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Abstract 25 

Evolution by natural selection occurs when the frequencies of genetic variants change because 26 
individuals differ in Darwinian fitness components such as survival or reproductive success.  27 
Differential fitness has been demonstrated in field studies of many organisms, but our ability to 28 
quantitatively predict allele frequency changes from fitness measurements remains unclear.  29 
Here, we characterize natural selection on millions of Single Nucleotide Polymorphisms (SNPs) 30 
across the genome of the annual plant Mimulus guttatus. We use fitness estimates to calibrate 31 
population genetic models that effectively predict observed allele frequency changes into the 32 
next generation. Hundreds of SNPs experienced “male selection” in 2013 with one allele at each 33 
SNP elevated in frequency among successful male gametes relative to the entire population of 34 
adults.  In the following generation, allele frequencies at these SNPs consistently shifted in the 35 
predicted direction.  A second year of study revealed that SNPs had effects on both viability and 36 
reproductive success with pervasive trade-offs between fitness components.  SNPs favored by 37 
male selection were, on average, detrimental to survival.  These trade-offs (antagonistic 38 
pleiotropy and temporal fluctuations in fitness) may be essential to the long-term maintenance of 39 
alleles undergoing substantial changes from generation to generation.  Despite the challenges of 40 
measuring selection in the wild, the strong correlation between predicted and observed allele 41 
frequency changes suggests that population genetic models have a much greater role to play in 42 
forward-time prediction of evolutionary change.  43 
 44 

 45 

Author summary 46 

For the last 100 years, population geneticists have been deriving equations for Δp, the change in 47 
allele frequency owing to mutation, selection, migration, and genetic drift.  Seldom are these 48 
equations used directly, to match a prediction for Δp to an observation of Δp.  Here, we apply 49 
genomic sequencing technologies to samples from natural populations, obtaining millions of 50 
observations of Δp.  We estimate natural selection on SNPs in a natural population of yellow 51 
monkeyflowers and find extensive evidence for selection through differential male success.  We 52 
use the SNP-specific fitness estimates to calibrate a population genetic model that predicts 53 
observed Δp into the next generation.  We find that when male selection favored one nucleotide 54 
at a SNP, that nucleotide increased in frequency in the next generation.  Since neither observed 55 
nor predicted Δp are generally large in magnitude, we developed a novel method called 56 
“haplotype matching” to improve prediction accuracy.  The method leverages intensive whole 57 
genome sequencing of a reference panel (187 individuals) to infer sequence-specific selection in 58 
thousands of field individuals sequenced at much lower coverage.  This method proved essential 59 
to accurately predicting Δp in this experiment and further development may facilitate population 60 
genetic prediction more generally. 61 

  62 
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Introduction 63 

 64 

Natural selection is routinely strong enough to measure within natural populations.  Classic 65 

experiments on conspicuous polymorphisms were the first to demonstrate fitness differences 66 

among genotypes [1, 2].  Field experiments later demonstrated selection on allozymes [3] and 67 

structural variants such as inversions [4-6], but quantitative trait locus (QTL) mapping greatly 68 

expanded the set of loci amenable to direct study [7].  The link that QTLs provide to phenotype 69 

can enable a “mechanistic” understanding of selection, allowing us to describe the processes that 70 

maintain polymorphism (e.g. antagonistic pleiotropy [4, 8], frequency dependent selection [9] or 71 

gametic/zygotic fitness trade-offs [10]), and the environmental drivers of selection (e.g. 72 

differential predation [11]).  In aggregate, these single-locus studies have provided great insight 73 

on the contribution of major loci to the standing variance in fitness within natural populations. 74 

 75 

Genome-wide surveys of natural populations deliver a comprehensive view of selection. An 76 

important question is how many loci across the genome experience selection in a typical 77 

generation.  Sequencing of natural populations sampled through time suggests that the strong 78 

selection documented in single locus studies can occur at hundreds of polymorphisms 79 

simultaneously [12, 13].  In Drosophila melanogaster, large amplitude fluctuations in allele 80 

frequency occur seasonally and can be directly related to weather conditions [14].  The 81 

magnitude and consistency of changes, as well as the environmental correlation, clearly imply 82 

that selection (and not genetic drift) is causal.  The temporal sampling method employed for D. 83 

melanogaster should be expanded to other systems in the future, but some questions require 84 

individual level genome sequence data.  For instance, are fitness differences caused mainly by 85 
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differences in viability or fertility or mating success?  Experiments predicting individual fitness 86 

from individual genomes have been conducted in a variety of organisms using both “common 87 

gardens,” where sequenced individuals are transplanted into natural settings [15-18], as well as 88 

monitoring of native individuals in situ [19-21].  These studies yield varying results on the 89 

importance of different selection components, but in aggregate, suggest that selection is a 90 

pervasive force on ecological time scales.   91 

 92 

Here, we measure genome-wide selection and allele frequency change in a field study of 93 

Mimulus guttatus; a plant species in which the various methods described above have been 94 

applied extensively within a single natural population at Iron Mountain (IM).  We have 95 

demonstrated strong fitness effects of segregating inversions by genotyping IM plants that were 96 

also scored for fecundity [22, 23].  Transplant experiments using QTL constructs for ecologically 97 

important traits have confirmed that conflicting selection pressures are key to the maintenance of 98 

variation [24, 25]. QTL alleles that increase plant size at reproduction nearly always delay 99 

flowering, which generates antagonistic pleiotropy between survival and fecundity.  These 100 

single-locus experiments (QTLs and inversions) have been corroborated by Genome Wide 101 

Association (GWA) of traits and fitness components in IM [17].  ‘Big/slow’ alleles that delay 102 

progression to flowering, but increase flower size, segregate at many loci across the genome.  103 

They tend to be less frequent than their ‘small/fast’ alternatives within IM [17, 26], which is 104 

consistent with many years of field monitoring indicating that viability selection generally favors 105 

small/fast alleles [24, 25, 27].  However, the GWA also demonstrated temporal fluctuation in the 106 

net balance of fitness components [17] suggesting that year-to-year changes in water availability 107 

are key to the maintenance of variation.   108 

 109 
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The focus of this paper is prediction: Can we characterize selection at the SNP level accurately 110 

enough to predict allele frequency change into the next generation? Prospective (forward-time) 111 

prediction of evolutionary change from measurements of selection is a primary goal of 112 

quantitative genetics [28-32], but has long been considered beyond the scope of population 113 

genetics [33].  In quantitative genetics, estimates of phenotypic selection (differentials or 114 

gradients) can be combined with estimates of inheritance (heritability or genetic (co)variance) to 115 

predict the change in mean phenotypes [34, 35].  Prediction accuracy can be improved by 116 

directly relating the loci affecting a trait to fitness, using either the secondary theorem of 117 

selection [36, 37] or via genomic selection methods [38].  The scope of quantitative genetics is 118 

broad, but its enduring relevance to both agriculture [39, 40] and evolutionary biology [29] owes 119 

importantly to its capacity for prospective prediction.  It is an open question whether selection on 120 

SNPs strong enough to predict ∆𝑝𝑝, the change in allele frequency, in a manner analogous to ∆𝑧𝑧̅, 121 

the change in mean phenotype. 122 

 123 

To estimate selection on SNPs, we collected paired-end sequence reads from reduced 124 

representation [41] sequencing libraries of 1936 experimental plants (field individuals and 125 

progeny).  We called variants within reads and aligned them to 187 full genome sequences 126 

previously obtained from the IM population [17]. This alignment is the basis for the “haplotype 127 

matching” technique of genotype inference.  Below, we describe this technique and then provide 128 

a proof-of-concept application to data from the Drosophila Synthetic Population Resource 129 

(DSPR) [42] where haplotype inheritance is known.  We then apply haplotype matching to 130 

derive genotype probabilities for SNPs within 15,360 genic regions of experimental plants.  131 

These likelihoods are inputs to the selection component models that predict allele frequency 132 
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change [19, 43].  Male selection is measured by synthesizing maternal and progeny sequencing 133 

to infer the (unseen) male siring fitness component.  We show that male selection in 2013 134 

predicts observed changes in allele frequency into the next generation; the latter estimated from a 135 

distinct sampling of plants in 2014.  136 

  137 

Figure 1.  The parameters of alternative selection models are depicted for the (A) 2013 and (B) 2014 138 
data.  Hypothesis tests are expressed in terms of parameter constraints where p indicates reference 139 
base frequency: 𝐩𝐩𝐀𝐀 for reproductive adults, 𝐩𝐩𝐌𝐌 for successful male gametes, and 𝐩𝐩𝐋𝐋 plants for 140 
plants that fail to reproduce.  H0 is the full neutral model.  Male selection is tested by contrast of H1 141 
to H0 in 2013 and H3 to H1 in 2014.  Viability selection is tested by contrast of  H3 to H2.  (C) After 142 
DNA sequencing, read-pairs are mapped to the M. guttatus reference genome.  The haplotype 143 
matching method (read-pairs to genic-haplotypes) is illustrated for a simple case with read-pairs 144 
mapping to single location.  Read-pairs impose a probabilistic ‘process of elimination’ on reference 145 
line sequences as putative ancestors: √ indicates consistency and “X” inconsistency.  146 
 147 
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 148 

Results and Discussion 149 

Mimulus guttatus (syn. Erythranthe guttata) is a hermaphroditic species that can experience 150 

selection prior to flowering, via differential viability, and subsequent to flowering through both 151 

male and female function.  In the first year of our study (Fig 1A: 2013), we sampled plants that 152 

successfully flowered (adults), genotyping them as well as a random collection of their progeny.  153 

