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ABSTRACT 
Music is a universal non-verbal human language, built on logical structures and articulated in 

balanced hierarchies between sounds, offering excellent opportunities to explore how the 

brain creates meaning for complex spatiotemporal auditory patterns. Using the high temporal 

resolution of magnetoencephalography in 70 participants, we investigated their unfolding 

brain dynamics during the recognition of Johann Sebastian Bach’s original musical patterns 

compared to new variations thereof. Remarkably, the recognition of Bach’s original music 

ignited a widespread music processing brain network comprising primary auditory cortex, 

superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, 

basal ganglia and hippocampus. Furthermore, both activity and connectivity increased over 

time, following the evolution and unfolding of Bach’s original patterns. This study shed new 

light on brain activity and connectivity dynamics underlying auditory patterns recognition, 

highlighting the crucial role of fast neural phase synchronization underlying meaningful, 

complex cognitive processes. 
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Introduction  
Higher human brain function crucially depends on advanced pattern recognition and 

prediction of complex information [1,2]. This fast, seemingly effortless processing of 

information available in the present moment and its relation to the past and future is anything 

but effortless [3,4]. It depends on a complex chain of events, including stimulus 

identification, extraction of meaningful features, comparison with memory representation and 

prediction of upcoming stimuli [5,6]. 

 For instance, a sequence of images, sounds, or words can be stored at several levels of 

detail, from specific items and their timing to abstract structure. Then, revisiting successfully 

the neural pathways formed during the encoding phase is crucial to properly predict and 

recognise the information conveyed by the constantly incoming external stimuli [7]. 

Neuroscientific research has widely investigated this central topic, focusing especially on 

processing and recognition of images and words [8,9]. Additionally, in the auditory domain, 

patterns have been extensively studied in the context of prediction error and automatic 

detection of environmental irregularities, as indexed by event-related components such as 

N100 and mismatch negativity (MMN) [10,11]. Indeed, this literature has highlighted that the 

brain is remarkably capable of recognising patterns and detecting deviations; key capacities 

to accomplish any complex cognitive function. 

 However, even if the interest for pattern recognition has increased across scientific fields 

and neuroscience, the brain mechanisms responsible for recognition of patterns acquiring 

meaning over time are not yet fully understood. Indeed, a recent paper by Stanislas Dehaene 

and colleagues [12] explicitly pointed out that future neuroscientific studies are called for to 

reveal the role of different brain areas in extracting and retrieving temporal sequences. 

 Thus, in this study, we focused on music, the human art that mainly acquires meaning 

through the combination of its constituent elements extended over time [13,14]. Indeed, 

beyond the strong emotional content evoked, music contains complex logical structures, 

articulated in carefully balanced hierarchies between sounds [14,15], yielding to meaningful 

messages and information that can be processed and recognised. Therefore, music is a great 

tool for investigating higher human brain processes implicated in the recognition of patterns 

unfolding over time. 

 In this regard, throughout music history, a unique place has been occupied by Johann 

Sebastian Bach’s compositions that have stood the test of time. Bach’s contrapuntal patterns, 

said to represent an ideal combination of refined logical structures and deeply emotional 
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melodies [16], have been crystallised into generations of minds, emerging as some of the 

most iconic and memorable artworks in human history. 

 Indeed, the interest for Bach’s work has transcended the musical domain and inspired 

scientists. A famous example is represented by the acclaimed book entitled Gödel, Escher, 

Bach: An Eternal Golden Braid by Douglas Hofstadter [17]. This work highlighted 

similarities, common patterns and logical schemas of the outstanding creations of the 

composer J.S. Bach, the mathematician K. Gödel, and the artist M.C. Escher. While the 

necessary tools for studying brain responses were not available at the time, Hofstadter was 

very interested in discovering the commonalities that allow the brain to be able to understand 

the shared logical schemas and patterns, which ultimately makes music, arts and mathematics 

meaningful. Nowadays, with the advent of high temporal resolution whole-brain 

neuroimaging, we are finally in a position to study the music composed by Bach as a way to 

better understand the spatiotemporal dynamics of higher brain functions.  

 Here we thus used state-of-the-art neuroscientific techniques to study the brain activity 

elicited by musical sequences from the prelude in C minor BWV 847 by J.S. Bach and 

compared this to the response to musical variations, which were carefully matched to the 

original sequences in terms of information content and entropy. This allowed us to reveal the 

fundamental brain mechanisms underlying the recognition of musical patterns evolving over 

time. 
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Results 
 

Experimental design and data analysis overview 

In this study, we wanted to characterise the fine-grained spatiotemporal dynamics of the brain 

activity and connectivity during recognition of the musical patterns by Johann Sebastian 

Bach. During a session of magnetoencephalography (MEG), 70 participants listened to a 

musical instrumental digital interface (MIDI) version of the full prelude in C minor BWV 

847 composed by Bach. As described in the Methods and depicted in Figure 1A, participants 

were then presented with short musical melodies corresponding to original excerpts of the 

Bach’s prelude and carefully matched variations (in terms of information content and 

entropy, see Methods). Participants were asked to indicate whether each musical excerpt was 

an original Bach’s pattern or a variation. 

 The analysis pipeline used in this study is illustrated in Figure 1B (and described in 

details in the Methods). This focused on extracting results using four main measures of brain 

activity: 1) sensor space, 2) beamformed source localised activity, 3) static source localised 

connectivity and 4) dynamic source localised connectivity.  

 First, we used multivariate pattern analysis and Monte Carlo simulations (MCS) on 

univariate tests of MEG sensor data. Second, we were interested in finding the brain sources 

of the observed differences and therefore we reconstructed the sources of the signal using a 

beamforming algorithm (Figure 1C) to track the brain activity related to each tone of the 

musical sequences (Figure 1D). Third, complementing our brain activity results, we 

computed the functional connectivity between different brain regions. We computed the 

static functional connectivity by computing Pearson’s correlation between the envelopes of 

each pair of brain areas. Fourth, we investigated the functional connectivity dynamics.  

