of hierarchical similarity, F|Δ myelination|, was obtained for 463 

each pair of parcels by computing the pairwise difference in myelination between parcels and 464 

fractionally scaling it in the same manner as Fpt, with smaller values indicating hierarchical 465 

closeness. The similarity matrix created by this derivation is shown in figure 8-1. Correlations 466 

were obtained for the left and right hemisphere as a whole as well as the colossal connections, 467 

figure 8A. In addition, for each of the twenty functional networks (10 per hemisphere) the 468 

Pearson correlation between the F|Δ myelination| and Fpt for pairwise within-network connections 469 

was computed, see figure 8B. With the exception of the interhemispheric connections, 470 

calculations were performed on the hemispheres separately to avoid the collinearity introduced 471 

by hemispheric homology.  472 

With the exceptions of the bilateral visual and somatomotor networks and right language 473 

network, for which there is convincingly no relationship, the preponderance of coefficients are 474 

negative, indicating that, on average, areas at similar levels of the cortical hierarchy are better 475 

connected. However, quantified in this way, the influence of hierarchy is modest, explaining 476 

about 1% of the variance in Fpt overall, though perhaps 10-30% in certain subsets of parcels, 477 

such as the left auditory and language networks. The left lateralization of the influence of 478 

hierarchy in these networks is striking, as is the right-lateralization of the dorsal attention 479 

network.  480 
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Secondly, we investigated whether a cortical region’s hierarchical level affected its overall 481 

connectivity. For each parcel, the Pearson correlation between the parcel’s Fpt to all other 482 

parcels and the parcel-wise index of myelination was computed. In other words, correlation 483 

between each row of the connectome matrix and the vector of myelination indices was obtained. 484 

After Bonferroni correction for multiple comparisons, 74 of 360 parcels (see extended data 485 

figures 8-2, 8-3) have connectivity significantly correlated to their myelination index and of these 486 

the vast majority (70) are negatively correlated, indicating that low myelination predicts high 487 

connectivity, see figure 8C. These areas form a contiguous bilateral prefrontal network as 488 

shown in figure 8D, indicating that prefrontal areas are more connected with higher cortical 489 

regions. The rare positively correlated exceptions are the left and right DVT and V6A. 490 

 491 

Probabilistic dMRI connectivity more closely resembles CCEPs than resting-state fMRI  492 

In order to further contextualize the dMRI connectome, we compared it to existing 493 

connectivity matrices generated from two other brain mapping modalities: cortico-cortico 494 

evoked potential probability (CCEP) and resting-state fMRI correlation magnitude (rs-fMRI). As 495 

shown figure 9A, the qualitative pattern of rs-fMRI markedly differs from the other two 496 

modalities with proportionally stronger ipsilateral across-network connections and especially 497 

non-homologous contralateral connections, though the latter is somewhat obscured for CCEPs 498 

due to sparse spatial sampling. Over all connections, pairwise probabilistic dMRI connectivity 499 

values are nearly twice as linearly correlated to pairwise CCEP connectivity than to rs-fMRI 500 

connectivity (fig. 9B), and this contrast is equally evident in the ipsilateral connection within 501 

each hemisphere, see figure 9-1. Contralateral connections were not examined in isolation as 502 

contralateral sampling for the CCEP modality is relatively rare.  503 
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When comparing the distributions of pairwise connectivity strength (fig. 9C), rs-fMRI again 504 

exhibits properties different than the other two modalities. While both dMRI and CCEP 505 

distributions skew in opposite directions (0.63 and -0.43, respectively), their strengths form 506 

unimodal log-normal distributions and thus shown with log-transformed values. In contrast, rs-507 

fMRI connectivity values form a bimodal Gaussian-mixture distribution in linear space. The two 508 

modes were characterized by obtaining the maximum-likelihood fit (fitgmdist) of a 2-509 

component Gaussian-mixture to the data, yielding a left mode (μ = 0.0011, σ = 8.1e-8) forming 510 

63% of the distribution and a right mode (μ = 0.0017, σ = 8.1e-8) forming 37%, respectively. 511 

Splitting the rs-fMRI modes at the midpoint between their means (0.0014) and plotting their 512 

respective connectivity matrices (fig. 9D) reveals that the low-connectivity (left) mode consists 513 

primarily of connections between the default mode / frontoparietal networks and other regions 514 

of the cortex.  515 

To further contrast the three connectivity modalities we computed six network theoretic 516 

metrics for each of the connectivity matrices: mean clustering coefficient (MCC), characteristic 517 

path length (CPL), global efficiency, gamma (normalized MCC), lambda (normalized CPL), small 518 

worldness, transitivity, and assortativity (see Appendix). Binarized network metrics were 519 

assessed after thresholding by edge weight (connectivity strength) at intervals of 0.1. Note that 520 

this lambda is unrelated to the exponential length constant reported above. To account for the 521 

order-based arbitrary treatment of equal edge weights when thresholding, the node (parcel) 522 

order was randomized 1000 times, and the mean metric values are shown. Empirical 95% 523 

confidence intervals for these means are too small to be shown at scale. Networks densities 524 

above 0.6 were not examined as the un-thresholded network density of CCEP connectivity 525 

matrix, treating missing data as non-connections, is less than 0.7. However, all measures 526 

appear to converge as binary network density approaches 1. As shown in figure 10, the MCC, 527 

CPL, global efficiency, small worldness, transitivity, and assortativity are markedly different for 528 
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rs-fMRI connectivity than for CCEP and probabilistic dMRI tractography, whose metrics as a 529 

function of network density are more similar to each other. Normalizing by metrics computed 530 

for a random network with the same statistical makeup changes this pattern. For gamma the 531 

rs-fMRI and CCEP networks are more similar than either is to probabilistic dMRI tractography, 532 

and lambda rs-fMRI and probabilistic dMRI tractography are more similar than either is to the 533 

CCEP network. The high MCC, transitivity, and assortativity and low global efficiency of rs-534 

fMRI relative to the other modalities may be indicative of strong, long-range correlativity 535 

beyond that predicted by anatomical connections.   536 

 537 

Discussion 538 

In this study we compiled a whole-cortex structural connectome by applying probabilistic 539 

tractography to the diffusion MR volumes of 1065 subjects from the WU-Minn Human 540 

Connectome Project. We report a novel, complete, and high-dynamic-range connectivity 541 

matrix discretized into the 360 parcels of the HCP-MMP1.0 atlas and further arranged into 10 542 

functional networks. It is shown that connectivity strength exponentially decays with fiber tract 543 

length, that the parts of the connectome with clear homology to macaques correspond 544 

reasonably to retrograde tracer mappings in that species, that contralateral homologs are 545 

hyperconnected, and that some connections within language-implicated cortex are stronger 546 

than expected and left-lateralized. While ipsilateral connectivity generally dominates, some 547 

regions have stronger contralateral connections. Inter-individual variability is relatively high for 548 

early visual cortex, whose connectivity co-varies across hemispheres. Cortical areas tend to be 549 

more connected with areas at similar levels of the cortical hierarchy, as indexed by their 550 

estimated myelination, particularly in prefrontal areas. Lastly, it is shown that probabilistic 551 

tractography connectivity more closely resembles that of CCEPs than rs-fMRI. In sum, we 552 
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quantify a dMRI-based estimate of medium- to long-range anatomical cortico-cortical 553 

connectivity in a large normative sample.  554 

Diffusion MR imaging and automated post-hoc tractography are powerful tools for the 555 

elucidation of cerebral connectivity. The defining advantages of these techniques are non-556 

invasiveness and large field-of-view, enabling whole-brain mapping in humans. However, dMRI 557 

does have significant limitations when compared to histological fiber tracing, EM microscopy, 558 

or stimulation. The most obvious of these is insensitivity to whether underlying axons are 559 

anterograde or retrograde, as evidenced by the symmetry of the connectivity matrix. The 560 

anisotropic diffusion of water molecules occurs in both anterograde and retrograde directions. 561 

Thus, the true one-way connectivity between two areas could be anywhere between none to all 562 

of the symmetric diffusion connectivity. Another important limitation is spatial resolution. While 563 

the 1.25 mm isotropic voxels achieved by the WU-Minn dMRI protocol are smaller than those 564 

of most studies (Jeurissen et al., 2019), they are still more than three orders-of-magnitude 565 

larger than the typical submicron axon diameter (Liewald et al., 2014; von Keyserlingk Graf and 566 

Schramm, 1984). This discrepancy is particularly impactful when fiber orientations are not 567 

consistent within a voxel, i.e. crossing fibers. Probabilistic diffusion tractography (Behrens et 568 

al., 2007) partially ameliorates the issue by modeling the probability distribution of orientations 569 

and accounting for uncertainty, but ultimately dMRI with current technology is a meso- to 570 

macroscale technique. Direct histological validation of dMRI techniques is uncommon, but has 571 

been performed for probabilistic tractography in vitro in pigs (Dyrby et al., 2007) and macaques 572 

(Donahue et al., 2016; Jbabdi et al., 2013), with the latter two studies using the same 573 

probtrackX algorithm as the current study (Behrens et al., 2007). We have extending these 574 

validations with a between-species comparison (Fig. 4). 575 

Of the several families of dMRI tractography algorithms available, we selected local, 576 

probabilistic tractography (Behrens et al., 2007). The WU-Minn HCP makes available the 577 
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bedpostX precursor files and creating a probabilistic tractography connectome was always a 578 

stated component of the WU-Minn HCP project (Van Essen et al., 2013; Van Essen and 579 

Ugurbil, 2017). That such a connectome has not yet been released for these data may be due 580 

to the immense computational challenge of performing these analyses at the scale of the HCP. 581 

An advantage of probabilistic tractography is its sensitivity to minor, or low-probability 582 

connections. Deterministic dMRI tractography connectomes typically have low network 583 

densities, e.g. 0.18 (Mori et al., 2008) or 0.23 (Cui et al., 2019), when compared to histological 584 

fiber tracing in macaques, 0.66 (Markov et al., 2014), and this is likely a lower bound as such 585 

tracing is subject to false-negatives due to imperfect dye uptake and incomplete cortical 586 

sampling. This suggests the deterministic dMRI connectomes are missing weaker connections. 587 