Given the maternal genotype, we can statistically identify her allelic contribution to offspring 154 

and distinguish allele frequency among all adults (𝑝𝑝𝐴𝐴) from that in the population of successful 155 

male gametes (𝑝𝑝𝑀𝑀).  The 𝑝𝑝𝐴𝐴 𝑝𝑝𝑀𝑀⁄  test evaluates whether these frequencies are different and thus 156 

identifies selection through differential male success.  “Male selection” integrates a number of 157 

distinct selective mechanisms [19] including simple differences in fecundity (which may be 158 

equivalent between male and female function), sexual selection through differential siring [44] 159 

and pollen competition [45].   160 

 161 

To test the predicted changes caused by male selection in 2013, we sampled plants from the next 162 

generation (Fig. 1B: 2014).  We used MSG-RADseq [41] reduced representation sequencing to 163 

genotype three distinct cohorts: individuals that germinated but failed to reproduce (allele 164 

frequency 𝑝𝑝𝐿𝐿), individuals that successfully flowered and produced fruit (allele frequency 𝑝𝑝𝐴𝐴), 165 

and a random sample of progeny from reproductive individuals (used to estimate 𝑝𝑝𝑀𝑀).  We 166 

performed statistical contrasts between cohorts, asking whether allele frequency differs using 167 

likelihood based selection component models [43, 46-48] generalized to accommodate uncertain 168 

genotype calls [19].  Selection is indicated when a model that allows allele frequencies to differ 169 
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between cohorts, e.g. 𝑝𝑝𝐴𝐴 ≠  𝑝𝑝𝑀𝑀, has a much higher likelihood than a constrained model, e.g. 170 

 𝑝𝑝𝐴𝐴 = 𝑝𝑝𝑀𝑀 (see METHODS section D). 171 

 172 

We derived SNP allele frequency estimates using a two-stage genotyping strategy (Fig 1C).  173 

Read-pairs are initially matched to the set of ‘genic haplotypes’ present in IM.  Sequence 174 

variation is very high in M. guttatus [49] and it is difficult to effectively call variants outside 175 

genic regions.  We thus established “gene sets” as loci.  A set is either a single gene or a 176 

collection of closely linked (within 100bp) and/or overlapping genes (Supplemental Table S1).  177 

The genic haplotypes are the sequences for this locus among the reference panel genomes 178 

(detailed procedures in Supplemental Appendix B).  With 187 distinct haplotypes, there are 179 

17,578 distinct genic-genotypes.  However, most gene sets have fewer than 187 because some 180 

IM lines are identical within a gene set (the median number of distinct genic-haplotypes is 100, 181 

Supplemental Table S1).   182 

 183 

We treat the genic haplotypes as the sequences present in the natural population (Fig 1C).  Let 184 

𝑈𝑈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝],𝑖𝑖,𝑗𝑗 denote the likelihood for the full collection of read-pairs from a plant given that its 185 

diploid genic-genotype is [i,j], where i and j index genic haplotypes.  For an outbred plant, 186 

𝑈𝑈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝],𝑖𝑖,𝑗𝑗 = ��
𝜖𝜖ℎ𝑟𝑟,𝑖𝑖

2
+
𝜖𝜖ℎ𝑟𝑟,𝑗𝑗

2
�

𝑅𝑅𝑅𝑅

𝑟𝑟=1

 188 

            (1) 187 

where RP is the number of read-pairs mapped in this gene set, ℎ𝑟𝑟,𝑖𝑖 is the number of sequence 189 

mismatches between read-pair r and genic haplotype i, and 𝜖𝜖 is the mismatch probability.  𝜖𝜖 190 

aggregates the various events (sequencing error, alignment error, etc) that could create an 191 
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apparent sequence difference even if the read-pair and haplotype are the same.  U relates the 192 

RADseq data collected from field plants to the tests for selection.  193 

 194 

A potential difficulty with haplotype matching is that the sequence of a field plant may not match 195 

any of our genic haplotypes; an error that could reduce our ability to detect selection.  It is 196 

straightforward to test whether individual read-pairs are consistent with the genic haplotypes.  197 

Across the 99 million read-pairs in the final RADseq dataset (field plants from both years), the 198 

median number of SNPs per read-pair is 6.  About 20% of read-pairs overlap 10 or more SNPs 199 

(Supplemental Table S2, Supplemental Figure S1).  Across all read-pairs, less than 0.2% failed 200 

to perfectly match at least one genic haplotype.  Of course, the full collection of read-pairs from 201 

a plant can still be inconsistent with any pair of genic haplotypes (even if all individual read-202 

pairs map perfectly).  This occurs, but very infrequently.  In these cases, the genotype is treated 203 

as unknown.  The consequences of incomplete sampling of the reference panel are explored in a 204 

companion paper [50]. 205 

 206 

Given consistency, the question becomes how precisely low-level sequencing can identify the 207 

genotype of field plants.  As expected, the number of possible genic genotypes for a plant 208 

declines as the number of read-pairs mapped to gene set increases (Fig 2A).  With low but 209 

reasonable coverage (10-20 read-pairs over an entire gene), the collection of compatible genic-210 

genotypes is greatly reduced (on average to ≈5% of the total).  Oftentimes, we identify one 211 

parental genic-haplotype definitively, but the other is consistent with multiple sequences from 212 

the reference set (illustrated by Fig 1C).  The aggregation of evidence across numerous read-pair 213 

loci (mapping to different parts of gene) is usually needed to identify specific genic-haplotypes.  214 
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While zeroing in on 5% of diploid genic-genotypes is still hundreds of possibilities, these 215 

possibilities often strongly “agree” about the genotype at particular SNPs – all or nearly all 216 

genic-genotypes have the same genotype at that SNP.  SNP specific inference can be quite strong 217 

even with moderate coverage.  Plants with low sequencing coverage often have few or no read-218 

pairs, particularly in smaller gene sets.  In isolation, inference for such plants would be weak.  219 

Here, inference can become much stronger with information from relatives (the maternal plant, 220 

siblings, or offspring).  Importantly, we never truncate probabilities to produce “hard calls” for 221 

SNPs.  Uncertainty is propagated through the entire analysis and thus properly integrated in 222 

testing.  The selection analyses cycle through all SNPs within a gene set, considering each as a 223 

potential effector of fitness. 224 

 225 

A test of haplotype matching using Drosophila melanogaster 226 

With the Mimulus data, we do not know the true genic-genotype of field plants and thus cannot 227 

compare inferred to known.  For this reason, we applied our pipeline to a Drosophila 228 

melanogaster population where genic-genotypes are known with high confidence.  The 229 

Drosophila Synthetic Population Resource (DSPR) consists of two multiparental, advanced 230 

generation intercross Recombinant Inbred Line (RIL) populations, each initiated from eight 231 

inbred founder strains [42, 51].  The founder strains have been fully sequenced and represent the 232 

reference panel in the current context.  The RILs (comparable to Mimulus field plants) were 233 

genotyped and we know the founder strain that contributed the allele at each gene of each RIL.  234 

Some regions in some RILs are not genotyped with certainty, but we exclude these from our 235 

analyses. 236 

 237 
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 238 

Figure 2.  Testing haplotype matching: (A) In Mimulus, the precision of estimation is depicted as a 239 
function of the amount of data per plant.  Compatible means that the likelihood for a genic-240 
genotype is within 50% of the most likely genotype.  (B) In Drosophila, the number of ancestors 241 
(indicated by contours and color) matching the genotype of a particular RIL is depicted as a 242 
function of amount of data (reads) and the number of SNPs in the gene set. 243 

 244 

We collected MSG-RADseq data on 60 of the RILs from DSPR using the same methods as for 245 

Mimulus, except that the Drosophila sequences are 94bp single end reads instead of the PE100. 246 

We processed the D. melanogaster reference genome into ‘gene sets’ and then implemented the 247 

same Mimulus pipeline for read mapping, SNP calling and haplotype matching.  The great 248 
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majority of D. melanogaster reads overlap 3 or fewer SNPs and are thus less informative than 249 

the Mimulus read-pairs (Supplemental Figure S1).  Finally, we compared the inferred genotype 250 

to the “known” ancestry of each RIL as a test of the method.   251 

 252 

This exercise confirms the validity of the haplotype matching, but also its limitations.  The 253 

ancestral line (or lines) deemed most likely by haplotype matching includes the “correct” line 254 

≈99.5% of the time.  We assigned the ancestral genotype as “known” if the posterior probability 255 

was greater than 0.99 [42, 51] and thus a small rate of mismatch (less than 1%) is expected even 256 

if haplotype matching is perfect.  The 99.5% obtained by haplotype matching of MSG data is 257 

thus actually close to the theoretical upper limit for accuracy.  However, while haplotype 258 

matching is accurate, it is not always precise.  Oftentimes, the method predicts that numerous 259 

genic-genotypes are equally likely.  Inference to the specific correct ancestor increases in a 260 

predictable fashion with the number of SNPs per gene set and number of reads scored for that 261 

line (Fig 2B). 262 
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 263 

Figure 3.  Manhattan plots, with a single test reported per gene, for (a) Male selection 2013, (b) 264 
Allele frequency change 2013-2014, (c) Male selection 2014, and (d) Viability selection 2014. The 265 
orange line is the Bonferroni threshold, purple is p = 10-5. 266 
 267 

 268 

Male selection in 2013 predicts change into 2014 269 

 270 

We implemented haplotype matching on the Mimulus data and tested 1,523,410 SNPs for 271 

selection (filters described in METHODS section B).  Testing outcomes within genes were 272 

highly correlated owing to linkage disequilibria, and for this reason, we focus on a single test per 273 

gene set for the various analyses described below (15,360 tests). Considering the most significant 274 

SNP per gene (Supplemental Table S0), 112 tests were genome-wide significant for 𝑝𝑝𝐴𝐴 𝑝𝑝𝑀𝑀⁄  in 275 

