
Spinal Column Architecture of the Flexible SPP1 Bacteriophage Tail 

Tube 

Maximilian Zinke1#, Katrin A. A. Sachowsky2,3#, Carl Öster1, Sophie Zinn-Justin4, Raimond 

B.G. Ravelli5, Gunnar F. Schröder2,3,6*, Michael Habeck7*, Adam Lange1,8* 

 

Affiliations: 

1Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare 
Pharmakologie (FMP), Berlin, Germany. 
 
2Institute of Biological Information Processing (IBI-7: Structural Biochemistry), 
Forschungszentrum Jülich, Jülich, Germany. 
 
3Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, 
Germany. 

  
4Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 
Université Paris-Saclay, Gif-sur-Yvette Cedex, France. 
 
5The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, 
Maastricht University, Maastricht, Netherlands. 
 
6Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. 
 
7AG Mikroskopische Bildanalyse, Universitätsklinikum Jena, Jena, Germany. 
 
8Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany. 
 
#M.Z. and K.A.A.S. are equally contributing first authors 
 
*to whom correspondence should be addressed: gu.schroeder@fz-juelich.de (G.F.S.), 
michael.habeck@med.uni-jena.de (M.H.), or alange@fmp-berlin.de (A.L.) 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166439doi: bioRxiv preprint 

mailto:gu.schroeder@fz-juelich.de
mailto:michael.habeck@med.uni-jena.de
mailto:alange@fmp-berlin.de
https://doi.org/10.1101/2020.06.23.166439
http://creativecommons.org/licenses/by-nc-nd/4.0/


One sentence summary: 

 Integrative structural biology by solid-state NMR and cryo-EM enables structure 

determination of the flexible tail of the bacteriophage SPP1. 

  

Abstract: 

Phage therapy has recently regained attention at combating multidrug-resistant 

bacteria. In 2019, tailed bacteriophages of the Siphoviridae family were engineered to 

successfully treat a disseminated bacterial infection after all other drugs had failed.(1) This 

family of phages features a long, flexible, non-contractile tail that has been difficult to 

characterize structurally. Here, we present the atomic structure of the tail-tube of the 

bacteriophage SPP1 – a member of this family. Our hybrid structure is based on the integration 

of structural restraints from solid-state NMR and a density map from cryo-EM. We show that 

the tail tube protein (TTP) gp17.1 organizes into hexameric rings that are stacked by flexible 

linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable 

for the transport of DNA. 

 

Main Text: 

Tailed bacteriophages – the order of Caudovirales – comprise the prevailing majority 

of known phages and are subdivided into three families based on their tail morphology. 

Podoviridae feature a short tail, Myoviridae a long, contractile tail and Siphoviridae a long non-

contractile, flexible tail, respectively(2). The latter two possess a helical tail tube assembled 

around a tape measure protein that is tapered by a tail completion protein. Contractile tail tubes 

are furthermore environed by a sheath. These tail-structures are crucial for host-cell 

recognition, membrane penetration and DNA transport into the host. 

Recently, a high-resolution cryo-EM structure of the short fiber-less tail from the Podoviridae 

T7 phage was reported at a resolution of 3.3 Å.(3) Also, a cryo-EM structure of the pre-host 

attachment baseplate including two rings of the tail tube and sheath proteins from the 

Myoviridae T4 phage was solved at a resolution of 3.8-4.1 Å(4), and a cryo-EM reconstruction 

focused solely on the tail tube was obtained from the same images at a resolution of 3.4 Å(5). 

Structural analysis of the tube arrangement of Siphoviridae phages was for long hindered by 

the variable tail bending that results from its flexibility (see Figure 1 of Tavares et al.(6)). 