On the other hand, dMRI in general and probabilistic tractography in particular has been found 588 

vulnerable to false-positive connections (Maier-Hein et al., 2017). This exchange of specificity 589 

for sensitivity (Sarwar et al., 2019; Zalesky et al., 2016) is consistent with our very high group-590 

average network density of 1.0 and the likely presence false-positive connections, and is thus 591 

an important caveat to the data presented here. In cases where false-negative connections are 592 

less concerning than false-positive connections, such as topological analyses (Zalesky et al., 593 

2016), subsequent users of these data may opt to threshold the connectivity matrix by either 594 

connection strength or consistency (Roberts et al., 2017), see figure 3.  595 

When constructing this connectome, we divided the cortex into 180 parcels per 596 

hemisphere following the HCP-MMP1.0 atlas (Glasser et al., 2016). To ease interpretation, we 597 

further organized the parcels into 10 functional networks modified from (Ji et al., 2019). These 598 

networks were created by applying iterative Louvain clustering (Blondel et al., 2008; Rubinov 599 

and Sporns, 2010) and other criteria to HCP resting state fMRI data. While these fMRI-defined 600 

network definitions correspond reasonably to the structural connections reported here, there 601 

are exceptions. The operculum and temporoparietal junction, in particular, appears to be a 602 
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structurally distinct area that has been folded into several functional networks (Ji et al., 2019). 603 

However, this contiguous region forms the lateral salience network in (Barnett et al., 2020) 604 

which similarly applied a very similar methodology to a non-HCP cohort. Like many cortically-605 

focused studies, we used a surface-based methodology to define these areas, with seed and 606 

target regions constrained to the white-matter – gray-matter interface. This approach reduces 607 

the overrepresentation of major bundles (Jeurissen et al., 2019), enables the automated 608 

assessment based on inter-subject homology (Fischl et al., 1999), facilitates comparison to 609 

other cortical datasets, and is true to the anatomical nature of the cortical ribbon. 610 

Unfortunately, the subcortex and cerebellum are omitted in this analysis, as are short-range, 611 

often unmyelinated, intra-parcel connections. While the inclusion of the thalamic radiations, in 612 

particular, is a merited future extension of this connectome, the small size of subcortical 613 

structures relative to diffusion imaging voxels, the nuclear (as opposed the sheet-like) 614 

organization of  subcortical structures, and complex geometry of the subcortical white matter 615 

— gray matter interface (e.g. the internal medullary lamina of the thalamus), all render the 616 

challenges and methods for obtaining subcortical tractography substantially distinct from those 617 

of cortico-cortico tractography. 618 

The HCP-MMP1.0 atlas used was selected because of its wide adoption, symmetry, and 619 

high parcel count. Furthermore, the parcels are based on multiple functional and anatomical 620 

criteria and are consistent with previous functional parcellations in human and non-human 621 

primates (Felleman and Van Essen, 1991; Glasser et al., 2016). Because the parcels are 622 

relatively small and informed by function, erroneous averaging of disparate connections, a 623 

connectomic extension of the partial volume artifact, is minimized. However, this comes at the 624 

cost of non-uniformity in both parcel area and shape. Methodologically, parcels are assembled 625 

from vertices on the tessellated cortical surface. A future vertex- or voxel-based connectome, 626 
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while computationally challenging, would have the distinct advantage of being readily 627 

reformulated into any arbitrary surface-based parcellation scheme.  628 

We found that pairwise connectivity between cortical parcels exhibits an exponential decay 629 

rule with respect to fiber tract distance with a length constant λ of ~23 mm (~33 mm for 630 

callosal connections). While a tight exponential relationship between probabilistic diffusion 631 

tractography strength and fiber length has been previously reported, (Roberts et al., 2016), this 632 

study did not report the observed λ or release its data. Histological studies in non-human 633 

primates (Donahue et al., 2016; Markov et al., 2013; Theodoni et al., 2020) consistently show 634 

exponential connectivity decay with distance. Such a rule when combined with a roughly 635 

Gaussian distribution of interareal distances explains the observed log-normal distribution of 636 

connectivity strength (Markov et al., 2013). Histological data indicate a λ of about 3.33 mm for 637 

marmosets (Theodoni et al., 2020) and 5.55 mm for macaques (Markov et al., 2013). Across 638 

species, there appears to be a linear relationship between the logs of λ and total gray matter 639 

volume, predicting a human λ of 10 mm (Theodoni et al., 2020). While methodological 640 

differences between diffusion and histological tractography cannot be completely ruled out, 641 

Donahue and colleagues found similar λ for the two methods in macaques (Donahue et al., 642 

2016). Our results suggest that, compared to other species, human cortical areas are 643 

exceptionally well connected relative to their cortical volume, reflected in a disproportionately 644 

long λ. Conservatively restricting the exponential fit to only the most consistent quintile of 645 

connections (Fig. 3D) yields a λ of ~28 mm, further accentuating the proportional long-range 646 

hyperconnectivity of humans.  647 

Geometric scaling strongly constrains cortico-cortical connectivity in humans. Considering 648 

primate brains increasing in diameter d, volume and number of cortical neurons increases by 649 

d3,(Ventura-Antunes et al., 2013), so arriving at a constant probability of connection between 650 

any two neurons would require d6 axons, and since they would need to be about d times as 651 
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long, this would require a volume proportional to d7, or more if axonal diameter is increased to 652 

maintain a relatively constant latency of communication (Wang et al., 2008). However, the 653 

actual white matter volume is less than d4 (Zhang and Sejnowski, 2000), and consequently the 654 

probability of cortico-cortical connectivity must be highly limited in humans. The relatively long 655 

λ in humans we report reduces even further the number of connections which can be 656 

accommodated within the available white matter volume. A consequence of fewer but longer 657 

connections would be reduced metabolic cost, inasmuch the cost of an action potential is 1/3 658 

axonal transmission (proportional to length) and 2/3 synaptic transmission (Lennie, 2003). The 659 

low firing rate of human pyramidal cells (Chan et al., 2014) would also reduce the metabolic 660 

cost of their axons. These observations are consistent with the proposal that the metabolic 661 

costs of cortico-cortical connections may help constrain their organization in the primate brain 662 

(Ercsey-Ravasz et al., 2013). Given this strong correlation of connection strength with distance, 663 

as well as the bias of tract-tracing techniques toward shorter, less geometrically complex 664 

connections (Jeurissen et al., 2019), there may be some merit in regressing out the effect of 665 

tract length when evaluating the relative connectivity of different cortical areas. However, the 666 

considerations enumerated above imply a strong evolutionary selection to place cortical 667 

parcels which require high connectivity to perform their calculations to be situated in direct 668 

physical proximity to each other. The patterns of relatively long distance connectivity identified 669 

here thus must be viewed as minor deviations from an overall strong tendency favoring local 670 

connectivity, a conceptualization consistent with the view of the cortex as a spatially 671 

embedded small world network.  672 

One striking deviation from the distance-based connectivity was the left-lateralized hyper-673 

connectivity between language areas, and specifically between posterior and anterior language 674 

areas. This connectivity presumably passes, completely or in part, through the classical 675 

language pathways (reviewed in (Dick and Tremblay, 2012)). The lateralization we observed 676 
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may then reflect that of the arcuate and inferior longitudinal fasciculi which connect the same 677 

structures and show significant left lateralization in humans but not macaques (Eichert et al., 678 

2019; Panesar et al., 2018). Left-lateralization of the arcuate fasciculus develops late (Lebel and 679 

Beaulieu, 2011), and is sensitive to the presence, quality and quantity of early language 680 

experience (Cheng et al., 2019; Romeo et al., 2018). More generally, many of the connectivity 681 

patterns observed here could be the indirect result of co-activation of the connected parcels 682 

(Mount and Monje, 2017). The left-lateralized ipsilateral connectivity may be compensated by a 683 

relative lack of callosal connections from the same areas, under the hypothesis that the total 684 

connectivity is constrained. 685 

A more general factor that might induce deviations from a distance-based connectivity rule 686 

may be the principle of hierarchical organization. It has been proposed that distant areas with 687 

similar laminar properties, and thus of similar hierarchical order may have privileged 688 

connections (Barbas, 2015). Across the entire cortex we find that myelination similarity explains 689 

a significant but small amount of the overall variance. However, there are regions where the 690 

influence of hierarchical position is more pronounced including the right dorsal attention and 691 

left auditory/language networks. The observed hyperconnectivity and high degree of 692 

lateralization in these regions may be a consequence of the low-latencies necessary for the 693 

functions they underly. More broadly, the effects of transmission latency constraints on 694 

neuroanatomy and conduction delay on large-scale physiological recordings are an emerging 695 

area of study in human neuroscience (Muller et al., 2018). Latency is a hybrid structural–696 

functional property of connectivity, and might in future be quantified using the latency of 697 

cortico-cortical evoked potentials (CCEP).  698 

By emphasizing the cortical connectivity matrix over the white matter bundles per se and 699 

organizing the matrix into the widely adopted HCP-MMP1.0 atlas (Glasser et al., 2016), the 700 

structural connectome reported here enables ready comparison to other structural, functional, 701 
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and hybrid connectomes. As an example, we compared the probabilistic tractography 702 

connectivity to exist resting-state fMRI (rs-fMRI) (Van Essen et al., 2013) and CCEP (Trebaul et 703 

al., 2018) connectivity matrices and found that our dMRI-inferred structural  connectivity better 704 

reflects CCEP probability than rs-fMRI connectivity in both linear and network-theoretic 705 

comparisons, despite the dMRI and rs-fMRI cohorts being highly overlapping. Although 706 

resting-state functional connectivity is constrained by anatomical networks and can be partially 707 

predicted by them (Honey et al., 2009), indirect connections or parallel processing of stimuli in 708 

different areas can produce correlated activity even in the absence of direct anatomical 709 