2013 (Fig. 3A; Bonferroni α = 0.05/1523410).  Given that Bonferroni is excessively 276 

conservative, we conducted follow-up analyses accepting SNPs (at most one per gene set) with p 277 
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< 10-5 (587 SNPs in Fig 3A).  More false positives (SNPs not under selection) are included with 278 

a more permissive threshold, but such SNPs will diminish signal making subsequent tests 279 

conservative.   280 

 281 

We next performed a test for allele frequency change from 2013 to 2014 by considering the data 282 

from both years simultaneously. We first fit a model where 𝑝𝑝𝐴𝐴 in 2013 is constrained to equal 𝑝𝑝𝑍𝑍, 283 

the allele frequency in zygotes of 2014.  We contrast that likelihood to a more general model 284 

where 𝑝𝑝𝑍𝑍 is unconstrained, its value determined entirely by data from 2014.  Rejecting 𝑝𝑝𝐴𝐴13 =285 

𝑝𝑝𝑍𝑍14 for a SNP indicates allele frequency change into the next generation.  Applying this test, we 286 

find that 24 genes pass the Bonferroni threshold and that 274 gene sets have at least one SNP 287 

with p < 10-5 (Fig. 3B).  The broad distribution of these tests across chromosomes suggests 288 

extensive allele frequency change in IM from 2013 to 2014.   289 

 290 
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   291 

Figure 4.  The observed allele frequency change (2013 adults to 2014 zygotes) is compared to predicted with 292 
SNPs chosen based on (A) evidence for male selection in 2013 (n = 587) or (C) evidence of change in allele 293 
frequency (n=274).  Results are reported for all gene sets with a SNP with p < 10-5.  (B) In the cross-validation 294 
of SNPs selected based on male selection, the “Ascertained” contrast is based on the predicted ∆p from the 295 
significant test (orange points) while the “Paired” contrast is based on the predicted ∆p from the other half of 296 
the data (blue points).  (D) In the cross-validation for allele frequency change significant tests, the ascertained 297 
(orange) is the observed ∆p from the significant test and predicted ∆p from the other data half.  Assignment is 298 
reversed because the allele frequency change test is based on the observed ∆p.  For cross-validation, we chose 299 
an equivalent number of SNPs to the un-partitioned analyses (n = 587 in (B) to match (A) and n = 274 in (D) 300 
to match (C)).  Contours indicate the density of points in panels A,C.  301 
 302 

We obtain strongly positive relationships between predicted and observed allele frequency 303 

change from both the male selection and allele frequency change tests, respectively (Fig 4A: r = 304 

0.79, Fig 4B: r = 0.76, p<0.0001 for both).  Both tests imply that alleles elevated in the 305 

successful male pollen pool relative to the flowering adult population in 2013 tended to rise in 306 
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frequency in 2014.  We first consider SNPs significant for male selection in 2013 (Fig. 3A) and 307 

contrast the predicted change, ∆𝑝𝑝 = (𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴)/2, to the apparent ∆𝑝𝑝 from 2013 adults to 2014 308 

zygotes (Fig. 4A).  Second, we consider SNPs based on evidence for change between years (Fig. 309 

3B) and contrast the direction/magnitude of this observed change to that predicted by 2013 male 310 

selection (Fig. 4B).  Each relationship deviates from 1:1 (the naïve expectation with unbiased 311 

prediction) with the slope for male selection SNPs less than 1 (A: 0.40) and the slope for allele 312 

frequency change SNPs greater than 1 (B: 1.57).   313 

 314 

The evident positive associations between observed and predicted ∆𝑝𝑝 are very encouraging.  315 

However, these relationships require careful statistical scrutiny.  The data (and thus estimates) 316 

from 2013 and 2014 are statistically independent, but the x- and y-axis ∆𝑝𝑝 values in Fig 4A,C 317 

share a parameter (𝑝𝑝𝐴𝐴 in 2013) that contributes negatively to the ∆𝑝𝑝 estimates on each axis. As a 318 

consequence, estimation error in 𝑝𝑝𝐴𝐴 will generate a positive covariance between observed and 319 

predicted apart from that generated by correct prediction.  Ascertainment is second factor.  320 

Choosing the most significant SNP for male selection in 2013 will select for those with 321 

exaggerated estimates of (𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴).  When male selection favors the reference base, the most 322 

significant tests will have positive estimation error added to the true positive value of (𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴), 323 

and the reverse is true for SNPs where the alternative base is favored.  The so called “winner’s 324 

curse” [52, 53] will thus reduce the regression slope relative to 1 in Fig 4A because the allele 325 

frequency in 2014 zygotes is unaffected by estimation error in the previous generation.  326 

Ascertainment tends to exaggerate the y-axis variable for the allele frequency change test 327 

inflating the slope relative to one.  The regression slopes in Fig 4A,C (observed onto predicted) 328 

deviate from 1:1 as predicted by this ascertainment effect. 329 
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 330 

We conducted two analyses that establish genuine prediction of ∆𝑝𝑝 in the face of these errors and 331 

biases.  First, we used ‘cross-validation’ by splitting the 2013 experiment into odd numbered and 332 

even numbered families, respectively.  We then performed model fits on each half separately, 333 

generating two distinct pairs of observed and predicted ∆𝑝𝑝 for each SNP.  We then matched the 334 

“odd” predicted ∆𝑝𝑝 to the “even” observed ∆𝑝𝑝, and vice versa.  With this procedure, there is no 335 

correlation between observed and predicted in the absence of prediction (Supplemental 336 

Appendix D).  The partitioning of points in Fig 4B,D reflects the ascertainment step where we 337 

choose tests only if male selection (4B) or allele frequency change (4D) was significant. There 338 

are two distinct contrasts for a significant SNP.  The first is the significant test ∆𝑝𝑝 (say Odd) 339 

matched to the observed ∆𝑝𝑝 from the other data half (even), which we denote the “Ascertained 340 

contrast.”  The remaining data from this SNP (predicted from even, observed from odd in this 341 

example) is the “Paired contrast.”   342 

 343 

The split data produce strong positive relationships between observed and predicted ∆𝑝𝑝 for both 344 

Ascertained and Paired contrasts (Fig 4B,D) despite the reduction in power caused by halving 345 

the data.  For male selection (Fig 4B), correlations between predicted and observed would be 346 

zero for both Paired and Ascertained if SNPs were neutral (or prediction unrelated to response at 347 

non-neutral SNPs).  In fact, both correlations are highly significant (p < 0.00001 for each in Fig 348 

4B).  It is noteworthy that the regression slope is greater for the Paired contrasts (0.62) than the 349 

Ascertained contrasts (0.16).  This is expected.  The magnitude of predicted ∆𝑝𝑝 values is 350 

substantially greater in Ascertained relative to Paired contrasts.  The exaggeration of predicted 351 
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∆𝑝𝑝 inherent to the former group (winner’s curse) reduces the slope.  Finally, we note that the 352 

predicted ∆𝑝𝑝 is strongly correlated between data halves (r = 0.86, n = 587, p < 0.00001).  No 353 

correlation is expected under neutrality. 354 

 355 

Cross-validation for the allele frequency change test required subdivision of data from both 356 

years.  We split the 2014 data into even and odd families and (arbitrarily) combined 2013-odd 357 

with 2014-odd.  Then, as previously, we fit models (here the allele frequency change test) to 358 

each data half for each SNP and identified the most significant test per gene.  As previously, both 359 

Ascertained and Paired contrast sets produce highly significant, positive correlations between 360 

observed and predicted ∆𝑝𝑝 values (p < 0.00001 for each in Fig 4D).  Here, the regression slope is 361 

lower with Paired (0.61) than Ascertained SNPs (1.29).  This change in pattern regarding the 362 

slopes between in Fig 4B and 4D is predicted given the nature of ascertainment for the allele 363 

frequency change test.  Here, the observed ∆𝑝𝑝 will be inflated relative the truth for Ascertained 364 

but not for Paired contrasts.  365 

 366 

As a complement to cross-validation, we developed a full genome simulation program to 367 

generate data under the condition that prediction is ineffective (no true relationship between 368 

observed and expected).  This simulator (Supplemental Appendix D) produces read-pair data 369 

equivalent in structure and amount to the real data.  To this output, we can apply the full 370 

bioinformatic pipeline generating Figs 3-4 from the real data.  The simulated data reiterates 371 

estimation error and is subject to the same ascertainment biases as the real data, but without real 372 
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allele frequency change.  The latter is assured because we sample genotypes randomly from the 373 

set of genic-haplotypes present for each gene set (fitness is equal for all genic-genotypes).   374 

 375 

We first applied the selection component models to simulation outputs to confirm our 376 

methodology for calling test p-values.  We find, that when there is no selection, the sampling 377 

distribution of Likelihood Ratio Test values follows the chi-square density (Supplemental 378 

Appendix D).  This is how we calculated p-values on tests with the reals data.  The observation 379 

of chi-square distributed LRT values simulations confirms the asymptotic normal theory for 380 

likelihood testing.  Second, we confirmed that the cross-validation method eliminates the 381 

spurious association between predicted and observed ∆𝑝𝑝 (null hypothesis for Figs 4B,D).  382 

Finally, the simulations confirm that a positive association between observed and predicted 383 

change is generated by estimation error in the un-partitioned data (Fig 4A,C).  However, the 384 

covariance between observed and predicted is much greater for the real data than for the 385 

simulated data (0.020 vs 0.012 for male selection, 0.033 vs 0.012 for the allele frequency change 386 

test).  Thus, the magnitude (if not simply the direction) of the covariance in Figs 3A,C is 387 

indicative of effective prediction. 388 

 389 

In summary, the simulation and cross-validation procedures provide strong support that 390 

prediction is genuine.  Unfortunately, it is much more difficult to determine the extent that 391 

apparent deviations between observed and predicted are due to sampling error as opposed to 392 

model error.  The regressions of observed onto predicted ∆𝑝𝑝 for Paired contrasts (Fig 4B,D) are 393 

the simplest parametric relationship to interpret.  The slopes for these, 0.61 and 0.62, suggest that 394 

response is less than predicted, but this conclusion is very tentative.  Simple estimation error in 395 
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the predictor of a linear regression causes a downward bias in the slope (here relative to one), 396 

even when there is no ascertainment bias [54].  This is non-trivial given that our SNP-specific 397 

predictions (and observations) of allele frequency change are encumbered with substantial 398 

estimation error.  The relationship between estimation precision and experimental design, 399 

including sample size, is demonstrated in the companion paper [50]. 400 

 401 

Several biological factors may have reduced model accuracy.  For example, we assumed that (a) 402 

there was no differential germination in the greenhouse (affected by genotype) when we grew 403 

progeny from maternal plants of 2013, (b) no seed bank contributed to the 2014 generation, and 404 