Structural information was limited to pseudo-atomic models, which were generated for phages 

(7) and SPP1(8)based on solution NMR structures of monomeric tail tube proteins (TTPs) 

and for the T5 phage by fitting X-ray structures of monomeric TTPs into a 6 Å cryo-EM density 

map(9). In 2020, a cryo-EM model of the baseplate of the Staphylococcus aureus 80 phage 

was reported, which includes two rings of the tail tube that are anchored within the baseplate 

and are, thus, not part of the flexible tube region.(10) All models show a striking structural 

homology between TTPs from Myoviridae and Siphoviridae; as well as between these phage 

TTPs and the tube-forming proteins from other injection systems, like the bacterial type VI 

secretion system(11) and the extracellular injection system from bacteria and archeae(12): 

The tube-forming proteins share a common fold composed of two orthogonally packed -

sheets that hexamerize through the formation of an inner -barrel that defines the lumen of the 

tube. However, variable elements such as loops, N- and C-arms are critical to mediate 

intermonomer contacts driving tube assembly in these systems(7–9), and very sparse 

structural data are available on the position of these elements within the long-tailed phage 

tubes. 
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In the Siphoviridae SPP1 phage, the tail tube consists of the TTPs gp17.1 and gp17.1* 

in a ratio of 3:1, with the latter being generated by a translational frameshift adding a fibronectin 

type III (FN3) domain to the C-terminus of the protein. However, virions only containing gp17.1 

are still viable and infectious, indicating that the additional C-terminal FN3 domain is 

dispensable for phage assembly and infection.(13) gp17.1 monomers are unstable in solution 

and spontaneously self-polymerize into long tubes in vitro which are indistinguishable from 

native tubes.(8, 14) Previously, we presented the proton-detected solid-state NMR (ssNMR) 

assignment of deuterated, 100% back-exchanged gp17.1 tubes and deduced secondary 

structure information from the assigned chemical shifts, which confirmed and extended an 

existing homology model of a polymerized gp17.1 subunit.(8, 14) Additionally, we introduced 

new concepts based on the use of specifically labeled isoleucine-methyl groups to simplify 

ssNMR data, inspired by earlier progress based on methyl-labeling in solution state NMR.(15, 

16). This allowed for the collection of unambiguous long-range distance restraints within and 

between subunits of the tail tube.(17) 

However, due to the large size and inherent heterogeneity of this system the amount 

of data collected from these experiments does not suffice for a confident structure calculation. 

Therefore, we set out to expand the labeling strategy for long-range distance restraints to 

further methyl groups, as well as to integrate the NMR data with a 3.5 - 6 Å cryo-EM map for 

hybrid structure calculation. Solid-state NMR is a powerful method to study the structure and 

dynamics(18) of insoluble proteins, such as amyloid fibrils(19, 20) or supramolecular 

assemblies(21–24). An integrated structure calculation approach(25) in combination with cryo-

EM has proven highly successful in previous applications by us(26) and others(27–32). The 

complementarity of solid-state NMR and cryo-EM can also be appreciated by work on bactofilin 

cytoskeletal filaments.(33, 34) 

 

Hybrid structure calculation 

To determine the structure of the tail-tube of SPP1, we performed a hybrid structure 

calculation using the Inferential structure determination (ISD) approach(35) integrating data 

from solid-state NMR and cryo-EM simultaneously. During structure calculation only the 

structure of a single monomer was represented and refined. The structures of the other 

subunits were generated by applying symmetry operators to the subunit structure. The use of 

an exact symmetry is justified by the NMR data that are only consistent with a highly symmetric 

sample. We represented two stacked rings in the structure calculation. Each ring was 

composed of six subunits such that interactions between twelve subunits were considered in 

the structure calculation. 
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Fig. 1. Solid-state NMR data for hybrid structure calculation defines local structure.  a, Backbone dihedral angles 

define the secondary structure. b, Isoleucine C1-, alanine C-, leucine/valine CC-, threonine C2-, and 

methionine C-methyl labeling renders those moieties “NMR-visible” and yields highly resolved NMR spectra. c, 