connections. One notable example of the latter may be inter-hemispheric connectivity. While 710 

we did find hyperconnectivity between inter-hemispheric homologs when compared to other 711 

callosal connections, anatomical interhemispheric connectivity on the whole is much weaker 712 

than found in rs-fMRI. CCEPs, being directed by clinical requirements, have poor inter-713 

hemispheric sampling, but we found that even among ipsilateral connections, rs-fMRI is still 714 

less similar to CCEP than probabilistic tractography. These inter-modal connectivity 715 

comparisons are not intended to be comprehensive. The HCP cohort also includes source-716 

localized resting-state magneto-encephalography (MEG) (Larson-Prior et al., 2013), which 717 

could be used to examine the degree to which the functional connectivity of various frequency 718 

bands corresponds to anatomical connectivity. Furthermore, neuropsychological metrics, 719 

including the NIH toolbox (Gershon et al., 2013), and genotypic data (dbGaP phs001364.v1.p1) 720 

are also available for this cohort, enabling future studies of the interplay between cortical 721 

connectivity, cognition, and genetics. 722 

The Human Connectome Project was a scientific undertaking of visionary scope and 723 

ambition. Its commitment to open science and accessibility of data by the public enabled this 724 

study and will continue to facilitate further studies for years to come. Emerging clinical 725 

applications of brain connectomics will be underpinned by a strong base of normative data for 726 
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comparison. The whole-cortex probabilistic diffusion tractography connectome reported here 727 

fulfills a key goal outlined in the project’s conception and we hope it will empower yet further 728 

study of the myriad and beautiful web of connectivity that the human brain embodies. 729 

 730 

 731 

Data availability 732 

Individual and group average connectivity matrices as well as all other figure source data can 733 

be found at https://doi.org/10.5281/zenodo.4060485. The preprocessed HCP data using in this 734 

study was retrieved from https://db.humanconnectome.org and the preprocessing code used 735 

to create these files is availed at https://github.com/Washington-University/HCPpipelines. The 736 

source code for FSL, including probtrackx2 is available from 737 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL. Network theory measures were computed with the 738 

brain connectivity Matlab toolbox whose source code is available from http://www.brain-739 

connectivity-toolbox.net. 740 
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 956 
 957 

Legends 958 

Figure 1. Probabilistic diffusion tractography structural connectome of the human cortex (A) 959 

Group average (N = 1065) structural connectivity matrix consisting of the 360 HCP-MMPS1.0 960 

atlas parcels organized into ten functional networks. Raw streamline counts are fractionally 961 

scaled yielding the log probability Fpt. The white arrows highlight the diagonal which contains 962 

contralateral homologs. (B) The first row of the connectivity matrix, showing connection 963 

probabilities from left V1 to all other parcels, projected onto the fsaverage template cortex. (C) 964 

Single subject (100307) volume ray casting visualization of left V1-originating streamline 965 

probabilities within the skull-stripped T1-weighted structural MR volume. (D) Ten functional 966 

networks, adapted from (Ji et al., 2019), within HCP-MMPS1.0 atlas. These are indicated by 967 

red boxes in panel A. 968 

 969 

Figure  1-1.  Comparison of normalization methods. Shown are the (A) connectivity matrices, 970 

(B) distributions of pairwise connectivity, (C) the pre-log distribution of Fpt (D) relationships 971 

between connectivity and fiber tract length for four normalization methods. 972 

 973 

Figure  2.  . Connectivity strength exponential decays with fiber tract length. (A) and (B) 974 

connections within the right and left hemispheres, respectively. (C) Connections between the 975 
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right and left hemisphere. (D) All connections. Each marker represents a pair of parcels. Red 976 

traces show the least-squares exponential fit; inset are the length constant λ and r2 of this fit. 977 

Note that Fpt is log-transformed making these axes effectively semi-log. 978 

 979 

Figure 2-1. Alternative models for fitting connectivity strength as a function of fiber tract 980 

length. Each gray marker shows the average pair-wise Fpt between two parcels and fiber tract 981 

length between them, as also shown in figure 2D. The colored traces show maximum likelihood 982 

estimates for several listed functional forms. The AIC, AICc, aBIC columns contain the Akaike, 983 

corrected Akaike, and Bayesian information criteria, respectively. While the Gaussian fits 984 

explain slightly more variance and have a slightly lower AIC than the exponential fit, the 985 

exponential has fewer parameters and is consistent with histological non-human primate 986 

evidence (Donahue et al., 2016; Markov et al., 2013; Theodoni et al., 2020). 987 

 988 

Figure 2-2. Effect of motion during the dMRI scan. (A) Time-course of displacement relative to 989 

initial position for one subject (996782). The six runs of the HCP dMRI protocol can be seen. 990 

(B) Exponential fall-off coefficient λ is only modestly affected by motion, r = 0.140, p = 4.6E-6. 991 

Each marker represents a subject.  992 

 993 

Figure 3. Inter-individual variability. Shown are (A) the matrix of connectivity coefficients of 994 

variation (CV) across subjects (B) pairwise CV vs. fiber tract length, (C) the distribution of CV 995 

across all connections, (D) the Fpt vs. fiber tract length for the connections in the highest 996 

quintile of inter-individual consistency, and (F) the Fpt of right hemisphere V1 – V2 connection in 997 

all subjects vs. left hemisphere V1 – V2 connection. In panels B and D each marker represents 998 

a sample statistic for a connection between two parcels. In panel F each marker represents an 999 
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individual subject. In panel D the red trace show the least-squares exponential fit and inset are 1000 

the length constant λ and r2 of this fit. Note that Fpt is log-transformed making this panel’s axes 1001 

effectively semi-log. In panel F, the r2 of the least squares linear fit is reported.  1002 

 1003 

Figure 4. Comparison of human diffusion tractography and macaque retrograde tracing 1004 

connectomes. Subset of homologous parcels in the human HCP-MMPS1.0 and macaque fv91 1005 

atlas. (A) Macaque group-average retrograde tracer derived structural connectome, gray 1006 

indicates missing data. (B) Human probabilistic diffusion tractography connectome. (C) 1007 

Pairwise correlation between macaque and human structural connectivity, r = 0.35, p = 0.0013.  1008 

 1009 

Figure 5. Interhemispheric connectivity. Differential connectivity between ipsilateral and 1010 

contralateral connectivity. Greater Ipsilateral connectivity dominates and is indicated in red. 1011 

Parcel-pairs with greater contralateral connectivity than ipsilateral are blue. The green cortical 1012 

patches show anatomic extent of parcel groups of notable contrast. 1013 

 1014 

Figure 6. Contralateral homologs. Differential connectivity between contralateral homologous 1015 

parcels vs the mean of all other contralateral parcels. Red indicates contralateral homologous 1016 

connectivity greater than mean contralateral connectivity. Note that many language-implicated 1017 

regions have relatively weak connectivity with their contralateral homologs.  1018 

 1019 

Figure 6-1. Differential connectivity between contralateral homologous parcels vs the mean of 1020 

all other contralateral parcels. Confidence intervals are Bonferroni-corrected for multiple 1021 

comparisons. 1022 

 1023 
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Figure 7. Language/Auditory network hyperconnectivity and left-lateralization. (A) Distance-1024 

binned connectivity within the language and auditory networks compared to connectivity 1025 

between the language and auditory networks and other networks, separately for the left and 1026 

right hemispheres (B) The differential trace for the within- and between- connectivity in both 1027 

hemispheres. In both panels, gray patches show Bonferroni-corrected bootstrapped 95% 1028 

confidence intervals across subjects.  1029 

 1030 

Figure 8. Connectivity is influenced by the cortical hierarchy. (A, B) Connectivity is strongly 1031 

predicted by hierarchical similarity in some networks and modestly predicted overall. (A) All 1032 

connectivity vs. myelination difference, including within- and across- network connections, for 1033 

the left, right, and callosal connections. For both panels, each marker represents a parcel pair. 1034 

(B) Within-network connectivity vs. myelination difference for 10 functional networks. Linear fits 1035 

and correlation coefficients computed independently for the left and right hemisphere. A 1036 

negative correlation indicates that parcels at similar hierarchical levels tend to be more 1037 

connected. (C, D) Higher order prefrontal areas are better connected. (C) Histogram of 1038 

correlation coefficients between areal myelination and Fpt connectivity to each parcel. Only 1039 

significant coefficients after Bonferroni correction are shown. Most coefficients are negative 1040 

indicating high connectivity to low-myelination (i.e., higher-order) areas. (D) Significant negative 1041 

coefficients (red) map onto bilateral prefrontal cortex. Only the bilateral DVT and V6A are show 1042 

positive significant correlations (blue). 1043 

 1044 

Figure 8-1. Myelination difference connectivity matrix. This provides an estimate for the 1045 

difference in hierarchical level between cortical parcels. Values have been fractionally scaled. 1046 
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Note that the color scale has been reversed when compared to figure 1, as |Δmyelination| is 1047 

inversely proportional to connectivity.  1048 

 1049 

Figure 8-2. Pearson correlations between the Fpt from each left hemisphere parcel to all others 1050 

and the target parcels’ myelination indices. p values are Bonferroni-corrected for multiple 1051 

comparisons.  1052 

 1053 

Figure 8-3. Pearson correlations between the Fpt from each right hemisphere parcel to all 1054 

others and the target parcels’ myelination indices. p values are Bonferroni-corrected for 1055 

multiple comparisons.  1056 

 1057 

Figure 9. Probabilistic dMRI more closely resembles CCEPs than resting-state fMRI. (A) 1058 

Connectivity matrices for probabilistic dMRI tractography, CCEP, and rs-fMRI. For CCEPs 1059 

missing data has been colored grey and pre-log zero-strength connections black. (B) 1060 