 Figure 2A depicts the Hilbert transform used to estimate the instantaneous phase 

synchronization between brain areas, while Figure 2B and 2C illustrate the instantaneous 

functional connectivity matrices showing the connectivity patterns characterizing the brain at 

each time point. Similar to our analysis of brain activity, we analysed the brain connectivity 

patterns related to each tone of the musical sequences, as shown in Figure 2D. Here, we 

assessed both whole brain connectivity and degree centrality of brain regions. 
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Figure 1. Experimental design and analysis methods. 
a - Graphical schema of the old/new paradigm. The paradigm consisted of presenting one excerpt at a time that 

could be a Bach’s original pattern taken from the whole Bach’s prelude that participants previously listened to 

(old) or a Bach variation pattern (new). In this figure, we depicted at first an example of Bach’s original (‘old’) 

pattern (left, 2nd square) with the relative response pad that participants used to state whether they recognised 

the excerpt as ‘old’ or ‘new’ (left, 3th square). Then, we depicted an example of Bach variation (‘new’) pattern 

(right). The total number of trials was 80 (40 Bach’s original and 40 Bach variation) and their order was 

randomized. b – We collected, pre-processed and analysed MEG sensor data by employing multivariate pattern 

analysis and MCS on univariate tests. c – We beamformed MEG sensor data into source space, providing time-

series of activity originating from brain locations. d – We studied the source brain activity underlying the 

processing of each tone of the musical sequences for both experimental conditions. 
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Figure 2. Overview of the analysis pipeline. a - We computed the Hilbert transform of the envelope of each 

AAL parcellation ROI and estimated the phase synchronization by calculating the cosine similarity between the 

instantaneous phases of each pair of ROIs. b – We obtained for each time-point two IFC matrices for the task: 
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one for Bach’s original and one for Bach variation, plus an additional one for resting state that was used as 

baseline in the following steps. c – We contrasted the task matrices vs the average of the baseline matrix to 

isolate the brain activity specifically related to the pattern recognition brain processes. d – We investigated the 

brain connectivity for each tone forming the musical sequences. First, we showed an illustration of the whole 

brain connectivity dynamics. Then, we depicted the significantly central ROIs within the whole brain network, 

estimated by applying MCS on the ROIs degree centrality calculated for each tone composing the musical 

sequences. 

 

 

 

MEG sensor data 

Our first analysis was conducted on MEG sensor data and focused on the brain activity 

underlying the recognition of Bach’s original musical patterns and variations. Specifically, 

we prepared 80 homo-rhythmic musical fragments lasting 1250 ms each (40 Bach’s original 

and 40 Bach variations). On average participants correctly identified the 78.15 ± 13.56 % of 

the Bach’s original excerpts (mean reaction times (RT): 1871 ± 209 ms) and the 81.43 ± 

14.12 % of the Bach variations (mean RT: 1915 ± 135 ms). Successive MEG sensor data 

analysis was conducted on correct trials only. 

 

Multivariate pattern analysis 

As depicted in Figure 3A, we conducted a multivariate pattern analysis using a support 

vector machine (SVM) classifier (see details in the Methods section) to decode different 

neural activity associated with the recognition of Bach’s original and variation. This analysis 

resulted in a decoding time-series showing how neural activity differentiated the two 

experimental conditions. The decoding time-series was significantly different from chance 

level in the time range 0.8 - 2.1 seconds from the onset of the first tone (p < .026, false-

discovery rate (FDR)-corrected, Figure 3A, top left). 

 To evaluate the persistence of discriminable information over time, we applied a temporal 

generalisation approach by training the SVM classifier at a given time point t, as before, but 

testing across all other time points. Intuitively, if representations are stable over time, the 

classifier should successfully discriminate signals not only at the trained time t, but also over 

extended periods of time that share the same neural representation. FDR-corrected (p < .005) 

results are depicted in Figure 3A (top right) showing that performance of the classifier was 

significantly above chance even a few hundreds of milliseconds beyond the diagonal. 
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Figure 3. Bach’s original vs variation neural activity: cluster I. a – Multivariate pattern analysis decoding the 

different neural activity associated to Bach’s original vs variation. Decoding time-series (left), spatial patterns 

depicted as topoplot (middle left), temporal generalization decoding accuracy (middle right) and statistical 

output of significant prediction of training time on testing time (right). b – The left plot shows the amplitude 

associated to Bach’s original (red) and variation (blue). The right plot illustrates the t-statistics related to the 

contrast between Bach’s original vs variation. Thinner lines depict standard errors. Both plots represent the 

average over the gradiometer channels forming the significant cluster outputted by MEG sensor MCS. c – Three 

couples of topoplots showing brain activity for gradiometers (left of each pair, fT/cm) and magnetometers (right 

of each pair, fT) within the significant time-window emerged from MCS. First couple of topoplots depicts 

Bach’s original neural activity, second couple refers to Bach variation, while the third one represents the 

statistics (t-values) contrasting Bach’s original vs variation brain activity. d – Neural sources of Bach’s 

original (left), variation (middle) and their contrast (right). The values are t-statistics. 
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Univariate tests and Monte Carlo simulations 

The multivariate pattern analysis is a powerful tool that requires relatively few pre-processing 

steps for returning an estimation of neural activity that discriminates two or more 

experimental conditions. However, this technique does not provide directional information, 

that is, it does not identify which experimental condition yields a stronger neural signal. To 

answer this question, we performed independent univariate t-tests between conditions for 

each time-sample and each MEG channel and then corrected for multiple comparisons using 

a cluster-based Monte Carlo simulation (MCS) approach. 

 First, we contrasted Bach’s original vs variation (t-test threshold = .01, MCS threshold = 

.001, 1000 permutations), considering the positive t-values only (which is when Bach’s 

original was associated to a stronger brain activity than Bach variation). We performed this 

analysis in the time-range 0 – 2.5 seconds by using combined planar gradiometers only. This 

procedure yielded the identification of one main significant cluster, as depicted in Figure 3B 

and 3C and reported in details in Tables 1 and ST2. Then, on the basis of the significant 

cluster appearing, we computed the same algorithm one more time for magnetometers only, 

within the significant time-range emerged for the first MCS (0.547 – 1.180 seconds, p < 

.001). This two-step procedure was necessitated by the sign ambiguity typical of 

magnetometer data (see Methods for details). 

 Then, the same procedure was carried out by considering the results where the brain 

activity associated to Bach variation exceeded the one elicited by Bach’s original phrase. 

This analysis returned eight small significant clusters (size range: 6 – 14, p < .001) shown in 

Table ST1. 

 

 

Cluster number Size Channels Time-range (s) p 

Gradiometers (Bach’s original vs Bach variation) 

1 2117 90 0. 547 – 1.180 < .001 

Magnetometers – positive (Bach’s original vs Bach variation) 

1 817 24 0.627 – 1.180 < .001 

Magnetometers – negative (Bach’s original vs Bach variation) 

1 190 18 0.727 – 0.880 < .001 

2 168 15 0.960 – 1.133 < .001 
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Table 1. Significant clusters of MEG sensors emerged from MCS contrasting Bach’s original vs 

variation. The table depicts these clusters independently for gradiometers and positive and negative 

magnetometers. 

 

 

 

Source reconstructed data 

To identify the neural sources of the signal, we employed a beamforming approach and 

computed a general linear model (GLM) for assessing, at each time-point, the independent 

neural activity associated to the two conditions as well as their contrasts. 

 

Main cluster of Bach’s original vs variation 

We identified the neural sources of the gradiometer significant cluster emerging from the 

MEG sensor data when contrasting Bach’s original vs variation. Here, we performed one 

permutation test in source space, with an a level of .05, which, in our case, corresponds to a 

cluster forming threshold of t = 1.7. As depicted in Figure 3D, results showed a strong 

activity originating in the primary auditory cortex, insula, hippocampus, frontal operculum, 

cingulate cortex and basal ganglia. Detailed statistics are provided in Table ST3. 