Long-range restraints between amide protons are extracted from a 4D HNhhNH spectrum, whereas long-range 
restraints between amide and methyl groups are extracted from a series of 3D HNhH spectra. 2D planes from both 
types of spectra are superimposed on a 2D hNH fingerprint spectrum (grey). d, Representative long-range restraints 

defining the inner -barrel of the tail tube. The colored -strands belong to one monomer, whereas the grey -
strands are from the neighboring subunits. Amide-amide contacts are highlighted in violet, amide-methyl contacts 

in cyan. e, Schematic representation of long-range distance restraints between the C1 methyl group of Ile18 and 

amide groups, defining the interface between the N-terminus of one monomer i (including Ile18; in cyan) and the C-
arm (143-176) of another monomer j (in pink) within the tail tube. Protons are colored in red. 

 

For the collection of solid-state NMR long-range distance restraints, we overexpressed 

a set of differently labeled TTP gp17.1 in E. coli, purified them, and let them self-polymerize 

into native-like tail tubes as detailed in the Methods. Torsion angles were predicted based on 

assigned backbone chemical shifts (Figure 1a). Specific precursor molecules were 

supplemented during protein expression in deuterated media, introducing NMR visible methyl 

groups within certain amino acids of gp17.1 (Figure 1b). We produced samples that were 

homogeneously methyl and 15N labeled, as well as samples that were heterogeneous mixtures 

of 50% methyl-labeled and 50% 15N labeled subunits. The latter samples were used to detect 

intermolecular interfaces, as previously described by us.(17) All eleven investigated methyl-

labeled and/or deuterated samples and their precursors are listed in Table S1. 4D and 3D 

proton-detected ssNMR experiments at 40 kHz magic-angle spinning (MAS) and 900 MHz 

proton Larmor frequency were used to probe long-range distance restraints between the 

following: 1.) amide groups (Figure 1c, left panel)(36, 37); 2.) methyl groups; 3.) methyl and 

amide groups globally (Figure 1c, right panel); 4.) methyl and amide groups at protein-protein 

interfaces. All of these experiments generated highly unambiguous restraints due to their high-

dimensionality (4D) or spectral simplicity (amino-acid specific methyl labeling) – as visualized 

in Figure 1d where a set of consistent restraints (amide-amide and methyl-amide contacts) 

defines the inner -barrel motif of the tail tube formed by the -strands 2.2, 3.2, 6.1 and 

5.2. In mixed labeled samples (as detailed in Table S1) magnetization transfer between 

methyl and amide groups is solely possible at protein-protein interfaces. Hence, these samples 

deliver a set of restraints that defines the organization of gp17.1 subunits within the tube. 

Figure 1e shows an exemplary protein interface between the N-terminus of a subunit, including 

the Ile18 labeled methyl group, and the C-terminus of another subunit. 
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Fig. 2.  Cryo-EM data for hybrid structure calculation provides global and local information. a, 3.5 - 6 Å cryo-EM 

map of the tail tube of SPP1 consisting of polymerized gp17.1 subunits does not only allow to deduce symmetry 
restraints but also limits the position of all atoms within the density. b-d, Local resolution of the cryo-EM map 
increases going from outer to the inner surface of the tail tube. e, The inner region of the map reveals a highly 

resolved -barrel and allows for the positioning of bulky sidechains as exemplified for Tyr68 (f).  

 

For cryo-EM experiments, we purified N-3 gp17.1 which is indistinguishable from wt 

gp17.1 as judged by solid-state NMR (See Figure S1). Curvy tubes were observed in the 

micrographs (Figure S2). For image processing those tubes that appeared most straight were 

selected. 3D reconstruction (see Methods) yielded a density map with an average resolution 

of 4 Å (Figure 2a). The local resolution varies significantly (Figure 2b-d), from about 3.5 Å at 

the inner ring where the -strands are well resolved (Figure 2e-f), to worse than 5 Å at the 

periphery. 