(c) no immigrant pollen or seed contributed to the 2014 population.  Each of these influences 405 

could cause systematic deviations between observed and predicted ∆𝑝𝑝.  Germination rates 406 

routinely differ between plant genotypes in an environment-dependent fashion, e.g. [55, 56].  407 

The field environment of 2014 (where plants germinated to produce our observed ∆𝑝𝑝) is 408 

certainly different from the greenhouse (the offspring genotypes used to estimate 𝑝𝑝𝑀𝑀 in 2013).  409 

This could cause substantial deviations, although they would be limited to genomic regions 410 

containing “germination genes.”   411 

 412 

Prediction accuracy for many loci could be affected by the violations of the other assumptions: 413 

(b) seed bank or (c) gene flow.  If selection varies substantially among years, and all evidence 414 

indicates that IM experiences strong fluctuations ([17, 22-25, 27] and results below), a seed bank 415 

can moderate temporal changes in allele frequency [57].   M. guttatus does not have seed 416 

dormancy [58], and at present, we have no evidence that a seed bank exists for IM.  If it does 417 
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however, recruitment from the seed bank would probably act to reduce the magnitude of 418 

observed ∆𝑝𝑝 relative to predicted.  Finally, there certainly is some level of gene flow into IM 419 

from other populations [49].  However, the fact that IM is a very large population [49], coupled 420 

with the observation of substantial allele frequency divergence from neighboring population 421 

[59], suggest that the rate of immigration is quite low (<< 1%).  This level of gene flow might 422 

fundamentally alter long-term evolutionary dynamics (e.g. by introducing novel alleles), but 423 

should not have a dramatic effect on single-generation ∆𝑝𝑝 values. 424 

 425 

Regularities in genome-wide selection 426 

 427 

In the previous section, we used the 2014 data simply to estimate the observed ∆𝑝𝑝 from selection 428 

in 2013.  However, the experimental design for 2014 allows a more detailed dissection of fitness 429 

variation within this generation.  Viability selection estimated from the difference between 430 

𝑝𝑝𝐴𝐴 and 𝑝𝑝𝐿𝐿 (Fig 1B) was abundant: 39 genes pass the Bonferroni threshold and 226 have at least 431 

one SNP tests with p < 10-5 (Fig 3D).  Male selection was considerably weaker in 2014 than 432 

2013: only 6 𝑝𝑝𝐴𝐴 𝑝𝑝𝑀𝑀⁄  tests pass Bonferroni, 59 genes have a SNP with p < 10-5 (Fig 3C).  The 433 

pattern of selection also changed.  In 2013, there was a clear tendency for male selection to favor 434 

the minor (less frequent) allele (Fig 5A). The average predicted change of the minor allele 435 

frequency (MAF) was 0.055 (SE=0.009), which is significantly positive (n = 587, t = 6.16, 436 

p<0.001).  In 2014, the predicted change in minor allele frequency caused by male selection was 437 

close to zero. These data corroborate previous studies demonstrating changes in the 438 

direction/magnitude of genome-wide selection between generations, both in Mimulus [17] and 439 
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other systems, e.g. [12].  Absent such fluctuations (or other trade-offs), we would expect rapid 440 

fixation of one allele or the other, and the loss of fitness variation. 441 

 442 

Figure 5.  (A) Male selection favored minor alleles in 2013. (B) Pairwise contrasts between 443 
predicted changes owing to male selection in 2013, viability selection in 2014, and male selection in 444 
2014.  A single SNP per gene is reported (the most significant) if p < 10-5.   445 

 446 

Selection components exhibit strong correlations indicating consistency in male selection across 447 

years and a trade-off between male selection in 2013 and viability in 2014 (Fig. 5B).  To 448 

compare different components of selection, we selected the SNP within each gene set with the 449 

highest aggregate evidence for selection using Fisher’s combined probability statistic [60].  450 

Alleles favored by male selection in 2013 were also favored by male selection in 2014 (n = 555, 451 

r = 0.57, p<10-48), but disfavored by viability selection in 2014 (n=725, r = -0.34, p<10-20).  As 452 

expected from these results, there is also a negative correlation between male selection and 453 

viability within 2014 (r = -0.83), but testing is complicated for this contrast because the two tests 454 

share a common parameter and thus subject to biases discussed previously.   455 
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 456 

We can perform a final contrast with a previous experiment that transplanted IM genotypes as 457 

seedlings into a neighboring field site at Browder Ridge.  Browder Ridge has similar physical 458 

conditions as IM [17, 24, 25, 27].  The 2014 transplant [17] assayed 62 distinct IM genotypes for 459 

survival, each a cross between two of the 187 sequenced IM lines. Of SNPs indicating viability 460 

selection here (p<10-5; Fig 3D), 28 showed at least suggestive evidence of viability selection in 461 

the transplant experiment (test p-value less than 0.1). Despite the small sample size, there is a 462 

strong positive correlation between predicted ∆𝑝𝑝 between the two independent experiments (r = 463 

0.53, p < 0.004).   464 

 465 

The contrast across years (Fig 5B) is an important confirmation of natural selection as the 466 

principle driver of ∆𝑝𝑝.  If apparent changes were caused entirely by sampling and/or estimation 467 

error, the direction of change would not be correlated between independent datasets (2013 versus 468 

2014 plants).  Recent studies in fully pedigreed populations of birds and mammals have clearly 469 

shown substantial allele frequency change through time [21, 61, 62].  The challenge has been to 470 

attribute changes to natural selection as opposed to genetic drift [21, 61].  In the present study, 471 

the sampled population (n is about 1000 individuals from each year) is orders of magnitude 472 

smaller than the number of reproductive individuals within the population each generation [49].  473 

The null hypothesis in our tests for selection is essentially experiment-level drift (differences in 474 

allele frequency caused by the finite numbers of parents and offspring).  Experiment-level drift is 475 

necessarily much stronger than population level drift because n << N.  Significant tests thus 476 

clearly implying selection, albeit with the caution that negative results (non-significant tests) do 477 

not imply that SNPs are evolving neutrally.  Thus, undetected selection through measured 478 
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components, as well as selection via unmeasured fitness components make our results a 479 

conservative picture of the genome-wide extent of natural selection. 480 

 481 

Conclusions 482 

This experiment demonstrates strong, but often antagonistic, selection on hundreds of genes 483 

(Figs 3-5).  The apparent trade-off between fitness components, as well as the correlations 484 

between allele frequency and direction of ∆𝑝𝑝, extend and corroborate previous experiments on 485 

this population.  Figure 5B provides further evidence that Montane annual populations of M. 486 

guttatus exhibit a life-history trade-off between development rate and reproductive capacity.  In 487 

most years (although not 2013 of this experiment), nearly all plants die owing to drought at 488 

approximately the same time, but survival to flowering differs greatly owing to varying rates of 489 

maturation [27, 63].  The current study shows clear evidence of a viability trade-off with male 490 

reproductive success, with male selection for minor alleles in 2013 likely mediated through 491 

positive effects on flower size in this year of favorable growth conditions.  Furthermore, 492 

consistency between 2013 and 2014 in the direction of allelic effects on male fitness suggests 493 

that such tradeoffs are intrinsic and contribute to the maintenance of big/slow alleles at minor 494 

frequencies within IM [17, 26].  This is yet another of a growing body of examples relating 495 

antagonistic pleiotropy to polymorphism across diverse systems, e.g. [64]. 496 

 497 

Selection on both quantitative traits and specific genetic loci with major effects can be quite 498 

strong [1, 2, 65].  However, both conceptual and logistical difficulties have separated phenotype-499 

level and locus-specific approaches, limiting inference about the extent, nature, and magnitude of 500 

selection on genetic variants across the genome. Our results (Fig 3) suggest that genotypic fitness 501 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


25 
 

is broadly estimable, and that these estimates can predict allele frequency change across 502 

generations (Fig 4).  A shortcoming of this study (considered in isolation from prior work at IM) 503 

is that the selection component estimates do not provide an ecological explanation for the 504 

observed selection on SNPs.  As in quantitative genetics, we can obtain such an understanding 505 

by replicating the measurement of selection across different populations (or the same population 506 

through time) and then correlating selection estimates with environmental or ecological 507 

variables.  Mechanistic insights may also come from combining phenotypic measurements with 508 

genotyping and fitness assays, linking GWA with selection component analyses.  In summary, a 509 

broader application of genomic selection component methods, coupled with 510 

environmental/phenotypic data and population monitoring through time, should help to resolve 511 

the limits of population genetic prediction. 512 

 513 

 514 

Materials and methods 515 

 516 

A. Field sampling and progeny testing 517 

Mimulus guttatus (syn Erythranthe guttata) is a wild flower species (Family: Phrymaceae) 518 

abundant throughout western North America [66].  The IM population, located in the central 519 

Oregon cascades (44.402217 N, -122.153317 W, Elevation ~1400 meters), is described in detail 520 

elsewhere [22, 24, 27].  In 2013, whole plants distributed in a grid across the IM population were 521 

collected (at senescence) into coin envelopes. In 2014, we established three primary transects 522 