 

Dynamic brain activity during development of musical patterns 

Then, to reveal the specific brain activity dynamics underlying the recognition of the musical 

sequence, we carried out a further analysis for each musical tone forming the pattern. Here, 

we adopted a cluster forming threshold of t = 2.7 (see Methods for details). As depicted in 

Figure 4A and 4B, we found significant activity within primary auditory cortex and insula, 

especially in the right hemisphere, for both experimental conditions. This activity decreased 

over time, following the unfolding of the musical sequences. Conversely, the contrast 

between Bach’s original vs variation gave rise to a burst of activity for Bach’s original 

increasing over time, especially with regards to the last three tones of the musical sequences, 

as shown in Figure 4C. This activity was mainly localised within hippocampus, frontal 

operculum, cingulate cortex, insula and basal ganglia. We report detailed clusters statistics in 

Table ST4. 
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Figure 4. Brain activity over time. a – Brain activity (localized with beamforming) associated to the 

recognition task for Bach’s original (top row) and musical notation of one example trial for Bach’s original 

pattern (bottom row). Red tones illustrate the dynamics of the musical excerpt. b – Brain activity concerning 

Bach variation (top row) and musical representation of one example trial for Bach variation (bottom row). c – 

Contrast (t-values) over time between brain activity associated to Bach’s original vs Bach variation. 
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Functional connectivity 

In order to obtain a better understanding of the brain dynamics underlying recognition, we 

complemented our brain activity results with an investigation of the static and functional 

connectivity. 

 

Static functional connectivity 

MEG pre-processed data was constrained to the 90 non-cerebellar parcels of the automated 

anatomic labelling (AAL) parcellation and corrected for source leakage. First, we computed 

Pearson’s correlations between the envelopes of the time-series of each pair of brain areas. 

This procedure was carried out for both task (in this case without distinguishing between 

Bach’s original and variation) and resting state (used as baseline) for each participant and 

five frequency bands: delta, theta, alpha, beta and gamma. Then, we tested the overall 

connectivity strengths of the five frequency bands during auditory recognition by employing 

analysis of variance (ANOVA). The test was significant (F(4,330) = 187.02, p < 1.0e-07). As 

depicted in Figure 5A and 5B, post-hoc analysis highlighted especially that theta band had a 

stronger connectivity profile than all other frequency bands (p < 1.0e-07). 

 To detect the significance of each brain region centrality within the whole brain network 

for the auditory recognition task, we contrasted the brain connectivity matrices associated to 

the task vs baseline by performing a Wilcoxon signed-rank test for each pair of brain areas. 

Then, the resulting z-values matrix was submitted to a degree MCS (see Methods for details). 

We computed this analysis independently for the five frequency bands and therefore we 

considered significant the brain regions whose p-value was lower than the a level divided by 

5 (2.0e-04). The results for theta band are depicted in Figure SF1 and reported as follows: 

left Rolandic operculum (p < 1.0e-07), insula (p < 1.0e-07), hippocampus (p = 5.5e-05), 

putamen (p < 1.0e-07), pallidum (p < 1.0e-07), caudate (p = 1.1e-05), thalamus (p < 1.0e-07), 

Heschl’s gyrus (p < 1.0e-07), superior temporal gyrus (p < 1.0e-07), right superior temporal 

gyrus (p = 1.1e-06), Heschl’s gyrus (p < 1.0e-07), thalamus (p < 1.0e-07), parahippocampal 

gyrus (p = 4.3e-05), pallidum (p < 1.0e-07), putamen (p < 1.0e-07), amygdala (p < 1.0e-07), 

insula (p < 1.0e-07) and Rolandic operculum (p < 1.0e-07). Additional results related to the 

other frequency bands are reported in Supplementary Materials (SR1). 

 Conversely, the degree MCS of the contrasts between Bach’s original vs variation yielded 

no significant results. 
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Figure 5. Static functional connectivity. a – Contrast between recognition task (Bach’s original and 

variation averaged together) and baseline SFC matrices calculated for five frequency bands: delta (0.1 – 2 Hz), 

theta (2 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 32 Hz), gamma (32 – 74 Hz). b – Violin-scatter plot showing the 

average of the SFC matrices over their two dimensions for all participants. c – Averaged MEG gradiometer 

channels waveform of the brain activity associated to the recognition task. d – Power spectra for all MEG 

channels associated to the recognition task. The first power spectra matrix reflects the analysis from 1 to 74 Hz 

in 1-Hz intervals, while the second from 0.1 to 10 Hz in 0.1-Hz intervals. 

 

 

 

Dynamic functional connectivity 

Expanding on the analysis of static functional connectivity, we focused on the brain 

connectivity patterns evolving dynamically over time. Thus, by employing Hilbert transform 

and cosine similarity, we computed the phase synchronization between each pair of brain 

areas, obtaining one instantaneous functional connectivity (IFC) matrix for each musical tone 

(see Methods for details). Then, we calculated the contrast between the IFC matrices 

associated to the two conditions vs the baseline (illustrated in the top rows of Figure 6A and 

6B, and in Figure SF2). Subsequently, as reported in the middle rows of Figure 6A and 6B, 

we computed the significantly central brain regions within the whole brain network for each 

tone forming the musical pattern and both Bach’s original and variation. We tested statistical 

significance by using MCS. Since we repeated this test 10 times (two conditions and five 

tones), we used a threshold = 1.0e-04, obtained dividing the a level (.001) by 10. Detailed 
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statistics are reported in Table ST5. Finally, as depicted in Figure 6C (top row), we 

contrasted the IFC matrices for Bach’s original vs variation and then we estimated the 

correspondent significantly central brain regions (Figure 6C, bottom row). These results are 

reported in details in Tables 2 (Bach’s original) and ST6 (Bach variation). 
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Figure 6. Dynamic functional connectivity. a – DFC calculated for each tone composing Bach’s original 

musical pattern. The top row depicts the whole brain connectivity in a brain template (each pair presents the 

left hemisphere and a posterior view of the brain). Values refers to Wilcoxon sign-rank test z-values computed 

for Bach’s original vs baseline DFC matrices. The bottom row illustrates the significantly central ROIs within 

the whole brain network over time, as assessed by MCS. Values show the average z-value between the 

significant ROIs and the rest of the brain regions. b – DFC calculated for Bach variation. The depiction is 

analogous to the one described for point a). c – DFC computed by contrasting Bach’s original vs variation. The 
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depiction is analogous to the one described for point a). d – Kuramoto order parameter calculated for each 

time-point for both Bach’s original (red line) and variation (blue line). Grey areas show the significant time-

windows emerged by MCS. 