Correlations among the three modalities. The least-squares linear fit is shown in red. (C) Non-1061 

zero pairwise connection strength distributions. Note that rs-fMRI connectivity values, which 1062 

are not log-transformed, display two modes, separated at 0.0014.(D) Cortical parcels 1063 

displaying lower (left) and higher (right) modes of rs-fMRI connectivity.  1064 

 1065 

Figure 9-1. Within-hemisphere comparison of probabilistic dMRI tractography, CCEP, and rs-1066 

fMRI connectivity. For the left and right hemisphere, the distribution of pairwise non-zero 1067 

connection strengths and correlations among the three modalities are shown. The least-1068 

squares linear fit is shown in red. All within-hemisphere findings are concordant with the overall 1069 

findings, shown in figure 9.  1070 
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 1071 

Figure 10. Network theoretic differences between the connectivity modalities. Binarized 1072 

network metrics after thresholding by edge weight (connectivity strength). 1073 

Table 1. Connectome Features 1074 

 1075 

Table 2. Parcel order and network assignment. The emboldened indices refer to the parcel 1076 

order in figure 1A. The Orig. indices refer to the original parcel order presented in (Glasser et 1077 

al., 2016). All indices refer to the left hemisphere, adding 180 yields the homologous right 1078 

hemisphere indices. 1079 

 1080 

Table 3. Statistics and uncertainty. Where multiple uncertainties are listed for a figure panel, 1081 

they correspond to the statistics read left-to-right, top-to-bottom in that panel. For figure 8B 1082 

only uncertainties for significant correlations are listed. Uncertainties for figures 6, 7, 8 and 10  1083 

are not shown. Figure 6-1 contains bootstrapped 95% confidence intervals for the 180 means 1084 

shown in figure 6, n = 179. Figure 7 shows Bootstrapped 95% confidence intervals in gray; the 1085 

values of these intervals for all distance bins are available in the figure source data at 1086 

https://doi.org/10.5281/zenodo.4060485. For figure 10 means across shuffled matrices are 1087 

only necessary to account for arbitrary ordering among tied edge weights and the 1088 

bootstrapped 95% confidence intervals for these means are vanishingly small. The values of 1089 

these intervals at all network densities are also included in the figure source data. For nonlinear 1090 

regressions confidence intervals are estimated using R-1, the inverse R factor from QR 1091 

decomposition of the Jacobian, the degrees of freedom for error, and the root mean squared 1092 

error. For linear correlations the confidence intervals are based on an asymptotic normal 1093 

distribution of 0.5*log((1+r)/(1-r)), with an approximate variance equal to 1/(N-3). For descriptive 1094 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.06.22.166041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.166041
http://creativecommons.org/licenses/by-nc/4.0/


 42 

statistics, e.g. means, empirical 95% confidence intervals are estimated by bootstrapping with 1095 

2000 iterations.  1096 

 1097 

 1098 

 1099 

 1100 

 1101 

  1102 
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Figures & Tables 1103 

 1104 

 
Figure 1. Probabilistic diffusion tractography structural connectome of the human cortex (A) Group average 
(N = 1065) structural connectivity matrix consisting of the 360 HCP-MMPS1.0 atlas parcels organized into ten 
functional networks. Raw streamline counts are fractionally scaled yielding the log probability Fpt. The white 
arrows highlight the diagonal which contains contralateral homologs. (B) The first row of the connectivity 
matrix, showing connection probabilities from left V1 to all other parcels, projected onto the fsaverage 
template cortex. (C) Single subject (100307) volume ray casting visualization of left V1-originating streamline 
probabilities within the skull-stripped T1-weighted structural MR volume. (D) Ten functional networks, 
adapted from (Ji et al., 2019), within HCP-MMPS1.0 atlas. These are indicated by red boxes in panel A. 
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 1105 

 1106 
 1107 
 1108 
  1109 

 
Figure 1-1. Comparison of normalization methods. Shown are the (A) connectivity matrices, (B) distributions 
of pairwise connectivity, (C) the pre-log distribution of Fpt (D) relationships between connectivity and fiber 
tract length for four normalization methods. 
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Figure 2. Connectivity strength exponential decays with fiber tract 
length. (A) and (B) connections within the right and left hemispheres, 
respectively. (C) Connections between the right and left hemisphere. 
(D) All connections. Each marker represents a pair of parcels. Red 
traces show the least-squares exponential fit; inset are the length 
constant λ and r2 of this fit. Note that Fpt is log-transformed making 
these axes effectively semi-log. 
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Figure 2-1. Alternative models for fitting connectivity strength as a 
function of fiber tract length. Each gray marker shows the average 
pair-wise Fpt between two parcels and fiber tract length between them, 
as also shown in figure 2D. The colored traces show maximum 
likelihood estimates for several listed functional forms. The AIC, AICc, 
aBIC columns contain the Akaike, corrected Akaike, and Bayesian 
information criteria, respectively. While the Gaussian fits explain 
slightly more variance and have a slightly lower AIC than the 
exponential fit, the exponential has fewer parameters and is consistent 
with histological non-human primate evidence (Donahue et al., 2016; 
Markov et al., 2013; Theodoni et al., 2020). 
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  1112 

Figure 2-2. Effect of motion during the dMRI scan. (A) Time-course of 
displacement relative to initial position for one subject (996782). The 
six runs of the HCP dMRI protocol can be seen. (B) Exponential fall-off 
coefficient λ is only modestly affected by motion, r = 0.140, p = 4.6E-6. 
Each marker represents a subject.  
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Figure 3. Inter-individual variability. Shown are (A) the matrix of 
connectivity coefficients of variation (CV) across subjects (B) pairwise 
CV vs. fiber tract length, (C) the distribution of CV across all 
connections, (D) the Fpt vs. fiber tract length for the connections in the 
highest quintile of inter-individual consistency, and (F) the Fpt of right 
hemisphere V1 – V2 connection in all subjects vs. left hemisphere V1 
– V2 connection. In panels B and D each marker represents a sample 
statistic for a connection between two parcels. In panel F each marker 
represents an individual subject. In panel D the red trace show the 
least-squares exponential fit and inset are the length constant λ and r2 
of this fit. Note that Fpt is log-transformed making this panel’s axes 
effectively semi-log. In panel F, the r2 of the least squares linear fit is 
reported.  
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Figure 4. Comparison of human diffusion 
tractography and macaque retrograde tracing 
connectomes. Subset of homologous parcels in 
the human HCP-MMPS1.0 and macaque fv91 
atlas. (A) Macaque group-average retrograde 
tracer derived structural connectome, gray 
indicates missing data. (B) Human probabilistic 
diffusion tractography connectome. (C) Pairwise 
correlation between macaque and human 
structural connectivity. R = 0.35 p = 0.0013 
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Figure 5. Interhemispheric connectivity. Differential connectivity between ipsilateral and contralateral connectivity. 
Greater Ipsilateral connectivity dominates and is indicated in red. Parcel-pairs with greater contralateral connectivity 
than ipsilateral are blue. The green cortical patches show anatomic extent of parcel groups of notable contrast. 
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Figure 6. Contralateral homologs. Differential 
connectivity between contralateral homologous parcels 
vs the mean of all other contralateral parcels. Red 
indicates contralateral homologous connectivity greater 
than mean contralateral connectivity. Note that many 
language-implicated regions have relatively weak 
connectivity with their contralateral homologs. 
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Idx Parcel Fpt  
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Mean [CI95%] 
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Idx Parcel Fpt  
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Mean [CI95%] 
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 contra-lateral  

parcels 

Idx Parcel Fpt  
to  

contra- 
lateral  

homolog 

Mean [CI95%] 
 Fpt to non- 

homologous 
 contra-lateral  

parcels 
1 V1 -1.69 -3.72 [-3.88 -3.57] 61 46 -1.57 -4.15 [-4.39 -3.90] 121 IP1 -2.92 -4.14 [-4.31 -3.99] 
2 ProS -4.87 -4.71 [-4.81 -4.60] 62 9-46d -1.66 -3.92 [-4.12 -3.70] 122 PFm -3.63 -4.09 [-4.19 -3.99] 
3 DVT -2.49 -3.97 [-4.11 -3.83] 63 43 -1.38 -3.65 [-3.82 -3.46] 123 p10p -4.75 -4.51 [-4.59 -4.43] 
4 MST -1.98 -3.86 [-4.01 -3.73] 64 PFcm -1.70 -4.23 [-4.43 -3.99] 124 p47r -3.80 -4.33 [-4.46 -4.19] 
5 V6 -2.31 -3.95 [-4.10 -3.81] 65 PoI2 -1.35 -4.09 [-4.30 -3.87] 125 A1 -4.16 -4.49 [-4.59 -4.38] 
6 V2 -3.18 -4.25 [-4.39 -4.09] 66 FOP4 -5.19 -5.06 [-5.19 -4.91] 126 52 -4.07 -4.37 [-4.50 -4.24] 
7 V3 -3.90 -4.62 [-4.74 -4.49] 67 MI -2.18 -3.94 [-4.11 -3.75] 127 RI -4.26 -4.50 [-4.62 -4.38] 
8 V4 -1.66 -3.80 [ -4.00 -3.61] 68 FOP1 -3.14 -4.45 [-4.62 -4.30] 128 TA2 -4.60 -4.62 [-4.74 -4.52] 
9 V8 -2.48 -3.89 [-4.04 -3.72] 69 FOP3 -1.38 -3.60 [-3.78 -3.43] 129 PBelt -4.84 -4.80 [-4.92 -4.70] 