(each ~10m) horizontally across the face of the slope, with approximately equal vertical spacing 523 

between transects.  The transects were further subdivided into perpendicular sub-transects which 524 
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extended 0.3m on either side of the primary transect and were evenly spaced in 0.3m increments 525 

along the primary transect.  We sampled five plants along each sub-transect by selecting the most 526 

proximal individual to a points placed at 10cm intervals.  On July 15, 2014, we surveyed each 527 

transect and identified plants that would not progress to flower based on state of development 528 

relative to others in population.  Assuming these plants would not have sufficient time to flower 529 

and set seed prior to season ending drought, this cohort (L) estimates pL in Fig 1.  To insure 530 

sufficient DNA from L plants, we transplanted these individuals into moistened peat pots filled 531 

with potting soil and reared them to sufficient size for DNA extraction.  We first sampled plants 532 

for the adult cohort of 2014 (pA  in Figure 1) on July 21, 2014.  We only sampled adults once all 533 

plants within their sub-transect fully dried down.  We collected whole plants, after confirming 534 

they had begun setting seed, into envelopes, so that both seed and maternal tissue could be 535 

separated for planting and DNA extraction, respectively.  The remaining adults were harvested 536 

on July 27.  Given seed collections from both years, we germinated and grew 2-4 progeny from 537 

each field plant in the University of Kansas greenhouse.  We harvested dried leaf and calyx 538 

tissue from field collected parental plants and young leaves from greenhouse germinated progeny 539 

for subsequent DNA extraction[67].  To determine the overall proportion of the population that 540 

survived to flower in 2014, we surveyed a random set of 1000 seedlings marked early in the 541 

season at the nearby BR location[59].  700 of these plants eventually flowered.   542 

 543 

B. Library preparation, sequencing, SNP calling, and scoring read pairs 544 

We collected paired-end sequence reads from 1936 experimental plants (2013: 207 field plants 545 

and 685 progeny; 2014: 383 field plants and 661 progeny) using Illumina technology.  For field 546 

plants and their progeny, we generated genomic libraries using Multiplexed-Shotgun-Genotyping 547 
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(MSG)[41], a form of RADseq [68] that uses a restriction enzyme to reduce genomic 548 

representation to homologous loci that are flanked by restriction cut sites.  We digested genomic 549 

DNA from each plant using the frequent-cutting restriction enzyme MseI (NEB Biolabs).  Each 550 

DNA sample was ligated to one of 96 distinct barcoded adaptors, each containing a unique 6 bp 551 

barcode.  Each set of these barcoded samples is then pooled independently to create a sub-552 

library. After PCR, we size-selected our library for 250-300bp fragments using a Pippin Prep 553 

(http://www.sagescience.com/products/pippin-prep/).  We then performed PCR reactions at 12 554 

cycles using Phusion High-Fidelity PCR Master Mix (NEB Biolabs) and primers that bind to 555 

common regions in the adaptors.  In the PCR step, each sub-library was combined with one of 24 556 

distinct Illumina indices allowing multi-plexing of the sub-libraries.  To remove primer dimers, 557 

we did two rounds of AMPure XP bead cleanup (Beckman Coulter, Inc) using a 0.8 bead volume 558 

to sample ratio.  Libraries were sequenced with 100-bp paired-end reads on the Illumina HiSeq 559 

2500 with a 10% phiX spike-in. The specific program commands used to call SNPs in the MSG 560 

data are described in Supplemental Appendix A.  We suppressed Indels and all SNPs with more 561 

than two nucleotides segregating. 562 

 563 

Sequencing and variant calling on the 187 reference panel genomes from IM was described 564 

previously[17].  We first imputed the few missing calls in these genomes and then extracted the 565 

sequence for each reference genome within each gene set (detailed procedures in Supplemental 566 

Appendix B).  Sequence variation is very high in M. guttatus[49], and as a consequence, it is 567 

difficult to effectively call variants outside genic regions.  We thus established gene sets as units 568 

for analysis.  A set is either a single gene or a collection of closely linked (within 100bp) and/or 569 

overlapping genes.  After suppressing genes prone to paralogous or otherwise spurious read 570 
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mapping, 15,360 gene sets were retained for subsequent analysis (Supplemental Table S1).  571 

Finally, we noted that some SNPs were completely redundant – owing to perfect association in 572 

the reference panel, they always produced the same genotype likelihoods in field plants.  We 573 

thinned sets of fully redundant SNPs to a single representative SNP leaving 1,523,410 SNPs for 574 

selection estimation. 575 

 576 

The data units for likelihood calculations (eq 1) are read-pairs scored for each polymorphic SNP 577 

that they overlap within a gene set.  We aligned the read-pairs from each plant to the whole 578 

genome sequences, and within each gene set, and calculated 𝑈𝑈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝],𝑖𝑖,𝑗𝑗 for each possible genic-579 

genotype [i,j].  𝑈𝑈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝],𝑖𝑖,𝑗𝑗 is the likelihood for the full collection of read-pairs from a plant 580 

given that its diploid genic-genotype is [i,j], where i and j index genic haplotypes.  Based on the 581 

low mismatch rate to genic haplotypes (as a whole), we set 𝜖𝜖 = 0.005 for calculation of eq (1) 582 

described below.  We calculated 𝑈𝑈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝],𝑖𝑖,𝑗𝑗 for each combination of gene set, plant, and genic-583 

genotype using python scripts p1.py, p2.py, p3.py, p.Uij.2013.py and p.Uij.2014.py 584 

(Supplemental file 1).  Application of these programs indicate that some closely linked SNPs 585 

were completely redundant – they always had exactly the same genotype calls in field plants.  586 

We thinned these cases to a single SNP. 587 

 588 

C.  Drosophila melanogaster analysis 589 

The Drosophila Synthetic Population Resource (DSPR) consists of two multiparental, advanced 590 

generation intercross mapping populations [42, 51]. Each population (A and B) was initiated 591 

with eight inbred founder strains, with one strain common to both populations (i.e., 15 founders 592 

in total). Following 50 generations of free recombination, a series of Recombinant Inbred Lines 593 
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(RILs) were initiated by 25 generations of sibling mating.  The founder genomes were sequenced 594 

to 50X coverage and the RILs subjected to RAD-seq using SgrAI, an 8-cutter, as the restriction 595 

enzyme [42, 69].  Given these data, we are able to infer the mosaic founder haplotype structure 596 

of each RIL at >10,000 positions covering the genome.  597 

 598 

We collected MSG RADseq data using the same protocol as described above for the Mimulus 599 

experiment, except that these data are 94bp single end sequences instead of the PE100 600 

sequencing for Mimulus.  We chose 60 of the RILs for the present study equally split between 601 

set A and set B of the DSPR.  For each collection, there are only 8 possible ancestral genomes, 602 

but we ran the analysis blind to this information (thus inference among 15 possible ancestral 603 

alleles was required).  The reads were processed with fastp (https://github.com/OpenGene/fastp) 604 

and then we mapped to the FlyBase r5.56 genome build (https://flybase.org/) and called SNPs 605 

following the procedures used for Mimulus (Supplemental Appendix A).  We used the 606 

annotation (dmel-all-r5.56.gff) to establish a list of 13,384 gene sets applying the same rules as 607 

for Mimulus (Supplemental Table S3).  Next, we determined the intersection between SNPs 608 

within the ancestral genomes (final_snptable_foundersonly.txt downloaded from 609 

http://wfitch.bio.uci.edu/~dspr/) and those called in the MSG RIL data, a total of 107,878 bi-610 

allelic SNPs (Supplemental Table S4).  We found that 8900 of these 13,384 gene sets had at least 611 

one SNP scored in MSG data and could thus be used for downstream analysis.  After eliminating 612 

uninformative reads, a total of 15,488,651 remained across the 60 RILs.  We next adapted the 613 

Mimulus programs (python scripts p1.py, p2.py and p3.py in Supplemental file 1) to determine 614 

predicted ancestry based of the DSPR RILs and matched the inferred ancestry to the “known” 615 

ancestry of each RIL.  The latter was established previously: We downloaded files 616 
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HMMregA_R2.txt and HMMregB_R2.txt from http://wfitch.bio.uci.edu/~dspr/ (also available at 617 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.r5v40).  We processed the D. melanogaster 618 

reference into ‘gene units’ by the same method applied to the Mimulus genome.  Read mapping 619 

and SNP calling were executed using the same techniques. The great majority of D. 620 

melanogaster reads overlap 3 or fewer SNPs and are thus less informative than the Mimulus 621 

read-pairs (Supplemental Figure S1).  We then applied the inference programs using the 15 622 

ancestral sequences of the DSPR as genic haplotypes.   623 

 624 

D. Likelihood of the field data with and without selection 625 

 626 

Selection component analyses (SCA [43, 46]) are based on population genetic models that 627 

predict allele frequency change from observations of viability, fecundity, and mating success 628 

[47].  SCA estimate selection from differences in allele frequency between distinct “cohorts” 629 

within a population, e.g. individuals that survive to reproduce and those that do not (viability 630 

selection) or those that acquire mates and those that do not (sexual selection) [48].  Given 631 

random sampling of individuals, the likelihood of the entire dataset (L) is a product across 632 

families: 633 

𝐿𝐿 = �𝐿𝐿𝑦𝑦

𝐹𝐹

𝑦𝑦=1

 634 

          (2) 635 

 636 
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where F is the number of families and 𝐿𝐿𝑦𝑦 is the likelihood for family y.  Families consist of a 637 

single individual if that plant failed to survive to reproduce.  For survivors, the family is the field 638 

plant and a sample of their progeny.  The log-transformed likelihood: 639 

𝐿𝐿𝐿𝐿 𝐿𝐿 = �𝐿𝐿𝐿𝐿�� 𝑃𝑃�𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗�𝑃𝑃[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦|𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗]
𝐾𝐾

𝑖𝑖,𝑗𝑗≥𝑖𝑖

�
𝐹𝐹

𝑦𝑦=1

 640 

          (3) 641 

where 𝑃𝑃�𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗� is the (prior) probability that the maternal genic-genotype has genic-642 

haplotypes i and j.  K is the number of distinct sequences for this gene set. 𝑃𝑃[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦|𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗] is 643 

the probability of all data from family y (genetic and fitness measurements) given maternal 644 

genotype [i,j].  The family likelihood is: 645 

𝑃𝑃�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦�𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗� = 𝑈𝑈𝑦𝑦,𝑖𝑖,𝑗𝑗�𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗

𝑂𝑂𝑦𝑦

𝑧𝑧

 646 

          (4) 647 

 648 

𝑈𝑈𝑦𝑦,𝑖𝑖,𝑗𝑗 is the probability maternal plant y produced the observed read-pairs given genic-genotype 649 

[i,j], 𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 is the probability of the observed read-pairs for offspring z of maternal plant y with 650 

genic-genotype [i,j], and 𝑂𝑂𝑦𝑦 is number of genotyped offspring of maternal plant y.  For 651 

individuals that fail to reproduce, �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦�𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗� = 𝑈𝑈𝑦𝑦,𝑖𝑖,𝑗𝑗.  The likelihood for each 652 

offspring, 𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 in eq 4, depends on whether that offspring is outcrossed or selfed (see Methods 653 

section E).  If offspring yz is selfed: 654 

𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 =
1
4
𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑖𝑖 +

1
2
𝑈𝑈𝑦𝑦𝑧𝑧,𝑖𝑖,𝑗𝑗 +

1
4
𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑗𝑗 655 

          (5) 656 
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   657 

We assume that each outcrossed progeny is sired independently and that 658 

𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 = �𝑃𝑃�𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑘𝑘�
1
2

(
𝐾𝐾

𝑘𝑘=1

𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑘𝑘 + 𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑘𝑘) 659 

          (6) 660 

 661 

𝑈𝑈𝑦𝑦𝑦𝑦,𝑣𝑣,𝑤𝑤 is the probability of the observed read-pairs from offspring yz given that it has genic-662 

genotype [v,w].  𝑃𝑃�𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑘𝑘� is the probability that the sire of offspring yz transmitted genic-663 

haplotype k to this offspring.  The (1/2) reflects the equal probability of transmission for either 664 

maternal allele (i or j) to the offspring.  Through all these calculations, we assume that 665 

recombination within gene sets has a negligible effect on the probabilities. 666 

 667 

The various models of selection (Fig. 1) consider different constraints on the genotype 668 

probabilities.  Given the large number of genic-genotypes, the potential parameter space is very 669 

large.  Here, we simplify by classifying all genic-haplotypes into two groups based on their allele 670 

at a particular SNP.  We assume the sequences in a group are equivalent in terms of fitness 671 

effects.  This reduces all genic-haplotypes at a gene set into two “alleles” for selection tests.  672 

This classification naturally changes with SNP chosen and thus we apply the procedure to each 673 

SNP in sequence.  This simplification is a sensible first step, but we acknowledge that it may fail 674 

to capture the genotype-to-fitness mapping for many genes.  In some cases, alternative alleles 675 

may be defined by numerous SNPs or indels within a gene [70, 71] and fitness effects would be 676 

more naturally described with an allelic series.  Our ‘binning’ of functionally distinct alleles 677 

could elevate the Type I error rate (we fail to see selection when it is occurring). 678 
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 679 

Let 𝑆𝑆𝑅𝑅 represent the set of genic haplotypes that have the reference base at the focal SNP and 𝑆𝑆𝐴𝐴 680 

is the set with the alternative base.  Then eq (6) can be written:  681 

𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 = � 𝑃𝑃�𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑣𝑣�
1
2

(
𝑣𝑣 ∈ 𝑆𝑆𝑅𝑅

𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑣𝑣 + 𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑣𝑣) + � 𝑃𝑃�𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑤𝑤�
1
2

(
𝑤𝑤 ∈ 𝑆𝑆𝐴𝐴

𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑤𝑤 + 𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑤𝑤) 682 

          (7) 683 

 684 

The frequency of the reference base (for the focal SNP) within the population of genic-685 

haplotypes, 𝑝𝑝 , is just ∑ 𝛿𝛿𝑘𝑘𝑄𝑄𝑘𝑘𝐾𝐾
𝑘𝑘=1 , where 𝑄𝑄𝑘𝑘 is the frequency of haplotype k among the lines and 686 

𝛿𝛿𝑘𝑘 is an indicator variable (1 if haplotype k carries the reference base and 0 otherwise).  Of 687 

course, the frequency of the reference base can differ between the sequence line set and the 688 

natural population, and also between subsets of the natural population (e.g. alive versus dead).  689 

Let 𝑝𝑝∗ denote the frequency of the reference base in a specific field cohort, say adults in 2013 or 690 

zygotes in 2014.  We adjust genic-haplotypes proportionally as a function of 𝑝𝑝∗: 691 

𝑄𝑄𝑘𝑘∗ = 𝑄𝑄𝑘𝑘
𝑝𝑝∗

𝑝𝑝
 𝑖𝑖𝑖𝑖 𝑘𝑘 ∈  𝑆𝑆𝑅𝑅 , 𝑄𝑄𝑘𝑘∗ = 𝑄𝑄𝑘𝑘

(1−𝑝𝑝∗)
(1−𝑝𝑝)

 𝑖𝑖𝑖𝑖 𝑘𝑘 ∈  𝑆𝑆𝐴𝐴       (8) 692 

 693 

This is essentially a uniform inflation or deflation of haplotype frequencies based on the focal 694 

SNP.  It allows us to write the likelihood equations explicitly in terms of allele frequencies at one 695 

SNP (e.g. 𝑝𝑝𝐿𝐿, 𝑝𝑝𝐴𝐴, and 𝑝𝑝𝑀𝑀 in Figure 1) while retaining the full information from gene sets.  For 696 

example, 𝑃𝑃�𝑀𝑀𝑦𝑦 = 𝑖𝑖, 𝑗𝑗�, in eq (3) becomes 2𝑄𝑄𝑖𝑖∗𝑄𝑄𝑗𝑗∗ if i≠j or 𝑄𝑄𝑖𝑖∗
2 if i=j.  This is a function of known 697 

fixed values (p, 𝑄𝑄𝑖𝑖, 𝑄𝑄𝑗𝑗) and the parameter to be estimated (e.g. 𝑝𝑝𝐴𝐴 if the maternal plant survived, 698 

𝑝𝑝𝐿𝐿 if not).  Equation (7) becomes: 699 

 700 
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𝑉𝑉𝑦𝑦𝑦𝑦,𝑖𝑖,𝑗𝑗 = � 𝑄𝑄𝑣𝑣
𝑝𝑝𝑀𝑀
𝑝𝑝

1
2

(
𝑣𝑣 ∈ 𝑆𝑆𝑅𝑅

𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑣𝑣 + 𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑣𝑣) + � 𝑄𝑄𝑤𝑤
1 − 𝑝𝑝𝑀𝑀
1 − 𝑝𝑝

1
2

(
𝑤𝑤 ∈ 𝑆𝑆𝐴𝐴

𝑈𝑈𝑦𝑦𝑦𝑦,𝑖𝑖,𝑤𝑤 + 𝑈𝑈𝑦𝑦𝑦𝑦,𝑗𝑗,𝑤𝑤) 701 

 702 

= 𝑝𝑝𝑀𝑀𝑇𝑇1 + (1 − 𝑝𝑝𝑀𝑀)𝑇𝑇2 703 

          (9) 704 

 705 

𝑇𝑇1 and 𝑇𝑇2 distill all quantities in eq (9) that are coefficients for 𝑝𝑝𝑀𝑀 and (1 − 𝑝𝑝𝑀𝑀).  The fact that 706 

these coefficients are determined entirely by the read-pairs from field plants and the set of genic-707 

haplotypes means that they do not change with 𝑝𝑝𝑀𝑀.  Thus, the numerically intensive sum of eq 708 

(6) need only be calculated once at the onset of a maximum likelihood search.  We use Powell’s 709 

algorithm [72] to maximize likelihoods.  At each SNP, we fit a series of models of increasing 710 

complexity (Fig. 1).  Likelihood ratio tests are used to evaluate whether more general models are 711 

superior to simpler models.  The code to perform these tests was written in the C programming 712 

language, is described in Supplemental Appendix C, and is included in Supplemental File 1. 713 

 714 

E.  Mating system estimation 715 

The MSG data (without the reference sequences) was used to determine individual offspring as 716 

outcrossed or selfed using BORICE [73].  The most informative SNPs for mating system 717 

estimation exhibit high coverage across samples and intermediate allele frequency.  From the full 718 

set of MSG samples called simultaneously (Supplemental Table S5), we chose one SNP per gene 719 

with the highest count for (heterozygotes+the less frequent homozygote) using python program 720 

p4.py (Supplemental File 1).  We then extracted genotype likelihoods for these SNPs (directly 721 

from the vcf file, Supplemental Table S5) and organized the samples into families (maternal 722 
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plants with offspring) to produce a BORICE-format input file using python program p5.py 723 

(Supplemental File 1).  We next thinned the dataset to SNPs with at least 800 called plants 724 

(across both years) producing the input file used for estimation of mating system (Supplemental 725 

Table S6) consisting of 2773 SNPs, each in a distinct gene.  These SNPs are well distributed 726 

across all 14 chromosomes.  We conducted preliminary MCMC runs to determine parameter step 727 

sizes, burn-in duration, and chain length.  After setting these (Control file and the specific 728 