 

 

 

 
Tone 1 

Left central ROIs p Right central ROIs p 

    

Tone 2 

Middle frontal orbital cortex < 1.0e-07 Superior orbitofrontal cortex < 1.0e-07 

Hippocampus < 1.0e-07 Middle cingulate gyrus < 1.0e-07 

Middle frontal gyrus < 1.0e-07   

Caudate < 1.0e-07   

Fusiform gyrus 8.8e-05   

Tone 3 

Fusiform gyrus < 1.0e-07 Angular < 1.0e-07 

Hippocampus 2.2e-05 Superior temporal gyrus < 1.0e-07 

  Ventro-med prefrontal cortex 2.2e-05 

  Fronto-superior medial cortex 1.0e-04 

Tone 4 

Caudate < 1.0e-07 Anterior cingulum gyrus < 1.0e-07 

Precentral gyrus 2.2e-05 Inferior temporal gyrus < 1.0e-07 

  Fusiform gyrus 1.1e-05 

  Middle cingulum gyrus 6.6e-05 

Tone 5 

Parahippocampal gyrus < 1.0e-07 Parietal inferior lobule < 1.0e-07 

Fronto-medial orbital cortex < 1.0e-07   

Calcarine < 1.0e-07   

Parietal superior lobule < 1.0e-07   

Thalamus < 1.0e-07   

Temporal pole middle < 1.0e-07   

Rolandic operculum 5.5e-05   
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Table 2. Significantly central ROIs for Bach’s original vs variation contrast of DFC matrices. The 

calculation has been done independently for each tone forming the musical patterns. 

 

 

 

Kuramoto order parameter 

Finally, to obtain a global measure of instantaneous connectivity within the brain over time, 

we computed the Kuramoto order parameter (see Methods) for the two experimental 

conditions and each time-point of the recognition task, obtaining two time-series. We 

contrasted them by performing t-tests and corrected for multiple comparisons through a 1-

dimensional (1D) MCS. Results, depicted in Figure 6D, showed a significant difference for 

the following time-ranges: 0.793 – 0.820 seconds (p = 4.5e-05), 0.327 – 0.340 seconds (p = 

.01) and 0.433 – 0.447 seconds (p = .01). In all three cases, Bach’s original was characterized 

by a significantly higher Kuramoto order parameter than Bach variation. 
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Discussion 
In this study, we were able to detect the fine-grained spatiotemporal dynamics of the brain 

activity and connectivity during recognition of the musical patterns by Johann Sebastian 

Bach compared to carefully matched variations.  

 First, by using a multivariate pattern analysis and MCS of massive univariate data, we 

found that the brain activity elicited by Bach’s original music compared to the variations 

gave rise to significant changes in widespread regions including primary auditory cortex, 

superior temporal gyrus, cingulate gyrus, hippocampus, basal ganglia, insula and frontal 

operculum.  

 Second, we investigated this important finding further by estimating static and dynamic 

functional brain connectivity evolving over time. Here, the recognition of the musical 

patterns was accompanied by significant centrality within the whole brain network of a 

number of brain regions including the insula, hippocampus, cingulate gyrus, auditory cortex, 

basal ganglia, frontal operculum, subgenual and orbitofrontal cortices. Notably, these 

connectivity patterns emerged more clearly for the last three tones of the five tones of the 

musical patterns and, even if similar across conditions, they were found to be stronger for 

Bach’s original phrases than for the variations. This finding lends strong support to the 

intriguing proposal by Changeux that recognition of meaningful art has the ability to ignite 

large brain networks [18]. As such, our results also make a significant contribution to 

identifying the brain networks engaged in eudaimonia, the meaningful pleasure evoked by 

music [19]. 

 

Brain activity dynamics of auditory pattern recognition 

The brain activity recorded during the recognition of the musical sequences was coherent 

with a large number of studies showing auditory processes associated to primary auditory 

cortex and insula [20,21]. Remarkably, contrasting Bach’s original phrases versus variations, 

we observed stronger activity underlying the recognition of original patterns in brain areas 

related to memory recognition such as hippocampus, medial temporal cortices [22,23] and 

cingulate cortices [24]. Additionally, the recognition of Bach’s original was associated to a 

stronger activity of brain regions previously related to evaluative processes [25,26] and 

pleasure [27,28] such as cingulate gyrus, subgenual cortices as well as parts of the basal 

ganglia. Finally, recognition of Bach’s original was accompanied by stronger activity in brain 
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regions responsible for fine-grained auditory elaboration and prediction error such as the 

inferior temporal cortex [29] and insula [30,21]. 

 

Brain functional connectivity dynamics of auditory patterns recognition 

In addition, to investigating the significant differences in brain activity ignited by Bach’s 

original patterns compared to the variations, we conducted detailed functional connectivity 

analyses. Since music is a language that acquires meaning over time, we mainly focused on 

dynamic functional connectivity analyses to assess whether different connectivity patterns 

were associated to different parts of the musical sequence. Remarkably, our connectivity 

analysis revealed both important similarities and differences within the evolving brain 

activity over time. 

 A key relevant difference was that while the activity of the brain areas decreased over 

time, the degree centrality and connectivity between brain regions became clearer with the 

temporal development of the auditory patterns. Moreover, primary auditory cortex did not 

play a crucial role, while the main connectivity patterns emerged for brain regions related to 

higher sound and linguistic elaborations such as insula, inferior temporal cortex [30,29] and 

frontal operculum [31]. Furthermore, we also observed other central brain areas that have 

been previously related to evaluative processes such as orbitofrontal and subgenual cortices 

[32,25] and memory such as hippocampus [33] and basal ganglia [34]. Notably, the 

connectivity patterns and centrality of brain regions were stronger for Bach’s original phrases 

than the variations. This evidence suggests the relevance of the synchronization between 

brain areas over their mere activation to understand the brain networks underlying complex 

memory processes. 

 Conversely, a crucial similarity between brain activity and connectivity analyses was that 

compared to the variations, the recognition of Bach’s original patterns ignited the shared 

common music processing brain network in terms of both activity and connectivity. As 

mentioned earlier, Changeux [18] proposed that processing and recognition of certain 

privileged classes of stimuli including meaningful artistic works can ignite the brain areas 

forming the global workspace [18]. Authors defined the global workspace as a privileged 

network of brain areas, where conscious information is processed in terms of memory, 

attention and valence, and subsequently broadcast and made available to the whole brain 

[35,36,37]. As predicted by Changeux’s hypothesis, the recognition of Bach’s original 

patterns – over and above the variations – led to stronger ignition of putative regions in the 
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global workspace such as hippocampus, cingulate gyrus, orbitofrontal cortex and frontal 

operculum, perhaps reflecting the unique nature of that meaningful music. 