10 V3A -2.14 -4.17 [-4.35 -4.00] 70 PFop -2.06 -3.84 [-3.99 -3.67] 130 MBelt -4.68 -4.67 [-4.77 -4.52] 
11 V7 -3.17 -4.58 [-4.74 -4.38] 71 PF -2.52 -4.09 [-4.23 -3.93] 131 LBelt -3.10 -3.91 [-4.04 -3.80] 
12 IPS1 -2.43 -4.14 [-4.28 -3.99] 72 PoI1 -1.67 -3.78 [-3.93 -3.62] 132 A4 -4.46 -4.47 [-4.60 -4.37] 
13 FFC -2.64 -4.05 [-4.18 -3.89] 73 FOP5 -2.67 -4.18 [-4.33 -4.00] 133 7m -3.89 -4.21 [-4.32 -4.10] 
14 V3B -1.88 -3.69 [-3.83 -3.52] 74 PI -2.93 -4.17 [-4.32 -4.01] 134 POS1 -3.94 -4.29 [-4.40 -4.19] 
15 LO1 -2.11 -3.51 [-3.64 -3.37] 75 a32pr -3.53 -4.20 [-4.31 -4.08] 135 23d -4.01 -4.28 [-4.41 -4.17] 
16 LO2 -3.71 -4.43 [-4.55 -4.32] 76 p24 -4.24 -4.43 [-4.56 -4.30] 136 v23ab -4.25 -4.42 [-4.52 -4.29] 
17 PIT -3.59 -4.30 [-4.43 -4.18] 77 PEF -2.49 -4.04 [-4.17 -3.88] 137 d23ab -4.26 -4.34 [-4.44 -4.24] 
18 MT -3.83 -4.37 [-4.49 -4.27] 78 7PL -2.85 -4.23 [-4.37 -4.08] 138 31pv -4.08 -4.28 [-4.38 -4.18] 
19 LIPv -4.33 -4.60 [-4.70 -4.46] 79 MIP -4.13 -4.86 [ -5.00 -4.69] 139 a24 -4.84 -4.80 [-4.91 -4.70] 
20 VIP -3.77 -4.56 [-4.69 -4.42] 80 LIPd -4.77 -5.06 [-5.21 -4.91] 140 d32 -5.15 -4.81 [-4.91 -4.70] 
21 PH -3.62 -4.39 [-4.51 -4.26] 81 6a -3.03 -4.41 [-4.57 -4.27] 141 p32 -5.17 -4.71 [-4.80 -4.61] 
22 V6A -3.72 -4.46 [-4.59 -4.34] 82 PFt -3.09 -4.31 [-4.47 -4.16] 142 10r -2.54 -3.96 [-4.09 -3.80] 
23 VMV1 -4.55 -4.60 [-4.71 -4.50] 83 AIP -2.38 -4.13 [-4.31 -3.98] 143 47m -3.55 -4.15 [-4.25 -4.03] 
24 VMV3 -4.69 -4.75 [-4.88 -4.63] 84 PHA3 -2.53 -4.12 [-4.27 -3.95] 144 8Av -4.12 -4.56 [-4.69 -4.44] 
25 V4t -3.63 -4.30 [-4.42 -4.18] 85 TE2p -2.68 -4.13 [-4.29 -3.97] 145 8Ad -3.30 -4.14 [-4.26 -4.02] 
26 FST -1.86 -3.65 [-3.81 -3.49] 86 PHT -2.64 -4.21 [-4.34 -4.03] 146 9m -3.76 -4.35 [-4.47 -4.24] 
27 V3CD -1.75 -3.53 [-3.67 -3.38] 87 PGp -2.30 -3.98 [-4.12 -3.83] 147 8BL -3.46 -4.42 [-4.54 -4.27] 
28 LO3 -4.28 -4.52 [-4.64 -4.40] 88 IP0 -1.38 -3.89 [-4.06 -3.70] 148 9p -2.89 -4.00 [-4.14 -3.89] 
29 VMV2 -2.00 -3.57 [-3.68 -3.44] 89 55b -2.57 -4.18 [-4.33 -4.06] 149 10d -3.06 -4.00 [-4.14 -3.89] 
30 VVC -1.73 -3.58 [-3.75 -3.41] 90 PSL -2.31 -3.99 [-4.13 -3.82] 150 47l -4.84 -4.69 [-4.81 -4.58] 
31 4 -2.67 -3.96 [-4.10 -3.80] 91 SFL -3.67 -4.39 [-4.49 -4.27] 151 9a -3.42 -4.06 [-4.16 -3.96] 
32 3b -1.64 -4.06 [-4.26 -3.87] 92 STV -4.67 -4.85 [-5.01 -4.72] 152 10v -2.96 -4.13 [-4.25 -4.00] 
33 5m -1.84 -3.90 [-4.07 -3.72] 93 44 -1.99 -4.15 [-4.30 -3.92] 153 10pp -3.53 -4.67 [-4.81 -4.53] 
34 5L -1.64 -3.98 [-4.17 -3.77] 94 45 -4.67 -4.70 [-4.82 -4.56] 154 OFC -4.15 -4.79 [-4.92 -4.67] 
35 24dd -2.12 -4.05 [-4.23 -3.81] 95 IFJa -4.00 -4.53 [-4.65 -4.42] 155 47s -4.32 -4.61 [-4.73 -4.50] 
36 24dv -1.94 -3.82 [-3.98 -3.65] 96 IFSp -2.78 -4.24 [-4.41 -4.07] 156 EC -4.04 -4.49 [-4.61 -4.38] 
37 7AL -2.49 -3.85 [-3.98 -3.69] 97 STGa -2.52 -4.22 [-4.37 -4.04] 157 PreS -4.41 -4.44 [-4.55 -4.34] 
38 7PC -2.47 -3.86 [-4.04 -3.70] 98 A5 -2.82 -4.37 [-4.54 -4.21] 158 H -3.82 -4.48 [-4.60 -4.33] 
39 1 -2.02 -3.59 [-3.75 -3.46] 99 STSda -4.16 -4.62 [-4.76 -4.49] 159 PHA1 -3.97 -4.43 [-4.56 -4.32] 
40 2 -1.92 -3.90 [-4.06 -3.67] 100 STSdp -4.44 -4.65 [-4.76 -4.53] 160 STSvp -4.14 -4.75 [-4.87 -4.62] 
41 3a -2.40 -4.17 [-4.36 -3.97] 101 TPOJ1 -4.95 -4.80 [-4.92 -4.68] 161 TGd -2.32 -3.85 [-4.01 -3.66] 
42 6d -2.06 -3.50 [-3.60 -3.38] 102 TGv -5.82 -5.08 [-5.21 -4.97] 162 TE1a -1.99 -3.89 [-4.07 -3.68] 
43 6mp -1.57 -3.67 [-3.84 -3.42] 103 RSC -4.49 -4.43 [-4.52 -4.33] 163 TE2a -3.62 -4.48 [-4.61 -4.37] 
44 6v -2.03 -3.82 [-3.97 -3.66] 104 POS2 -4.43 -4.67 [-4.80 -4.54] 164 PGi -1.55 -4.22 [-4.41 -4.02] 
45 OP4 -1.97 -3.41 [-3.55 -3.27] 105 7Pm -4.01 -4.48 [-4.59 -4.34] 165 PGs -1.51 -4.34 [-4.55 -4.07] 
46 OP1 -2.65 -3.76 [-3.87 -3.65] 106 8BM -4.18 -4.21 [-4.33 -4.09] 166 PHA2 -2.16 -4.17 [-4.33 -4.02] 
47 OP2-3 -2.69 -3.90 [-4.01 -3.78] 107 8C -4.46 -4.46 [-4.57 -4.36] 167 31pd -4.05 -4.16 [-4.25 -4.05] 
48 FOP2 -3.04 -4.07 [-4.17 -3.94] 108 a47r -4.41 -4.52 [-4.67 -4.39] 168 31a -5.76 -5.07 [-5.17 -4.94] 
49 Ig -2.55 -3.74 [-3.85 -3.64] 109 IFJp -4.91 -4.65 [-4.77 -4.52] 169 25 -5.26 -4.79 [-4.89 -4.66] 
50 FEF -3.14 -4.16 [-4.26 -4.05] 110 IFSa -3.04 -4.09 [-4.23 -3.94] 170 s32 -2.53 -4.13 [-4.26 -3.97] 
51 5mv -2.32 -3.83 [-3.96 -3.69] 111 p9-46v -5.51 -4.88 [ -5.00 -4.76] 171 STSva -2.92 -4.24 [-4.40 -4.07] 
52 23c -2.37 -3.82 [ -4.00 -3.67] 112 a9-46v -4.75 -4.48 [-4.59 -4.36] 172 TE1m -3.81 -4.16 [-4.25 -4.04] 
53 SCEF -2.75 -4.18 [-4.31 -4.03] 113 a10p -4.71 -4.76 [-4.90 -4.60] 173 PCV -4.43 -4.49 [-4.60 -4.37] 
54 6ma -1.95 -4.03 [-4.17 -3.88] 114 11l -5.68 -5.03 [-5.17 -4.88] 174 TPOJ2 -4.09 -4.50 [-4.60 -4.37] 
55 7Am -1.68 -3.79 [-3.93 -3.64] 115 13l -6.03 -5.14 [-5.26 -5.04] 175 TPOJ3 -3.63 -4.26 [-4.36 -4.14] 
56 p24pr -2.72 -4.32 [-4.49 -4.13] 116 i6-8 -3.63 -4.61 [-4.74 -4.48] 176 PeEc -4.70 -4.66 [-4.77 -4.55] 
57 33pr -1.78 -4.08 [-4.26 -3.85] 117 s6-8 -4.15 -4.68 [-4.81 -4.56] 177 TF -4.35 -4.48 [-4.57 -4.37] 
58 a24pr -2.02 -4.11 [-4.35 -3.87] 118 AVI -3.84 -4.27 [-4.40 -4.15] 178 Pir -4.41 -4.34 [-4.43 -4.23] 
59 p32pr -1.92 -4.06 [-4.27 -3.84] 119 TE1p -3.35 -4.09 [-4.23 -3.96] 179 AAIC -1.93 -4.01 [-4.19 -3.82] 
60 6r -1.97 -3.98 [-4.21 -3.76] 120 IP2 -3.10 -4.00 [-4.11 -3.88] 180 pOFC -1.76 -4.03 [-4.25 -3.80] 