BORICE code are in Supplemental File 1), we estimated posterior probabilities for each 729 

offspring as outcrossed/selfed and the inbreeding level of maternal plants by combining four 730 

independent chains.   731 

 732 

Considering offspring with at least one read at 100 or more SNPs, 10.1% were determined to be 733 

selfed in 2013 (54 of 537) versus 9.4% in 2014 (48 of 508).  The remaining offspring, where 734 

there was insufficient data for estimation, were set as outcrossed for the subsequent selection 735 

analyses.  While this classification may be incorrect for a few individuals, error has a minimal 736 

effect on parameter estimates given the absence of genotypic data for these offspring.  The 737 

observed rate of selfing (ca. 10%) matches results from prior mating system studies of the IM 738 

population[74].  The detailed results are reported in Supplemental Table S7. 739 

 740 

F.  Predicted and observed allele frequency change 741 

We contrast different selection estimates in the common currency of predicted allele frequency 742 

change, ∆𝑝𝑝.  Considering the change from adults to zygotes of the next generation, the predicted 743 

change due to male selection is ∆𝑝𝑝 = (𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴)/2.  This equation assumes no differential 744 

female fecundity (associated with the SNP) and that all progeny are produced by outcrossing 745 
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(diploid loci are half male and half female).  In fact, we found that ca. 10% of our offspring were 746 

derived from selfing (see section E).  This could (slightly) inflate predicted change relative to 747 

observed change (Fig 3).  However, given that the inflation is uniform, it does not affect 748 

arguments about significance (Fig 2), allele frequency (Fig 4) or trade-offs (Fig 4).  The 749 

predicted change owing to viability selection in 2014 is calculated from model H3 (Fig 1) 750 

estimates, 𝑝𝑝𝐴𝐴 and 𝑝𝑝𝐿𝐿.  The relevant relationship is  𝑝𝑝𝑍𝑍 = 𝛼𝛼 𝑝𝑝𝐴𝐴 + (1 − α) 𝑝𝑝𝐿𝐿, where  𝑝𝑝𝑍𝑍 is allele 751 

frequency in zygotes (before selection) and 𝛼𝛼 is the fraction of individuals that survive to 752 

reproduce.  For our experiment, we estimate 𝛼𝛼 = 0.7 (see above in section A).  Rearranging the 753 

equation, the predicted change owing to viability selection is ∆𝑝𝑝 = 0.3(𝑝𝑝𝐴𝐴 − 𝑝𝑝𝐿𝐿).  The observed 754 

∆𝑝𝑝 estimates (Fig 3) require an estimate of allele frequency in zygotes (𝑝𝑝𝑍𝑍) from 2014.  This can 755 

be estimated in several ways given the four models applied to the 2014 data (H0-H3 in Fig. 1), 756 

but p from H0 is a robust choice.  This value is always intermediate to parameter estimates from 757 

models that are more elaborate.    758 

 759 

To obtain ∆𝑝𝑝 from the viability data from the transplant experiment in 2014 at BR[17], we first 760 

determined the 1,358,005 SNPs in common between the SCA (results of this study) and the 761 

genotypes used in that study.  We assayed 355 transplants (an average of 5.7 replicates per 762 

genotypes) for survival and seed set of survivors in the 2014 transplant.  We eliminated SNPs 763 

where the count of minor homozygote plus heterozygotes was fewer than five.  For the 764 

remainder, we regressed the fitness measure, either fraction surviving or mean Ln(seedset of 765 

survivors), onto plant genotype at each SNP, the latter scored as the count of Reference alleles 766 

(0,1,2).  A linear model for selection was used instead of estimating the mean for each genotype 767 

(RR, RA, AA) because there were often few or no representatives of the minor homozygote 768 
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(only 62 distinct hybrid genotypes were assayed in the 2014 transplant).  For viability selection, 769 

the predicted change is ∆𝑝𝑝 = 𝑏𝑏𝑣𝑣𝑝𝑝𝑍𝑍(1 − 𝑝𝑝𝑍𝑍)/ 𝑤𝑤𝑣𝑣, where 𝑏𝑏𝑣𝑣 is the regression coefficient and 770 

𝑤𝑤𝑣𝑣=0.46 is the mean viability among transplants.  Allele frequency, 𝑝𝑝𝑍𝑍, was taken from the 2014 771 

SCA model H0.   772 

 773 

  774 
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Supporting information  775 

Supplemental Appendix.  The detailed methods sections for (A) Bioinformatic processing of 776 

MSG data, (B) Delineating gene sets and SNPs, (C) Selection component models, and (D) 777 

Whole-genome data simulation.   778 

 779 

Supplemental Table S0.  The most significant SNP per gene is reported for 𝑝𝑝𝐴𝐴 𝑝𝑝𝑀𝑀⁄  in 2013, 780 

𝑝𝑝𝐴𝐴 𝑝𝑝𝑀𝑀⁄  in 2014, viability selection in 2014, and the change test (2013 adults to 2014 zygotes).  781 

The chosen for each test are reported on a separate sheet.  Statistics from all model fits are 782 

reported for each SNP. 783 

 784 

Supplemental Table S1.  The gene sets are located to the genome sequence and the number 785 

distinct genic-haplotypes per gene set is reported. 786 

 787 

Supplemental Table S2.  The number of SNPs covered per read-pair in the Mimulus field plants.  788 

After discarding read-pairs that overlap no SNPs, slightly more than 99 million remained. 789 

 790 

Supplemental Table S3.  The collection of genes and gene sets for the Drosophila application: 791 

"Gene.coordinates.txt". 792 

 793 

Supplemental Table S4.  Variants used in Drosophila application: “SNPs.in.both.txt” 794 
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 795 

Supplemental Table S5.  The Variant Call File (vcf) for all msg samples across both field 796 

seasons is given for each chromosome separately. 797 

 798 

Supplemental Table S6.  The BORICE formatted input file for mating system estimation. 799 

 800 

Supplemental Table S7.  The estimated posterior probabilities that each offspring is outcrossed 801 

and for the Inbreeding History (IH) level of maternal plant is reported. 802 

 803 

Supplemental Figure S1. The number of SNPs per read (Blue = Drosophila) or read-pair (Orange 804 

= Mimulus) is reported as a histogram. 805 

 806 

File S1 key.  A key to the programs contained in Supplemental File 1. 807 

 808 

Supplemental File 1.  The 14 programs used to analyze and simulate data (detailed descriptions 809 

contained in File S1 key). 810 

 811 

Acknowledgements  812 

We thank C. Friesen (U.S. Forest Service) for site access and the KU ACF for computing 813 

resources.  J Stinchombe suggested the data splitting for cross-validation and we received 814 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


40 
 

essential editorial advice from J. Willis and R. Unckless.  Sequencing was conducted at the KU 815 

genomics core (supported by the CMADP COBRE P20GM103638). 816 

 817 

Author Contributions 818 

PJM and JKK conceived the project.  PJM and LF conducted the field experiments.  PJM 819 

directed library construction and sequencing for Mimulus.  SJM directed library construction and 820 

sequencing for Drosophila.  JKK wrote the theory and the analytical programs.  JC and JKK 821 

analyzed the data.  JKK wrote the paper with substantial input from all co-authors. 822 

 823 

Availability of data and materials 824 

The Illumina reads from both Mimulus and Drosophila will be deposited in the Sequence Read 825 

Archive (NCBI) prior to publication.  Computer programs to conduct the analyses have been 826 

included as Supplementary Materials. 827 

 828 

 829 

  830 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


41 
 

References 831 
 832 
1. Endler JA. Natural selection in the wild. Princeton NJ: Princeton University Press; 1986. 336 p. 833 
2. Ford EB. Ecological genetics. 3rd ed. London: Chapman and Hall; 1971. 834 
3. Clegg MT, A. L. Kahler, and R. W. Allard. Estimation of life cycle components of selection in an 835 
experimental plant population. Genetics. 1978;89:765-92. 836 
4. Mérot C, Llaurens V, Normandeau E, Bernatchez L, Wellenreuther M. Balancing selection via life-837 
history trade-offs maintains an inversion polymorphism in a seaweed fly. Nature Communications. 838 
2020;11(1):670. doi: 10.1038/s41467-020-14479-7. 839 
5. Schwander T, Libbrecht R, Keller L. Supergenes and Complex Phenotypes. Current Biology. 840 
2014;24(7):R288-R94. doi: https://doi.org/10.1016/j.cub.2014.01.056. 841 
6. Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. Chromosomal 842 
rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011;477:203. 843 
doi: 10.1038/nature10341 844 

https://www.nature.com/articles/nature10341#supplementary-information. 845 
7. Barrett RDH, Hoekstra HE. Molecular spandrels: tests of adaptation at the genetic level. Nature 846 
Reviews Genetics. 2011;12(11):767-80. doi: 10.1038/nrg3015. 847 
8. Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, et al. A supergene 848 
determines highly divergent male reproductive morphs in the ruff. Nature Genetics. 2016;48(1):79-83. 849 
doi: 10.1038/ng.3443. 850 
9. Subramaniam B, Rausher MD. Balancing selection on a floral polymorphism. Evolution. 851 
2000;54(2):691-5. 852 
10. Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, et al. The Ecology and 853 
Evolutionary Dynamics of Meiotic Drive. Trends in Ecology & Evolution. 2016;31(4):315-26. doi: 854 
https://doi.org/10.1016/j.tree.2016.02.001. 855 
11. Barrett RDH, Laurent S, Mallarino R, Pfeifer SP, Xu CCY, Foll M, et al. Linking a mutation to 856 
survival in wild mice. Science. 2019;363(6426):499-504. doi: 10.1126/science.aav3824. 857 
12. Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. Genomic Evidence of Rapid and 858 
Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila. PLOS Genetics. 859 
2014;10(11):e1004775. doi: 10.1371/journal.pgen.1004775. 860 
13. Therkildsen NO, Hemmer-Hansen J, Als TD, Swain DP, Morgan MJ, Trippel EA, et al. 861 
Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection 862 
in Atlantic cod. Molecular Ecology. 2013;22(9):2424-40. doi: 10.1111/mec.12260. 863 
14. Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, et al. Broad geographic sampling 864 
reveals predictable, pervasive, and strong seasonal adaptation in Drosophila. bioRxiv. 2019:337543. doi: 865 
10.1101/337543. 866 
15. Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL, Johnston JS, et al. Stick 867 
Insect Genomes Reveal Natural Selection’s Role in Parallel Speciation. Science. 2014;344(6185):738-42. 868 
doi: 10.1126/science.1252136. 869 
16. Anderson JT, Lee C-R, Mitchell-Olds T. STRONG SELECTION GENOME-WIDE ENHANCES FITNESS 870 
TRADE-OFFS ACROSS ENVIRONMENTS AND EPISODES OF SELECTION. Evolution. 2014;68(1):16-31. doi: 871 
10.1111/evo.12259. 872 
17. Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. Selective trade-offs maintain alleles underpinning 873 
complex trait variation in plants. Science. 2018;361(6401):475-8. doi: 10.1126/science.aat5760. 874 
18. Exposito-Alonso M, Exposito-Alonso M, Gómez Rodríguez R, Barragán C, Capovilla G, Chae E, et 875 
al. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature. 876 
2019;573(7772):126-9. doi: 10.1038/s41586-019-1520-9. 877 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1016/j.cub.2014.01.056
https://www.nature.com/articles/nature10341#supplementary-information
https://doi.org/10.1016/j.tree.2016.02.001
https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