 A further central theory in the neuroscientific field that can be related to our results is 

predictive coding. In this framework, the brain is considered a generator of models of 

expectations of the incoming stimuli. Recently, this theory has been linked to complex 

cognitive processes, finding a remarkable example in the neuroscience of music [2]. In their 

work, Koelsch and colleagues suggested that the perception of music is the result of an active 

listening process where individuals constantly formulate hypothesis about the upcoming 

development of musical sentences, while those sentences are actually evolving and unfolding 

their ambiguities. Our study is consistent with this perspective, where the brain predicts the 

upcoming sounds of the musical patterns leading to at least two separable outcomes. On the 

one hand, there is activity in the primary auditory cortex, responsible for the first sensorial 

processing of tones, and decreasing over time. On the other hand, the ignition of brain areas 

related to memory and evaluative processes is increasing over time and stronger for Bach’s 

original phrases than for the variations. Indeed, this would suggest that the brain has 

formulated predictions of the upcoming sounds on the basis of the memory trace previously 

stored during the encoding part of our experimental task. The match between those 

predictions and the actual sounds presented to participants may lead to the ignition of the 

brain areas that we observed in our experiment. 

 In line with the predictive coding framework, our results expanded also the neuroscientific 

literature on prediction error. Indeed, previous research using paradigms that required active 

encoding and evaluation of the stimuli to formulate predictions and drive decision-making 

processes has highlighted a prominent role of the anterior cingulate gyrus [37,38] and a 

relevant contribution of hippocampal areas [39,40]. Furthermore, in the auditory domain, 

traditionally prediction error has been investigated through the brain response to violations of 

auditory regularity, as indexed by event-related components such as N100 and MMN [41,10]. 

Additionally, more recent research has shown a hierarchical organization of prediction error 

processes occurring within the auditory cortex [42,43]. However, the majority of these 

auditory studies employed varied versions of the oddball paradigm or more complex tasks 

that did not require conscious elaboration of the stimuli, making it difficult to interpret the 

results in terms of higher brain functioning.  

 In contrast, in the current study we utilised an auditory paradigm that required participants 

to make active choices on the basis of prediction processes. Indeed, in line with the previous 

literature, we detected a prominent role played by cingulate cortex, hippocampus and 
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auditory cortex to establish whether a musical excerpt was a Bach’s original or a variation. 

Notably, we observed hippocampus and cingulate gyrus to be central within the whole brain 

network when the incoming stimuli matched the prediction made by the brain (e.g. when 

listening to Bach’s original), while the auditory cortex appeared more central for signalling a 

violation within the musical sequence expectation (e.g. when listening to Bach variation). 

 

Static functional connectivity and event-related fields 

Additionally, to increase the reliability of our findings, we complemented our main results on 

spatiotemporal dynamics of brain activity and connectivity with more traditional approaches 

such as static functional connectivity and analysis of MEG sensors. 

 For the static functional connectivity, we computed Pearson’s correlations between the 

envelopes of each pair of brain areas and then studied the centrality of brain regions within 

whole-brain networks. We detected the most prominent connectivity patterns associated to 

music recognition for theta band (2 – 8 Hz), highlighting a large network of brain regions 

including primary auditory cortex, superior temporal gyrus, frontal operculum, insula, 

hippocampus and basal ganglia. As expected, the static functional connectivity network was 

very similar to the dynamic functional connectivity ones and involved brain regions 

previously related to auditory [44], memory [22,23] and evaluative processes [26]. 

 Importantly, the static functional connectivity analysis failed to detect differences between 

Bach’s original phrases and variations. This shows that to capture the fine-grained brain 

functioning underlying recognition of original musical patterns, it was crucial to employ 

methods designed to detect the dynamic unfolding of the brain connectivity. 

 We also investigated our data by focusing on MEG sensor analysis. In this regard, we 

found that brain activity was reflected by two event-related fields (ERF) components: N100 

to each sound and a slow negativity following the entire duration of the musical patterns. 

 While the N100 associated to each tone represented a well-known finding, to the best of 

our knowledge the detection of the slow negative component associated to pattern 

recognition has never been described earlier. Indeed, even if this negative waveform shared 

similarities with well-established ERF components such as contingent negative variation 

(CNV) [45], P300 and P600 [46], previous literature has never associated an auditory 

recognition task to a slow negative component such as the one that we described. Thus, our 

results provided new insights and may contribute to develop future perspectives also within 

the framework of ERF and MEG sensor analysis.  
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Conclusion 

In conclusion, our findings have identified the spatiotemporal unfolding of brain activity 

elicited by the recognition of the music of J.S. Bach compared to carefully matched 

variations thereof. These results reveal the brain networks involved in recognising music that 

many describe as eliciting deeply meaningful musical experiences – similar to those proposed 

in the ‘Gödel, Escher and Bach’ book mentioned in the introduction [17]. 

 As an aside, an anecdote from Bach’s contemporary Christian Schubart reminds us of the 

importance of creating real, lasting art – rather than mere variations - was never far from 

Bach’s mind. Bach’s son Johann Christian Bach recounted playing around with a variation of 

Bach’s musical compositions which woke up Bach, prompting him to get up, reprimand his 

son and play the correct ending. 

 More research is needed to reveal what it is about Bach’s music that so speaks to both the 

mind and emotion not just when already familiar but even when it is first encountered. Still, 

the present results reveal some of the brain mechanisms underlying Hofstadter’s seminal 

ideas on what makes us recognise art as meaningful. In line with the proposal by Changeux 

[18], our results show that recognising Bach’s music - which is generally considered a high 

point of Western musical art – ignites widespread brain networks that may contribute to 

feeling of deeply meaningful music, and perhaps even the elusive state of eudaimonia. 

Indeed, our results using state-of-the-art neuroimaging and analysis methods highlight how 

the integration of brain activity and fast-scale phase synchronization analyses, combined with 

Bach’s high meaningful musical patterns, provide a unique opportunity to understand the 

brain functioning underlying complex cognitive processes - and can perhaps even shed light 

on how art becomes meaningful for the brain. 
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Methods 
 

Participants 

The study comprised 70 volunteers, composed by 36 males and 34 females (age range: 18 – 

42 years old, mean age: 25.06 ± 4.11 years). Since our experiment involved a musical piece 

usually played by classical pianists, we recruited 23 classical pianists (13 males and 10 

females, age range: 18 – 34 years old, mean age: 24.83 ± 4.10 years old), 24 non-pianist 

musicians (12 males and 12 females, age range: 19 - 42 years old, mean age: 24.54 ± 4.75), 

and 23 non-musicians (11 males and 12 females, age range: 21 – 35 years old; mean age: 

25.86 ± 3.34). The sample regarding functional connectivity analysis slightly differed (three 

participants had to be discarded due to technical problems during acquisition) consisting of 

67 participants (34 males and 33 females, age range: 18 – 42 years old, mean age: 25.00 ± 

4.18 years). Specifically, 21 were non-pianist musicians (10 males and 11 females, age range: 

42 – 19 years old, mean age: 24.29 ± 5.02 years), 23 classical pianists (13 males and 10 

females, age range: 18 – 34 years old, mean age: 24.83 ± 4.10 years) and 23 non-musicians 

(11 males and 12 females, age range: 21 – 35 years old; mean age: 25.86 ± 3.34 years). 