Figure 6-1. Differential connectivity between contralateral homologous parcels vs the mean of all other 
contralateral parcels. Confidence intervals are Bonferroni-corrected for multiple comparisons.  
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Figure 7. Language/Auditory network hyperconnectivity and left-lateralization. (A) Distance-binned 
connectivity within the language and auditory networks compared to connectivity between the language and 
auditory networks and other networks, separately for the left and right hemispheres (B) The differential trace 
for the within- and between- connectivity in both hemispheres. In both panels, gray patches show Bonferroni-
corrected bootstrapped 95% confidence intervals across subjects.  
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Figure 8. Connectivity is influenced by the cortical hierarchy. (A, B) Connectivity is strongly predicted by 
hierarchical similarity in some networks and modestly predicted overall. (A) All connectivity vs. myelination 
difference, including within- and across- network connections, for the left, right, and callosal connections. For 
both panels, each marker represents a parcel pair. (B) Within-network connectivity vs. myelination difference 
for 10 functional networks. Linear fits and correlation coefficients computed independently for the left and 
right hemisphere. A negative correlation indicates that parcels at similar hierarchical levels tend to be more 
connected. (C, D) Higher order prefrontal areas are better connected. (C) Histogram of correlation 
coefficients between areal myelination and Fpt connectivity to each parcel. Only significant coefficients after 
Bonferroni correction are shown. Most coefficients are negative indicating high connectivity to low-
myelination (i.e., higher-order) areas. (D) Significant negative coefficients (red) map onto bilateral prefrontal 
cortex. Only the bilateral DVT and V6A are show positive significant correlations (blue).  
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Figure 8-1. Myelination difference connectivity matrix. This provides an estimate for the difference in 
hierarchical level between cortical parcels. Values have been fractionally scaled. Note that the color scale 
has been reversed when compared to figure 1, as |Δmyelination| is inversely proportional to connectivity.  
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Idx. Parcel r p Idx. Parcel r p Idx. Parcel r p 

1 V1 0.07 n.s. 61 46 -0.31 7.18E-07 121 IP1 0.12 n.s. 
2 ProS 0.15 n.s. 62 9-46d -0.31 4.04E-07 122 PFm 0.04 n.s. 
3 DVT 0.23 3.99E-03 63 43 0.00 n.s. 123 p10p -0.33 2.77E-08 
4 MST 0.06 n.s. 64 PFcm 0.03 n.s. 124 p47r -0.26 2.51E-04 
5 V6 0.20 n.s. 65 PoI2 -0.03 n.s. 125 A1 0.05 n.s. 
6 V2 0.09 n.s. 66 FOP4 -0.14 n.s. 126 52 0.06 n.s. 
7 V3 0.12 n.s. 67 MI -0.12 n.s. 127 RI 0.01 n.s. 
8 V4 0.12 n.s. 68 FOP1 -0.06 n.s. 128 TA2 0.05 n.s. 
9 V8 0.08 n.s. 69 FOP3 -0.10 n.s. 129 PBelt 0.10 n.s. 

10 V3A 0.15 n.s. 70 PFop 0.05 n.s. 130 MBelt 0.08 n.s. 
11 V7 0.16 n.s. 71 PF 0.05 n.s. 131 LBelt 0.07 n.s. 
12 IPS1 0.17 n.s. 72 PoI1 -0.01 n.s. 132 A4 0.10 n.s. 
13 FFC 0.12 n.s. 73 FOP5 -0.10 n.s. 133 7m -0.05 n.s. 
14 V3B 0.16 n.s. 74 PI -0.02 n.s. 134 POS1 0.07 n.s. 
15 LO1 0.15 n.s. 75 a32pr -0.30 2.60E-06 135 23d -0.12 n.s. 
16 LO2 0.12 n.s. 76 p24 -0.27 6.33E-05 136 v23ab -0.08 n.s. 
17 PIT 0.12 n.s. 77 PEF -0.16 n.s. 137 d23ab -0.10 n.s. 
18 MT 0.05 n.s. 78 7PL 0.13 n.s. 138 31pv -0.13 n.s. 
19 LIPv 0.06 n.s. 79 MIP 0.14 n.s. 139 a24 -0.31 1.12E-06 
20 VIP 0.08 n.s. 80 LIPd 0.08 n.s. 140 d32 -0.34 1.23E-08 
21 PH 0.10 n.s. 81 6a -0.11 n.s. 141 p32 -0.35 4.09E-09 
22 V6A 0.20 4.92E-02 82 PFt 0.07 n.s. 142 10r -0.36 4.05E-10 
23 VMV1 0.09 n.s. 83 AIP 0.07 n.s. 143 47m -0.16 n.s. 
24 VMV3 0.08 n.s. 84 PHA3 0.11 n.s. 144 8Av -0.21 2.27E-02 
25 V4t 0.09 n.s. 85 TE2p 0.08 n.s. 145 8Ad -0.30 3.27E-06 
26 FST 0.08 n.s. 86 PHT 0.03 n.s. 146 9m -0.38 4.11E-11 
27 V3CD 0.17 n.s. 87 PGp 0.13 n.s. 147 8BL -0.35 2.80E-09 
28 LO3 0.11 n.s. 88 IP0 0.17 n.s. 148 9p -0.33 4.18E-08 
29 VMV2 0.06 n.s. 89 55b -0.10 n.s. 149 10d -0.37 1.90E-10 
30 VVC 0.13 n.s. 90 PSL 0.03 n.s. 150 47l -0.15 n.s. 
31 4 0.02 n.s. 91 SFL -0.29 1.00E-05 151 9a -0.33 3.62E-08 
32 3b 0.04 n.s. 92 STV 0.03 n.s. 152 10v -0.34 2.60E-08 
33 5m 0.01 n.s. 93 44 -0.21 2.25E-02 153 10pp -0.26 3.45E-04 
34 5L 0.04 n.s. 94 45 -0.18 n.s. 154 OFC -0.28 3.28E-05 
35 24dd -0.09 n.s. 95 IFJa -0.17 n.s. 155 47s -0.19 n.s. 
36 24dv -0.16 n.s. 96 IFSp -0.24 1.01E-03 156 EC 0.02 n.s. 
37 7AL 0.04 n.s. 97 STGa -0.03 n.s. 157 PreS 0.01 n.s. 
38 7PC 0.06 n.s. 98 A5 0.07 n.s. 158 H 0.06 n.s. 
39 1 0.06 n.s. 99 STSda 0.04 n.s. 159 PHA1 0.07 n.s. 
40 2 0.06 n.s. 100 STSdp -0.01 n.s. 160 STSvp -0.04 n.s. 
41 3a 0.05 n.s. 101 TPOJ1 0.00 n.s. 161 TGd -0.11 n.s. 
42 6d -0.05 n.s. 102 TGv -0.03 n.s. 162 TE1a -0.04 n.s. 
43 6mp -0.03 n.s. 103 RSC -0.03 n.s. 163 TE2a -0.02 n.s. 
44 6v -0.09 n.s. 104 POS2 0.11 n.s. 164 PGi 0.01 n.s. 
45 OP4 0.06 n.s. 105 7Pm 0.00 n.s. 165 PGs 0.06 n.s. 
46 OP1 0.03 n.s. 106 8BM -0.37 1.14E-10 166 PHA2 0.08 n.s. 
47 OP2-3 -0.01 n.s. 107 8C -0.22 1.25E-02 167 31pd -0.13 n.s. 
48 FOP2 -0.06 n.s. 108 a47r -0.25 4.75E-04 168 31a -0.09 n.s. 
49 Ig -0.02 n.s. 109 IFJp -0.17 n.s. 169 25 -0.27 9.02E-05 
50 FEF -0.07 n.s. 110 IFSa -0.25 3.91E-04 170 s32 -0.34 2.28E-08 
51 5mv -0.07 n.s. 111 p9-46v -0.28 2.50E-05 171 STSva 0.02 n.s. 
52 23c -0.12 n.s. 112 a9-46v -0.30 1.33E-06 172 TE1m -0.05 n.s. 
53 SCEF -0.20 n.s. 113 a10p -0.30 2.32E-06 173 PCV -0.07 n.s. 
54 6ma -0.13 n.s. 114 11l -0.18 n.s. 174 TPOJ2 0.02 n.s. 
55 7Am 0.01 n.s. 115 13l -0.19 n.s. 175 TPOJ3 0.04 n.s. 
56 p24pr -0.18 n.s. 116 i6-8 -0.16 n.s. 176 PeEc 0.02 n.s. 
57 33pr -0.18 n.s. 117 s6-8 -0.27 5.76E-05 177 TF 0.08 n.s. 
58 a24pr -0.26 2.99E-04 118 AVI -0.13 n.s. 178 Pir -0.16 n.s. 
59 p32pr -0.26 1.58E-04 119 TE1p 0.01 n.s. 179 AAIC -0.18 n.s. 
60 6r -0.14 n.s. 120 IP2 0.06 n.s. 180 pOFC -0.24 1.58E-03 