 

Overall structure of the SPP1 tail tube 

Figure 3 shows the structure of the tail-tube of gp17.1 as determined by hybrid structure 

calculation (see also Movie S1 and Figure S3) with a heavy atom RMSD of 1.8 ± 0.9 Å 

(Backbone RMSD of 1.1 ± 0.5 Å) over the entire protein sequence. The monomer of gp17.1 

forms a central -sandwich-type fold consisting of eight -strands. This fold is flanked by an -

helix (74-86) and loop regions, of which the long C-terminal arm (C-arm, 143-176) stands out 

(Figure 3a). Six gp17.1 subunits assemble into a ring with the inner 24 -strands forming a -

barrel that defines the inner lumen of the tube. This inner lumen exhibits a negative 

electrostatic potential (see Figure S4) which facilitates sliding of the viral DNA through the tube 

by repelling it from the surface. Additionally, inner ring contacts are mediated by the large loop 

region 40-59. The -helices are arranged almost parallel to the tail tube axis (Figure 3b). These 

rings stack onto each other with a rotation of 21.9° forming a right-handed helical, hollow tube 

(Figure 3c). The surface of one gp17.1 subunit features a hydrophobic patch that is shaped by 

sidechains of various hydrophobic amino acids (Figure 3d). In the context of the tail tube 

complex the C-arm of the superjacent subunit folds onto the outer -sheet of the -sandwich 

fold by anchoring the sidechain of Gln162 into a pocket (Figure 3e). This interaction obscures 

the lipophilic area whereupon the complex is stabilized, because the number of unfavorable 

hydrophobic contacts with the solvent is reduced (Figure 3f). This explains why a previously 

reported C-terminally truncated mutant of gp17.1 remains monomeric(17). Additional ring-to-
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ring contacts are mediated by the loop region 40-59 which interacts with five neighboring 

subunits - mostly by establishing electrostatic contacts (Figure 3g).  

 

 

Fig. 3. Structure of polymerized gp17.1 forming the tail tube of the bacteriophage SPP1. a, Final ten lowest-energy 

structures of a gp17.1 subunit which consist of a central -sandwich-type fold that is flanked by an -helix, a large 

loop and an extended C-terminal arm (C-arm). b, Six gp17.1 monomers form a hexameric ring. The inner -sheets 

of the -sandwiches organize in a -barrel motif that forms the lumen of the tube. c, These hexameric rings stack 

onto each other in a helical fashion creating a hollow tube. Ring-to-ring contacts are mediated by the two loop 
regions (highlighted in red) – especially by the C-arm that folds onto the subjacent ring. d, The molecular lipophilicity 
potential of gp17.1 reveals a hydrophobic patch on the surface of one subunit i. e-f, This unpolar area is obscured 

by the C-arm of the superjacent subunit j within the complex of the tail-tube – by anchoring  the sidechain of Gln162 
into a pocket. g, The loop of subunit i features mostly electrostatic interactions with five neighboring subunits within 

the complex. Charged amino acids are colored in red (negative) and blue (positive). 

 

Structural alignments of gp17.1 and existing TTP structures of other systems show high 

similarity as expected (Figure S5) – all featuring hexameric, helically stacked rings with 

subunits consisting of a -sandwich-type fold and one parallel -helix. Loop 40-59 is also 

present at the interface between subunits in the phages 80 and T4(5), suggesting that it 

is a conserved structural element across both Siphoviridae and Myoviridae families. The 

mentioned C-arm is not observed in the Myoviridae T4, however it is present in 80 (even 

if not completely resolved). It might be a critical element regulating the tail structure in a 

subgroup of Siphoviridae. The Myoviridae T4(5) phage TTP gp19 features two additional 

linkers that mediate intermolecular interactions – which facilitates contact to 10 different 

subunits over an area of 6706 Å2 within the tail tube. gp17.1, however, only interconnects with 

6 different subunits over 4850 Å2. This dramatically reduced contact – in addition to not being 

bundled in a sheath - is expected to enable flexibility of this Siphoviridae tail tube. 