 All the experimental procedures were carried out complying with the Declaration of 

Helsinki – Ethical Principles for Medical Research and were approved by the Ethics 

Committee of the Central Denmark Region (De Videnskabsetiske Komitéer for Region 

Midtjylland) (Ref 1-10-72-411-17). 

 

Experimental design and stimuli 

To study the brain dynamics of musical pattern recognition, we employed an old/new [47] 

auditory pattern recognition task during MEG recording. First, participants were requested to 

listen to four repetitions of a MIDI homo-rhythmic version of the right-hand part of the entire 

prelude in C minor BWV 847 composed by J.S. Bach (total duration of about 10 minutes). 

Second, they were presented with 80 short musical excerpts lasting 1250 ms each and 

requested to indicate whether each excerpt belonged to the prelude by Bach (Bach’s original, 

old) or was a variation of the original patterns (Bach variation, new). A graphical depiction of 

the experimental design is reported in Figure 1A. Successive analyses were performed on 

correctly recognised trials only. Both the entire prelude and the excerpts were created by 

using Finale (MakeMusic, Boulder, CO) and then presented by adopting Presentation 

software (Neurobehavioural Systems, Berkeley, CA). 
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Notably, to extract the original Bach’s excerpt and to create their variations, we matched the 

average information content (𝐼𝐶) and entropy (𝐻) estimated for each tone of the original 

excerpts (mean 𝐼𝐶: 5.70 ± 1.73, mean 𝐻: 4.70 ± .33) and the variations (mean 𝐼𝐶: 5.92 ± 

1.81, mean 𝐻: 4.78 ± .35) by using Information Dynamics of Music (IDyOM) [48]. This 

method uses machine learning to return a value of 𝐼𝐶 for the target note on the basis of a 

combination of the preceding notes and of a set of rules learned from a large set of 

prototypical pieces of Western music. Formally, the 𝐼𝐶 represents the minimum number of 

bits required to encode 𝑒! and is described by the equation (1): 

 

 

 𝐼𝐶%𝑒!|𝑒	(!$%)'(
!$( ' = log)

1
𝑝(𝑒!|𝑒	(!$%)'(

!$( )
 (1) 

 

 

Where 𝑝(𝑒!|𝑒	(!$%)'(
!$( ) is the probability of the event 𝑒! given a previous set of 𝑒	(!$%)'(

!$(  

events. 

 The entropy gives a measure of the certainty/uncertainty of the upcoming event given the 

previous set of  𝑒	(!$%)'(
!$(  events and is calculated by the equation (2): 
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Equation (2) shows that if the probability of a given event 𝑒! is 1, the probability of the other 

events in 𝐴 will be 0 and therefore 𝐻 will be equal to 0 (maximum certainty). On the 

contrary, if all the events are equally likely, 𝐻 will be maximum (maximum uncertainty). 

Therefore, IDyOM returns an estimation of the predictability of each tone and uncertainty 

with which it can be predicted, coherently with the human perception [49]. 

 In the same or another day than the MEG recording, we collected structural images for 

each participant by employing magnetic resonance imaging (MRI). 
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Data acquisition 

We acquired both MRI and MEG data in two independent sessions. The MEG data was 

acquired by employing an Elekta Neuromag TRIUX system (Elekta Neuromag, Helsinki, 

Finland) equipped with 306 channels. The machine was positioned in a magnetically shielded 

room at Aarhus University Hospital, Denmark. Data was recorded at a sampling rate of 1000 

Hz with an analogue filtering of 0.1–330 Hz. Prior to the measurements, we accommodated 

the sound volume at 50 dB above the minimum hearing threshold of each participant. 

Moreover, by utilizing a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA), we 

registered the participant's head shape and the position of four headcoils, with respect to three 

anatomical landmarks (nasion, and left and right preauricular locations). This information 

was successively used to co-register the MEG data with the anatomical structure collected by 

the MRI scanner. The location of the headcoils was registered during the entire recording by 

using a continuous head position identification (cHPI), allowing us to track the exact head 

location within the MEG scanner at each time-point. We utilized this data to perform an 

accurate movement correction at a later stage of data analysis. 

 The recorded MRI data corresponded to structural T1. The acquisition parameters for the 

scan were: voxel size = 1.0 x 1.0 x 1.0 mm (or 1.0 mm3); reconstructed matrix size 256×256; 

echo time (TE) of 2.96 ms and repetition time (TR) of 5000 ms and a bandwidth of 240 

Hz/Px. Each individual T1-weighted MRI scan was successively co-registered to the standard 

Montreal Neurological Institute (MNI) brain template through an affine transformation and 

then referenced to the MEG sensors space by using the Polhemus head shape data and the 

three fiducial points measured during the MEG session. 

 

Data pre-processing 

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was pre-

processed by MaxFilter [50] for attenuating the interference originated outside the scalp by 

applying signal space separation. Within the same session, Maxfilter also adjusted the signal 

for head movement and down-sampled it from 1000 Hz to 250 Hz. 

 The data was converted into the Statistical Parametric Mapping (SPM) format and further 

analyzed in Matlab (MathWorks, Natick, Massachusetts, United States of America) by using 

Oxford Centre for Human Brain Activity Software Library (OSL) [51], a freely available 

toolbox that combines in-house-built functions with existing tools from the FMRIB Software 

Library (FSL) [52], SPM [53] and Fieldtrip [54]. The data was then high-pass filtered (0.1 Hz 

threshold) to remove frequencies that were too low for being originated by the brain. We also 
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applied notch filter (48-52 Hz) to correct for possible interference of the electric current. The 

data was further downsampled to 150 Hz and few parts of the data, altered by large artefacts, 

were removed after visual inspection. Then, to discard the interference of eyeblinks and 

heart-beat artefacts from the brain data, we performed independent component analysis (ICA) 

to decompose the original signal in independent components. Then, we isolated and 

discarded the components that picked up eyeblink and heart-beat activities, rebuilding the 

signal by using the remaining components [55]. The data was epoched in 80 trials (one for 

each musical excerpt) lasting 3500 ms each (100ms of pre-stimulus time), and low-pass 

filtered (40Hz threshold) to improve the subsequent analysis. 

 Then, correctly identified trials were analysed by employing two different methodologies 

(multivariate pattern analysis and cluster-based MCS of independent univariate analyses) to 

strengthen the reliability of the results as well as to increment the amount of information 

derived by the data. 

 

Multivariate pattern analysis 

We conducted a multivariate pattern analysis to decode different neural activity associated to 

the recognition of Bach’s original patterns and variations. Specifically, we employed SVMs 

(libsvm:http://www.csie.ntu.edu.tw/~cjlin/libsvm/) [56], analysing each participant 

independently. MEG data was arranged in a 3D matrix (channels x time-points x trials) and 

submitted to the supervised learning algorithm. To avoid overfitting, we employed a leave-

one-out cross-validation approach to train the SVM classifier to decode the two conditions. 