Figure 8-2. Pearson correlations between the Fpt from each left hemisphere parcel to all others and the 
target parcels’ myelination indices. p values are Bonferroni-corrected for multiple comparisons.  
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Idx. Parcel r p Idx. Parcel r p Idx. Parcel r p 
181 R_V1 0.08 n.s. 241 R_46 -0.29 1.20E-05 301 R_IP1 0.13 n.s. 
182 R_ProS 0.12 n.s. 242 R_9-46d -0.29 7.49E-06 302 R_PFm 0.02 n.s. 
183 R_DVT 0.23 2.52E-03 243 R_43 0.00 n.s. 303 R_p10p -0.30 2.07E-06 
184 R_MST 0.11 n.s. 244 R_PFcm 0.05 n.s. 304 R_p47r -0.21 1.69E-02 
185 R_V6 0.20 n.s. 245 R_PoI2 0.03 n.s. 305 R_A1 0.06 n.s. 
186 R_V2 0.10 n.s. 246 R_FOP4 -0.12 n.s. 306 R_52 0.12 n.s. 
187 R_V3 0.13 n.s. 247 R_MI -0.08 n.s. 307 R_RI 0.03 n.s. 
188 R_V4 0.14 n.s. 248 R_FOP1 -0.07 n.s. 308 R_TA2 0.09 n.s. 
189 R_V8 0.09 n.s. 249 R_FOP3 -0.08 n.s. 309 R_PBelt 0.12 n.s. 
190 R_V3A 0.18 n.s. 250 R_PFop 0.07 n.s. 310 R_MBelt 0.09 n.s. 
191 R_V7 0.19 n.s. 251 R_PF 0.05 n.s. 311 R_LBelt 0.08 n.s. 
192 R_IPS1 0.20 n.s. 252 R_PoI1 0.09 n.s. 312 R_A4 0.15 n.s. 
193 R_FFC 0.15 n.s. 253 R_FOP5 -0.05 n.s. 313 R_7m -0.05 n.s. 
194 R_V3B 0.18 n.s. 254 R_PI 0.08 n.s. 314 R_POS1 0.06 n.s. 
195 R_LO1 0.19 n.s. 255 R_a32pr -0.29 6.54E-06 315 R_23d -0.10 n.s. 
196 R_LO2 0.17 n.s. 256 R_p24 -0.27 9.60E-05 316 R_v23ab -0.08 n.s. 
197 R_PIT 0.15 n.s. 257 R_PEF -0.15 n.s. 317 R_d23ab -0.10 n.s. 
198 R_MT 0.11 n.s. 258 R_7PL 0.16 n.s. 318 R_31pv -0.11 n.s. 
199 R_LIPv 0.09 n.s. 259 R_MIP 0.17 n.s. 319 R_a24 -0.28 3.54E-05 
200 R_VIP 0.11 n.s. 260 R_LIPd 0.08 n.s. 320 R_d32 -0.32 2.51E-07 
201 R_PH 0.15 n.s. 261 R_6a -0.08 n.s. 321 R_p32 -0.35 5.11E-09 
202 R_V6A 0.23 4.12E-03 262 R_PFt 0.07 n.s. 322 R_10r -0.37 1.63E-10 
203 R_VMV1 0.11 n.s. 263 R_AIP 0.05 n.s. 323 R_47m -0.07 n.s. 
204 R_VMV3 0.10 n.s. 264 R_PHA3 0.12 n.s. 324 R_8Av -0.20 n.s. 
205 R_V4t 0.14 n.s. 265 R_TE2p 0.12 n.s. 325 R_8Ad -0.26 1.58E-04 
206 R_FST 0.14 n.s. 266 R_PHT 0.09 n.s. 326 R_9m -0.37 2.04E-10 
207 R_V3CD 0.19 n.s. 267 R_PGp 0.16 n.s. 327 R_8BL -0.35 1.95E-09 
208 R_LO3 0.17 n.s. 268 R_IP0 0.20 n.s. 328 R_9p -0.31 8.63E-07 
209 R_VMV2 0.08 n.s. 269 R_55b -0.08 n.s. 329 R_10d -0.36 3.48E-10 
210 R_VVC 0.14 n.s. 270 R_PSL 0.05 n.s. 330 R_47l -0.07 n.s. 
211 R_4 0.04 n.s. 271 R_SFL -0.22 1.06E-02 331 R_9a -0.30 1.63E-06 
212 R_3b 0.06 n.s. 272 R_STV 0.04 n.s. 332 R_10v -0.34 1.05E-08 
213 R_5m 0.04 n.s. 273 R_44 -0.20 n.s. 333 R_10pp -0.24 9.97E-04 
214 R_5L 0.06 n.s. 274 R_45 -0.12 n.s. 334 R_OFC -0.24 1.10E-03 
215 R_24dd -0.06 n.s. 275 R_IFJa -0.18 n.s. 335 R_47s -0.07 n.s. 
216 R_24dv -0.15 n.s. 276 R_IFSp -0.24 1.75E-03 336 R_EC 0.03 n.s. 
217 R_7AL 0.07 n.s. 277 R_STGa 0.03 n.s. 337 R_PreS 0.01 n.s. 
218 R_7PC 0.07 n.s. 278 R_A5 0.11 n.s. 338 R_H 0.07 n.s. 
219 R_1 0.07 n.s. 279 R_STSda 0.09 n.s. 339 R_PHA1 0.09 n.s. 
220 R_2 0.07 n.s. 280 R_STSdp 0.04 n.s. 340 R_STSvp 0.03 n.s. 
221 R_3a 0.07 n.s. 281 R_TPOJ1 0.03 n.s. 341 R_TGd -0.07 n.s. 
222 R_6d -0.03 n.s. 282 R_TGv 0.03 n.s. 342 R_TE1a 0.01 n.s. 
223 R_6mp -0.01 n.s. 283 R_RSC -0.05 n.s. 343 R_TE2a 0.02 n.s. 
224 R_6v -0.08 n.s. 284 R_POS2 0.12 n.s. 344 R_PGi 0.03 n.s. 
225 R_OP4 0.07 n.s. 285 R_7Pm 0.03 n.s. 345 R_PGs 0.08 n.s. 
226 R_OP1 0.04 n.s. 286 R_8BM -0.35 1.71E-09 346 R_PHA2 0.08 n.s. 
227 R_OP2-3 0.00 n.s. 287 R_8C -0.21 1.51E-02 347 R_31pd -0.12 n.s. 
228 R_FOP2 -0.05 n.s. 288 R_a47r -0.23 3.49E-03 348 R_31a -0.09 n.s. 
229 R_Ig 0.00 n.s. 289 R_IFJp -0.15 n.s. 349 R_25 -0.24 1.61E-03 
230 R_FEF -0.05 n.s. 290 R_IFSa -0.21 3.22E-02 350 R_s32 -0.32 1.37E-07 
231 R_5mv -0.04 n.s. 291 R_p9-46v -0.27 8.34E-05 351 R_STSva 0.08 n.s. 
232 R_23c -0.09 n.s. 292 R_a9-46v -0.28 2.20E-05 352 R_TE1m 0.02 n.s. 
233 R_SCEF -0.16 n.s. 293 R_a10p -0.25 8.16E-04 353 R_PCV -0.05 n.s. 
234 R_6ma -0.08 n.s. 294 R_11l -0.13 n.s. 354 R_TPOJ2 0.06 n.s. 
235 R_7Am 0.04 n.s. 295 R_13l -0.11 n.s. 355 R_TPOJ3 0.08 n.s. 
236 R_p24pr -0.17 n.s. 296 R_i6-8 -0.13 n.s. 356 R_PeEc 0.04 n.s. 
237 R_33pr -0.18 n.s. 297 R_s6-8 -0.22 9.03E-03 357 R_TF 0.13 n.s. 
238 R_a24pr -0.26 2.39E-04 298 R_AVI -0.03 n.s. 358 R_Pir -0.11 n.s. 
239 R_p32pr -0.25 4.93E-04 299 R_TE1p 0.07 n.s. 359 R_AAIC -0.09 n.s. 
240 R_6r -0.14 n.s. 300 R_IP2 0.03 n.s. 360 R_pOFC -0.20 3.99E-02 

Figure 8-3. Pearson correlations between the Fpt from each right hemisphere parcel to all others and the 
target parcels’ myelination indices. p values are Bonferroni-corrected for multiple comparisons.  
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 Figure 9. Probabilistic dMRI more closely resembles CCEPs than resting-state fMRI. (A) Connectivity 
matrices for probabilistic dMRI tractography, CCEP, and rs-fMRI. For CCEPs missing data has been colored 
grey and pre-log zero-strength connections black. (B) Correlations among the three modalities. The least-
squares linear fit is shown in red. (C) Non-zero pairwise connection strength distributions. Note that rs-fMRI 
connectivity values, which are not log-transformed, display two modes, separated at 0.0014.(D) Cortical 
parcels displaying lower (left) and higher (right) modes of rs-fMRI connectivity.  
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Figure 9-1. Within-hemisphere comparison of probabilistic dMRI tractography, CCEP, and rs-fMRI 
connectivity. For the left and right hemisphere, the distribution of pairwise non-zero connection strengths and 
correlations among the three modalities are shown. The least-squares linear fit is shown in red. All within-
hemisphere findings are concordant with the overall findings, shown in figure 9.  
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Figure 10. Network theoretic differences between the connectivity modalities. Binarized network metrics after 
thresholding by edge weight (connectivity strength). 
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Connectome Features 
Probabilistic methodology sensitive to weak 
connections yielding a fully-populated, un-
thresholded connectome 

Cortex parcellated into the standardized, 
relatively dense, and functionally relevant 
HCP-MMP1.0 atlas 

Large normative sample size (N = 1,065) 

Enables comparison with other measures in 
the WU-Minn HCP and other cohorts 

Table 1. Connectome Features 
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Idx. Parcel Orig. Network Idx. Parcel Orig. Network Idx. Parcel Orig. Network 
1 V1 1 Cingulo-Opercular 61 46 84 Cingulo-Opercular 121 IP1 145 Frontoparietal 
2 ProS 121 Visual 62 9-46d 86 Cingulo-Opercular 122 PFm 149 Frontoparietal 
3 DVT 142 Visual 63 43 99 Cingulo-Opercular 123 p10p 170 Frontoparietal 
4 MST 2 Visual 64 PFcm 105 Cingulo-Opercular 124 p47r 171 Frontoparietal 
5 V6 3 Visual 65 PoI2 106 Cingulo-Opercular 125 A1 24 Auditory 
6 V2 4 Visual 66 FOP4 108 Cingulo-Opercular 126 52 103 Auditory 
7 V3 5 Visual 67 MI 109 Cingulo-Opercular 127 RI 104 Auditory 
8 V4 6 Visual 68 FOP1 113 Cingulo-Opercular 128 TA2 107 Auditory 
9 V8 7 Visual 69 FOP3 114 Cingulo-Opercular 129 PBelt 124 Auditory 