 

Dynamic regions mediate tail bending 

To determine the driving forces contributing to the flexibility of the tail tube of SPP1, we 

created a model of a bent tail tube based on the structure of monomeric gp17.1 and 2D class 

averages of bent tubes as detailed in the Methods. As shown in Figure 4a (and Movie S2), 

most structural changes during the bending process happen on the outer edge of the curve. 

This suggests that the bending of the tube is facilitated by stretching of certain linker regions 
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(as opposed to compression). The hinge regions required for the structural reorganization from 

a straight to a bent state (Figure 4b) match regions in the cryo-EM density with pronounced 

variances (Figure 4c). These areas comprise regions forming inter-ring contacts – especially 

the C-arm (143-176), its binding interface on the subjacent subunit and the loop (40-59). 

 

 

Fig. 4. Bending of the tail tube is mediated by flexible hinge regions. a, Model of a bent SPP1 tail tube with a 

curvature radius of 655 Å. The model is based on the structure of straight tubes and 2D class averages of bent 
tubes. Most structural changes are found on the outside of the curve (red) which implies that the bending process 
is mediated by stretching. b, Regions that act as hinges during bending of the tube are colored in pink. c, Variances 
in the cryo-EM map (pink) match the hinge regions. d, Also, hinge regions are associated with highest 15N R1 (color 

key) and R1 (thickness of wire) relaxation rates. White coloring represents missing values. e, Decaying relaxation 

dispersion profiles indicate the presence of slow motions. f, Relaxation dispersion profiles of the inner -barrel can 

be fitted in a correlated manner to a two-state exchange process. Smallest chemical shift changes correlate with 

middle regions of the -barrel which are furthest away from the hinge regions (color key). 

 

Additionally, we analyzed 15N R1 and 15N R1 relaxation rates of fully polymerized 

gp17.1 by solid-state NMR as detailed in the Methods (Figure S6). R1 relaxation rates are 

sensitive to motions on the nanosecond timescale, whereas R1rates report on motions on the 

nanosecond to millisecond timescale.(38) Figure 4d shows both values mapped onto a gp17.1 

subunit within the tail complex. The inner -barrel shows nearly no motion on these timescales 

- which correlates with these areas being highest resolved in the cryo-EM density. On the 

opposite, the hinge regions are associated with the highest relaxation rates, demonstrating 

that these areas are highly dynamic. Furthermore, we investigated 15N relaxation dispersion 

which is sensitive to motions on the millisecond timescale (Figure S7-S9). Figure 4e shows 

representative 15N relaxation dispersion curves; flat profiles indicate the absence of motion, 

whereas decaying profiles indicate the presence of dynamics. Most residues are involved in 

slow motions (Figure S10). However, only residues belonging to the -barrel can be fitted in a 

combined approach to a two-state model indicating the existence of two distinct conformations 

of the -barrel (Figure 4f). Calculated chemical shift differences between both states are higher 

for residues in proximity to the hinge regions. Thus, we propose that these two states could 

represent the two extrema of tube bending – either lying on the inside or the outside of the 
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curve. The global, collective nature of this motion does not impose heterogeneity onto the cryo-

EM map since only straight tubes are considered for structure calculation.  

Overall, our hybrid data support a model where the C-arm (143-176) and the loop (40-

59) act as bellows contributing to tail tube bending by stretching. Our dynamic structure of the 

tail tube is reminiscent of a molecular spinal column. The hexameric rings forming the inner -

barrel would be in this picture the vertebrae, while the flexible parts (C-arm and loop) 

correspond to the intervertebral discs. The flexibility of the system might facilitate the screening 

of the bacterial membrane to find the receptor for infection initiation. We expect that the 

combination of sophisticated ssNMR experiments and cryo-EM will help to characterize 

structures of other dynamic and/or flexible supramolecular assemblies, in particular those 

systems where the conformational flexibility leads to a lack of resolution in cryo-EM 

reconstructions – while depending on the timescale of these dynamics the quality of NMR 

spectra may not be affected. 
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