This procedure consisted of dividing the trials into N (here with N = 8) different groups and, 

for each time point, assigning N − 1 groups to the training set and the remaining Nth group to 

the testing set. Then, the performance of the classifier to separate the two conditions was 

evaluated. This process was carried out 100 times with random reassignment of the data to 

training and testing sets. Finally, the decoding accuracy time-series were averaged together to 

obtain a final time-series reflecting the performance of the classifier for each participant. 

Then, to identify the channels that were carrying the highest amount of information required 

for decoding the two experimental conditions, we followed the procedure described by Haufe 

and colleagues [57] and computed the decoding patterns from the weights returned by the 

SVM. 

 Finally, to assess whether the two experimental conditions were differentiated by neural 

patterns stable over time, we performed a temporal generalization multivariate analysis. The 

algorithm was the same as the one described above, with the difference that in this case we 
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used each time-point of the training set to predict not only the same time-point in the testing 

set, but all time-points [58,59,60]. 

 In both cases, to test whether the decoding results were significantly different from the 

chance level (50%), we used a sign permutation tests against the chance level for each time-

point (a = .05) and then corrected for multiple comparisons by applying FDR correction (p < 

.026 for non-temporal generalization results and p < .005 for temporal generalization results). 

 

Univariate tests and Monte Carlo simulations 

The multivariate pattern analysis is a powerful tool that requires relatively few pre-processing 

steps for returning an estimation of the different neural activity associated to two or more 

experimental conditions. However, this technique does not identify which condition was 

stronger than the other nor the polarity of the neural signal characterising the experimental 

conditions. To answer these questions and strengthen our results, we employed a different 

approach by calculating several univariate t-tests and then correcting for multiple 

comparisons by using MCS. 

 Before computing the t-tests, in accordance with a large number of other MEG and 

electroencephalography (EEG) task studies [61,62], we averaged the trials over conditions, 

obtaining two mean trials, one for Bach’s original and one for the variation. Then, we 

combined each pair of planar gradiometers by mean root square. Afterwards, we computed a 

t-test for each combined planar gradiometer and each time-point in the time-range 0 – 2.500 

seconds, contrasting the two experimental conditions. We reshaped the matrix for obtaining, 

for each time-point, a 2D approximation of the MEG channels layout that we binarized 

according to the p-values obtained from the previous t-tests (threshold = .01) and the sign of 

t-values. The resulting 3D matrix (M) was therefore composed by 0s when the t-test was not 

significant and 1s when it was. Then, to correct for multiple comparisons, we identified the 

clusters of 1s and assessed their significance by running MCS. Specifically, we made 1000 

permutations of the elements of the original binary matrix M, identified the maximum cluster 

size of 1s and built the distribution of the 1000 maximum cluster sizes. Finally, we 

considered significant the original clusters that had a size bigger than the 99.9% maximum 

cluster sizes of the permuted data. Considering that magnetometers (differently from 

combined gradiometers) maintain the double polarity of the magnetic field, contrasting two 

experimental conditions presents potential technical ambiguities, admitting the theoretical 

possibility that two neighbouring clusters with opposite polarity and depicting different 
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strengths between conditions (e.g. cond1 > cond2 (positive polarity) in cluster one and cond2 

> cond1 (negative polarity) in cluster two) may be identified as one unique large (positive) 

cluster. For these reasons, at first, we carried out the algorithm by contrasting Bach’s original 

vs variation for combined planar gradiometers only. Then, on the basis of the significant 

clusters emerged, we used the same algorithm one more time for magnetometers only, within 

the significant time-range emerging from the first MCS (in this case: 0.547 – 1.180 seconds). 

This procedure allowed us to obtain more reliable and complete information about the 

different neural signal associated to Bach’s original and variation for both gradiometers and 

magnetometers. The whole MCS procedure was performed for Bach’s original vs variation 

and vice versa. 

 

Source reconstruction 

 

Beamforming 

The brain activity collected on the scalp by MEG channels was reconstructed in source space 

using OSL [51] to apply an overlapping-spheres forward model and a beamformer approach 

as inverse method [63] (Figure 1B and 1C). We used an 8-mm grid and both magnetometers 

and planar gradiometers. The spheres model depicted the MNI-co-registered anatomy as a 

simplified geometric model using a basic set of spherical harmonic volumes [64]. The 

beamforming utilized a diverse set of weights sequentially applied to the source locations for 

isolating the contribution of each source to the activity recorded by the MEG channels for 

each time-point [65,63]. 

 

General Linear Model 

An independent GLM was calculated sequentially for each time-point at each dipole location, 

and for each experimental condition [66]. At first, reconstructed data was tested against its 

own baseline to calculate the statistics of neural sources of the two conditions Bach’s original 

and Bach variation. Then, after computing the absolute value of the reconstructed time-series 

to avoid sign ambiguity of the neural signal, first-level analysis was conducted, calculating 

contrast of parameter estimates (Bach’s original vs variation) for each dipole and each time-

point. Those results were submitted to a second-level analysis, using one-sample t-tests with 

spatially smoothed variance obtained with a Gaussian kernel (full-width at half-maximum: 50 

mm). 
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 Then, to correct for multiple comparisons, a cluster-based permutation test [66] with 5000 

permutations has been computed on second-level analysis results, taking into account the 

significant time-range emerged from the MEG sensors MCS significant gradiometer cluster. 

Therefore, we performed one permutation test on source space, using an a level of .05, 

corresponding to a cluster forming threshold of t = 1.7. 

 

Brain activity underlying musical patterns development 

Then, as depicted in Figure 1D, we performed an additional analysis considering the brain 

activity underlying the processing of each tone forming the musical sequences. To do that we 

computed a GLM for each time-point and source location and then corrected for multiple 

comparisons with a cluster-based permutation test, as described above [66]. Here, when 

computing the significant clusters of brain activation independently for the two experimental 

conditions (Bach’s original and variation), we computed 10 permutation tests on source 

space, adjusting the a level to .005 (.05/10), corresponding to a cluster forming threshold of t 

= 2.7. Regarding Bach’s original vs variation, we performed five tests and therefore the a 

level became .01 (.05/5), corresponding to a cluster forming threshold of t = 2.3. 

 

Functional connectivity pre-processing 

Regarding functional connectivity analysis, we used slightly larger epochs (pre-stimulus time 

of 200ms instead of 100ms). After reconstructing the data into source space, we constrained 

the beamforming results into the 90 non-cerebellar regions of the AAL parcellation, a widely-

used and freely available template [67] in line with previous MEG studies [68,69,70] and 

corrected for source leakage [71]. Finally, according to a large number of MEG and EEG task 

studies [61,62] we averaged the trials over conditions, obtaining two mean trials, one for 

Bach’s original and one for Bach variation. In order to minimize the probability of analyzing 

trials that were correctly recognised by chance, here we only considered the 20 fastest (mean 

RT: 1770 ± 352 ms) correctly recognised original (mean RT: 1717 ± 381 ms) and variation 

(mean RT: 1822 ± 323 ms) excerpts. The same operation has been carried out for the resting 

state that served as baseline. Here, we created 80 pseudo-trials with the same length of the 

real ones, starting at random time-points of the recorded resting state data.  