10 V3A 13 Visual 70 PFop 147 Cingulo-Opercular 130 MBelt 173 Auditory 
11 V7 16 Visual 71 PF 148 Cingulo-Opercular 131 LBelt 174 Auditory 
12 IPS1 17 Visual 72 PoI1 167 Cingulo-Opercular 132 A4 175 Auditory 
13 FFC 18 Visual 73 FOP5 169 Cingulo-Opercular 133 7m 30 Default Mode 
14 V3B 19 Visual 74 PI 178 Cingulo-Opercular 134 POS1 31 Default Mode 
15 LO1 20 Visual 75 a32pr 179 Cingulo-Opercular 135 23d 32 Default Mode 
16 LO2 21 Visual 76 p24 180 Cingulo-Opercular 136 v23ab 33 Default Mode 
17 PIT 22 Visual 77 PEF 11 Dorsal Attention 137 d23ab 34 Default Mode 
18 MT 23 Visual 78 7PL 46 Dorsal Attention 138 31pv 35 Default Mode 
19 LIPv 48 Visual 79 MIP 50 Dorsal Attention 139 a24 61 Default Mode 
20 VIP 49 Visual 80 LIPd 95 Dorsal Attention 140 d32 62 Default Mode 
21 PH 138 Visual 81 6a 96 Dorsal Attention 141 p32 64 Default Mode 
22 V6A 152 Visual 82 PFt 116 Dorsal Attention 142 10r 65 Default Mode 
23 VMV1 153 Visual 83 AIP 117 Dorsal Attention 143 47m 66 Default Mode 
24 VMV3 154 Visual 84 PHA3 127 Dorsal Attention 144 8Av 67 Default Mode 
25 V4t 156 Visual 85 TE2p 136 Dorsal Attention 145 8Ad 68 Default Mode 
26 FST 157 Visual 86 PHT 137 Dorsal Attention 146 9m 69 Default Mode 
27 V3CD 158 Visual 87 PGp 143 Dorsal Attention 147 8BL 70 Default Mode 
28 LO3 159 Visual 88 IP0 146 Dorsal Attention 148 9p 71 Default Mode 
29 VMV2 160 Visual 89 55b 12 Language 149 10d 72 Default Mode 
30 VVC 163 Visual 90 PSL 25 Language 150 47l 76 Default Mode 
31 4 8 Somatomotor 91 SFL 26 Language 151 9a 87 Default Mode 
32 3b 9 Somatomotor 92 STV 28 Language 152 10v 88 Default Mode 
33 5m 36 Somatomotor 93 44 74 Language 153 10pp 90 Default Mode 
34 5L 39 Somatomotor 94 45 75 Language 154 OFC 93 Default Mode 
35 24dd 40 Somatomotor 95 IFJa 79 Language 155 47s 94 Default Mode 
36 24dv 41 Somatomotor 96 IFSp 81 Language 156 EC 118 Default Mode 
37 7AL 42 Somatomotor 97 STGa 123 Language 157 PreS 119 Default Mode 
38 7PC 47 Somatomotor 98 A5 125 Language 158 H 120 Default Mode 
39 1 51 Somatomotor 99 STSda 128 Language 159 PHA1 126 Default Mode 
40 2 52 Somatomotor 100 STSdp 129 Language 160 STSvp 130 Default Mode 
41 3a 53 Somatomotor 101 TPOJ1 139 Language 161 TGd 131 Default Mode 
42 6d 54 Somatomotor 102 TGv 172 Language 162 TE1a 132 Default Mode 
43 6mp 55 Somatomotor 103 RSC 14 Frontoparietal 163 TE2a 134 Default Mode 
44 6v 56 Somatomotor 104 POS2 15 Frontoparietal 164 PGi 150 Default Mode 
45 OP4 100 Somatomotor 105 7Pm 29 Frontoparietal 165 PGs 151 Default Mode 
46 OP1 101 Somatomotor 106 8BM 63 Frontoparietal 166 PHA2 155 Default Mode 
47 OP2-3 102 Somatomotor 107 8C 73 Frontoparietal 167 31pd 161 Default Mode 
48 FOP2 115 Somatomotor 108 a47r 77 Frontoparietal 168 31a 162 Default Mode 
49 Ig 168 Somatomotor 109 IFJp 80 Frontoparietal 169 25 164 Default Mode 
50 FEF 10 Cingulo-Opercular 110 IFSa 82 Frontoparietal 170 s32 165 Default Mode 
51 5mv 37 Cingulo-Opercular 111 p9-46v 83 Frontoparietal 171 STSva 176 Default Mode 
52 23c 38 Cingulo-Opercular 112 a9-46v 85 Frontoparietal 172 TE1m 177 Default Mode 
53 SCEF 43 Cingulo-Opercular 113 a10p 89 Frontoparietal 173 PCV 27 Multimodal 
54 6ma 44 Cingulo-Opercular 114 11l 91 Frontoparietal 174 TPOJ2 140 Multimodal 
55 7Am 45 Cingulo-Opercular 115 13l 92 Frontoparietal 175 TPOJ3 141 Multimodal 
56 p24pr 57 Cingulo-Opercular 116 i6-8 97 Frontoparietal 176 PeEc 122 Multimodal 
57 33pr 58 Cingulo-Opercular 117 s6-8 98 Frontoparietal 177 TF 135 Multimodal 
58 a24pr 59 Cingulo-Opercular 118 AVI 111 Frontoparietal 178 Pir 110 Orbito-Affective 
59 p32pr 60 Cingulo-Opercular 119 TE1p 133 Frontoparietal 179 AAIC 112 Orbito-Affective 
60 6r 78 Cingulo-Opercular 120 IP2 144 Frontoparietal 180 pOFC 166 Orbito-Affective 

Table 2. Parcel order and network assignment. The emboldened indices refer to the parcel order in figure 1A. 
The Orig. indices refer to the original parcel order presented in (Glasser et al., 2016). All indices refer to the 
left hemisphere, adding 180 yields the homologous right hemisphere indices. 
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 1139 

Location Data structure Test or analysis N Uncertainty [CI95%] 
Fig 1-1D Gaussian predictor 

Exponential response  
Nonlinear regression 
(iterative optimization)  

64,620 
64,620 
64,620 
64,620 

λ = 23.8 [23.5 24.0] 
λ = 22.8 [22.7 22.9] 
λ = 22.2 [22.1 22.2] 
λ = 23.4 [23.3 23.6] 

Fig 2A Gaussian predictor 
Exponential response  

Nonlinear regression 
(iterative optimization)  

16,110 λ = 23.1 [22.8 23.3] 
 

Fig 2B Gaussian predictor 
Exponential response  

Nonlinear regression 
(iterative optimization)  

16,110 λ = 23.9 [23.7 24.2] 
 

Fig 2C Gaussian predictor 
Exponential response  

Nonlinear regression 
(iterative optimization)  

32,400 λ = 32.8 [32.5 33.0] 
 

Fig 2D Gaussian predictor 
Exponential response  

Nonlinear regression 
(iterative optimization)  

64,620 λ = 23.4 [23.3 23.6] 
 

Fig 2-2B Gaussian predictor 
Gaussian response  

Linear correlation 1,065 r = -0.14 [-0.20 -0.08] 

Fig 3D Gaussian predictor 
Exponential response 

Nonlinear regression 
(iterative optimization)  

12,924 λ = 27.8 [27.4 28.2] 

Fig 3F Gaussian predictor 
Gaussian response  

Linear correlation 1,065 r = 0.70 [0.67 0.73] 

Fig 4C Gaussian predictor 
Gaussian response  

Linear correlation 80 r = 0.35 [0.14 0.53] 

Fig 8A Gaussian predictor 
Gaussian response  

Linear correlation 16,110 
16,110 
32,400 

r = -0.10 [-0.12 -0.09] 
r = -0.12 [-0.13 -0.10] 
r = -0.11 [-0.12 -0.10] 

Fig 8B Gaussian predictor 
Gaussian response  

Linear correlation 351 
351 
66 
91 
231 
231 
28 
780 
780 
10 

r = -0.17 [-0.27 -0.06] 
r = -0.13 [-0.23 -0.02] 
r = -0.41 [-0.60 -0.19] 
r = -0.26 [-0.44 -0.06] 
r = -0.30 [-0.42 -0.18] 
r = -0.30 [-0.40 -0.17] 
r = -0.56 [-0.77 -0.24] 
r = -0.12 [-0.19 -0.05] 
r = -0.17 [-0.24 -0.10] 
r = -0.74 [-0.93 -0.20] 

Fig 9B Gaussian predictor 
Gaussian response  

Linear correlation 19,667 
19,667 
64,620 

r = 0.43 [0.42 0.44] 
r = 0.23 [0.21 0.24] 
r = 0.06 [0.05 0.07] 

Figure 9-1 Gaussian predictor 
Gaussian response  

Linear correlation 8,483 
8,483 
16,110 
8,370 
8,370 
16,110 

r = 0.42 [0.40 0.44] 
r = 0.22 [0.20 0.24] 
r = 0.06 [0.05 0.07] 
r = 0.40 [0.38 0.42] 
r = 0.22 [0.20 0.24] 
r = 0.11 [0.10 0.13] 

Table 3. Statistics and uncertainty. Where multiple uncertainties are listed for a figure panel, they correspond 
to the statistics read left-to-right, top-to-bottom in that panel. For figure 8B only uncertainties for significant 
correlations are listed. Uncertainties for figures 6, 7, 8 and 10  are not shown. Figure 6-1 contains 
bootstrapped 95% confidence intervals for the 180 means shown in figure 6, n = 179. Figure 7 shows 
Bootstrapped 95% confidence intervals in gray; the values of these intervals for all distance bins are available 
in the figure source data at https://doi.org/10.5281/zenodo.4060485. For figure 10 means across shuffled 
matrices are only necessary to account for arbitrary ordering among tied edge weights and the bootstrapped 
95% confidence intervals for these means are vanishingly small. The values of these intervals at all network 
densities are also included in the figure source data. For nonlinear regressions confidence intervals are 
estimated using R-1, the inverse R factor from QR decomposition of the Jacobian, the degrees of freedom for 
error, and the root mean squared error. For linear correlations the confidence intervals are based on an 
asymptotic normal distribution of 0.5*log((1+r)/(1-r)), with an approximate variance equal to 1/(N-3). For 
descriptive statistics, e.g. means, empirical 95% confidence intervals are estimated by bootstrapping with 
2000 iterations.  
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