 This procedure has been carried out for five different frequency bands (delta: 0.1 – 2 Hz, 

theta: 2 – 8 Hz alpha: 8 – 12 Hz, beta: 12 – 32 Hz, gamma: 32 – 75 Hz) [72]. 
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Static functional connectivity and degree centrality 

We estimated the SFC calculating Pearson’s correlations between the envelope of each pair 

of brain areas time-courses. This procedure has been carried out for both task and baseline 

and for each of the five frequency bands considered in the study. Afterwards, we averaged 

the connectivity matrices in order to obtain one global value of connectivity for each 

participant and each frequency band. These values were submitted to an ANOVA to highlight 

which frequency band yielded the clearest connectivity results, as illustrated in Figure 5B 

[73]. Successive post-hoc analysis was done by using Tukey’s correction for multiple 

comparisons. Then, for all frequency bands, we computed Wilcoxon sign-rank tests 

comparing each pair of brain areas for recognition task vs baseline, aiming to identify the 

functional connectivity specifically associated to the task. To evaluate the outputted 

connectivity matrix B, we identified the degree of each region of interest (ROI) and tested its 

significance through MCS [74]. 

 In graph theory the degree of each vertex v (here each brain area) of the graph G (here the 

matrix B) is given by the sum of the connection strengths of v with the other vertexes of G, 

showing the centrality of each v in G [75]. We computed the degree of each vertex of B for 

each musical tone, obtaining a 90 x 1 vector (𝑠-). Then, through MCS, we assessed whether 

the vertices of B had a significantly higher degree than the degrees obtained permuting B. 

Specifically, we made 1000 permutations of the elements in the upper triangle of B and we 

calculated a 90 x 1 vector 𝑑.,0 containing the degree of each vertex v for each permutation p. 

Combining vectors 𝑑.,0 we obtained the distribution of the degrees calculated for each 

permutation. Finally, we considered significant the original degrees stored in 𝑠- that 

randomly occurred during the 1000 permutations less than two times. This threshold was 

obtained by dividing the a level (.001) by the five frequency bands considered in the study. 

The a level was set to .001 since this is the threshold that, during simulations with input 

matrices of uniformly distributed random numbers, provided no false positives. This 

procedure was carried out for each frequency band and for both experimental conditions. 

 

Phase synchronization estimation 

In order to reveal the brain dynamics of the musical sequence recognition, we studied the 

phase synchronization between brain areas for theta, the frequency band that showed the 

strongest connectivity patterns when contrasting task vs baseline at the previous stage of 

analysis. 
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As illustrated in Figure 2A, by applying the Hilbert transform [76] on the envelope of the 

reconstructed time-courses we obtained the analytic signal expressed by the following 

equation: 

 

 

 𝑆(%!,-) = 𝐴(%!,-)𝑒
12(#!,%) (3) 

 

 

where 𝐴(%!,-) refers to the instantaneous amplitude and 𝜃(%!,-) to the instantaneous phase of 

the signal for the brain region 𝑛! at time 𝑡. To prevent boundary artefacts due to the 

instantaneous phase estimation [77], we computed the Hilbert transform on time-series that 

were slightly larger than the duration of the stimuli and then discarded their edges. To 

estimate the phase synchronization between two brain areas 𝑛! and 𝑛3, after extracting the 

instantaneous phase at time 𝑡, we calculated the cosine similarity expressed by equation (4): 

 

 

 𝐼𝐹𝐶(%!,%',-) =	 cos(𝜃(%!,-) − 𝜃(%',-)) (4) 

 

 

We carried out this procedure for each time-point and each pair of brain areas, obtaining 90 x 

90 symmetric IFC matrices showing the phase synchronization of every couple of brain areas 

over time. This calculation has been performed for the two conditions (Bach’s original and 

variation) and for the baseline, as depicted in Figure 2B. 

 

Dynamic functional connectivity and degree centrality 

Since we were interested in detecting the brain connectivity profile and dynamics associated 

to the processing of each tone of the musical sequence, we sub-averaged the IFC matrices to 

obtain one sub-averaged IFC matrix for each tone and condition. This procedure allowed us 

to reduce data dimensionality and remove random noise introduced by the signal processing. 

 To detect the brain connectivity specifically associated to the task we applied Wilcoxon 

signed-rank tests, contrasting, for each pair of brain areas, each of the five sub-averaged IFC 

matrices of the task with the averaged values over time of the baseline, as depicted in Figure 

2C. This procedure allowed us to obtain a square matrix for each tone (𝐵-) and for both 
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conditions (Bach’s original and variation) showing the strength of the phase synchronisation 

between each pair of brain areas during the evolution of the task. After this procedure, we 

calculated an MCS (Figure SF4) analogous to the one described above for the SFC to test 

which ROIs were significantly central within the brain network for the recognition of Bach’s 

original and variation. Since we repeated this test 10 times (two conditions and five tones), 

we used a threshold = 1.0e-04, obtained dividing the a level (.001) by 10. Figure 2D 

provides a graphical representation of the whole-brain connectivity and the correspondent 

degree centrality calculation. Finally, we contrasted the IFC matrices of Bach’s original vs 

variation and vice versa and we submitted the results to MCS. In this case, since we 

computed five independent tests (Bach’s original vs variation and Bach variation vs original), 

we obtained a threshold = 2.0e-04 (a level divided by five). We indicated the output of this 

calculation instantaneous brain degree (𝐼𝐵𝐷(-)).  

 

Kuramoto order parameter 

In conclusion, we computed the Kuramoto order parameter to estimate the global 

synchronization between brain areas over time. This parameter is defined by equation (5): 

 

 

 
𝑅(-) = @0𝑒!2(#,%)

4

%5(

@ /𝑁 

 

(5) 

 

 

where 𝜃(%,-) is the instantaneous phase of the signal for the brain region 𝑛 at time 𝑡. The 

Kuramoto order parameter indicates the global level of synchronization of a group of 𝑁 

oscillating signals [78,79]. Thus, if the signals are completely independent the 𝑁 

instantaneous phases are uniformly distributed and therefore 𝑅(-) tends to 0. In contrast, if the 

𝑁 phases are equal, 𝑅(-) = 1. 

 The time-series obtained for Bach’s original and variation were then contrasted by 

calculating t-tests and binarized, assigning 1 to significant values (threshold = .05) emerged 

from t-tests and 0 otherwise. Those values were submitted to a 1D MCS. For each of the 

10000 permutations, we randomized the binarized elements (threshold = .05) of the p-value 

time-series and extracted the maximum cluster size. Then, we built a distribution of 
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maximum cluster sizes and considered significant the original clusters that were larger than 

the 95% of the permuted ones. 
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