42 
 

19. Monnahan PJ, Colicchio J, Kelly JK. A genomic selection component analysis characterizes 878 
migration-selection balance. Evolution. 2015;69(7):1713-27. doi: 10.1111/evo.12698. 879 
20. Flanagan SP, Jones AG. Genome-wide selection components analysis in a fish with male 880 
pregnancy. Evolution. 2017;71(4):1096-105. doi: 10.1111/evo.13173. 881 
21. Chen N, Juric I, Cosgrove EJ, Bowman R, Fitzpatrick JW, Schoech SJ, et al. Allele frequency 882 
dynamics in a pedigreed natural population. Proceedings of the National Academy of Sciences. 883 
2019;116(6):2158-64. doi: 10.1073/pnas.1813852116. 884 
22. Fishman L, Kelly JK. Centromere-associated meiotic drive and female fitness variation in 885 
Mimulus. Evolution. 2015;69(5):1208-18. doi: 10.1111/evo.12661. 886 
23. Lee YW, Fishman L, Kelly JK, Willis JH. A Segregating Inversion Generates Fitness Variation in 887 
Yellow Monkeyflower (Mimulus guttatus). Genetics. 2016;202(4):1473-84. doi: 888 
10.1534/genetics.115.183566. 889 
24. Mojica JP, Lee YW, Willis JH, Kelly JK. Spatially and temporally varying selection on 890 
intrapopulation quantitative trait loci for a life history trade‐off in Mimulus guttatus. Molecular ecology. 891 
2012;21(15):3718-28. 892 
25. Monnahan PJ, Kelly JK. Naturally segregating loci exhibit epistasis for fitness. Biology Letters. 893 
2015;11(8). doi: 10.1098/rsbl.2015.0498. 894 
26. Kelly JK. Testing the rare alleles model of quantitative variation by artificial selection. Genetica. 895 
2008;132(2):187-98. 896 
27. Mojica JP, Kelly JK. Viability selection prior to trait expression is an essential component of 897 
natural selection. Proceedings of the Royal Society B-Biological Sciences. 2010;277(1696):2945-50. doi: 898 
10.1098/rspb.2010.0568. PubMed PMID: ISI:000281312400008. 899 
28. Hill WG. Understanding and using quantitative genetic variation. Philosophical transactions of 900 
the Royal Society of London Series B, Biological sciences. 2010;365(1537):73-85. doi: 901 
10.1098/rstb.2009.0203. PubMed PMID: 20008387. 902 
29. Grant PR, Grant RB. Predition Microevolutionary Responses to Directional Selection on Heritable 903 
Variation. Evolution. 1995;49:241-51. 904 
30. Morrissey MB. SELECTION AND EVOLUTION OF CAUSALLY COVARYING TRAITS. Evolution. 905 
2014;68(6):1748-61. doi: 10.1111/evo.12385. 906 
31. Bonnet T, Wandeler P, Camenisch G, Postma E. Bigger Is Fitter? Quantitative Genetic 907 
Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent 908 
Population. PLOS Biology. 2017;15(1):e1002592. doi: 10.1371/journal.pbio.1002592. 909 
32. Bonnet T, Morrissey MB, Morris A, Morris S, Clutton-Brock TH, Pemberton JM, et al. The role of 910 
selection and evolution in changing parturition date in a red deer population. PLOS Biology. 911 
2019;17(11):e3000493. doi: 10.1371/journal.pbio.3000493. 912 
33. Lewontin RC. The genetic basis of evolutionary change. New York, NY: Columbia University 913 
 Press; 1974. 914 
34. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex, England: Prentice 915 
Hall; 1996. 916 
35. Lande R, Arnold S. The measurement of selection on correlated characters. Evolution. 917 
1983;37:1210-26. 918 
36. Morrissey MB, Parker DJ, Korsten P, Pemberton JM, Kruuk LEB, Wilson AJ. THE PREDICTION OF 919 
ADAPTIVE EVOLUTION: EMPIRICAL APPLICATION OF THE SECONDARY THEOREM OF SELECTION AND 920 
COMPARISON TO THE BREEDER’S EQUATION. Evolution. 2012;66(8):2399-410. doi: 10.1111/j.1558-921 
5646.2012.01632.x. 922 
37. Rausher MD. The measurement of selection on quantitative traits: biases due to the 923 
environmental covariances between traits and fitness. Evolution. 1992;46:616-26. 924 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


43 
 

38. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide 925 
dense marker maps. Genetics. 2001;157(4):1819-29. PubMed PMID: 11290733. 926 
39. Jannink J-L, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. 927 
Briefings in Functional Genomics. 2010;9(2):166-77. doi: 10.1093/bfgp/elq001. 928 
40. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy 929 
cattle: Progress and challenges. Journal of Dairy Science. 2009;92(2):433-43. doi: 930 
https://doi.org/10.3168/jds.2008-1646. 931 
41. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, et al. Multiplexed 932 
shotgun genotyping for rapid and efficient genetic mapping. Genome research. 2011;21(4):610-7. doi: 933 
10.1101/gr.115402.110. PubMed PMID: WOS:000289067800011. 934 
42. King E, Merkes C, McNeil C, Hoofer S, Sen S, Broman K, et al. Genetic dissection of a model 935 
complex trait using the Drosophila Synthetic Population Resource. Genome Research 2012;22:1558-66. 936 
43. Christiansen F, Frydenberg O. Selection component analysis of natural polymorphisms using 937 
population samples including mother-offspring combinations. Theoretical Population Biology. 938 
1973;4:425-45. 939 
44. Stanton ML. Male-Male Competition During Pollination in Plant Populations. The American 940 
Naturalist. 1994;144:S40-S68. 941 
45. Delph LF. Pollen competition is the mechanism underlying a variety of evolutionary phenomena 942 
in dioecious plants. New Phytologist. 2019;224(3):1075-9. doi: 10.1111/nph.15868. 943 
46. Allard RW, Kahler AL, Clegg MT. Estimation of Mating Cycle Components of Selection in Plants. 944 
In: Christiansen FB, Fenchel TM, editors. Measuring Selection in Natural Populations. Lecture Notes in 945 
Biomathematics. Berlin, Heidelberg: Springer; 1977. 946 
47. Crow JF, Kimura M. An introduction to population genetics theory. New York: Harper and Row; 947 
1970. 948 
48. Bundgaard J, Christiansen FB. Dynamics of polymorphisms.  I.  Selection components in an 949 
experimental population of Drosophila melanogaster. Genetics. 1972;71:439-60. 950 
49. Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic variation 951 
in Mimulus guttatus. Molecular Ecology. 2017;26(2):519-35. doi: 10.1111/mec.13922. 952 
50. Kelly J. The promise and deceit of genomic selection analyses. Proceedings of the Royal Society 953 
B: Biological Sciences 2020;submitted. 954 
51. King EG, Macdonald SJ, Long AD. Properties and Power of the Drosophila Synthetic Population 955 
Resource for the Routine Dissection of Complex Traits. Genetics. 2012;191(3):935-49. doi: 956 
10.1534/genetics.112.138537. 957 
52. Ioannidis J. Why most discovered true associations are inflated. Epidemiology 2008;19(5):640-8 958 
doi: 10.1097/EDE.0b013e31818131e7. 959 
53. Beavis WD, editor The power and deceit of QTL experiments: lessons from comparative QTL 960 
studies. Forty-ninth annual corn and sorghum industry research conference; 1994; Washington D.C. 961 
54. Fuller WA. Measurement error models. New York: Wiley; 1987. 962 
55. Lopez-Gallego C. Genotype-by-Environment Interactions for Seedling Establishment Across 963 
Native and Degraded-Forest Habitats in a Long-Lived Cycad. The Botanical Review. 2013;79. doi: 964 
10.1007/s12229-013-9124-9. 965 
56. Ghosal S, Quilloy FA, Casal C, Septiningsih EM, Mendioro MS, Dixit S. Trait-based mapping to 966 
identify the genetic factors underlying anaerobic germination of rice: Phenotyping, GXE, and QTL 967 
mapping. BMC Genetics. 2020;21(1):6. doi: 10.1186/s12863-020-0808-y. 968 
57. Brown JS, Venable DL. Evolutionary ecology of seed-bank annuals in temporally varying 969 
environments. The American Naturalist. 1986;127(1):31-47. 970 
58. Waser NM, Vickery RK, Price MV. Patterns of seed dispersal and population differentiation in 971 
Mimulus guttatus. Evolution. 1982; 36:753-61. 972 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/


44 
 

59. Monnahan PJ, Kelly JK. The Genomic Architecture of Flowering Time Varies Across Space and 973 
Time in Mimulus guttatus. Genetics. 2017;206(3):1621-35. doi: 10.1534/genetics.117.201483. 974 
60. Fisher R. Statistical Methods for Research Workers. . Edinburgh: Oliver and Boyd; 1925. 975 
61. GRATTEN J, PILKINGTON JG, BROWN EA, CLUTTON-BROCK TH, PEMBERTON JM, SLATE J. 976 
Selection and microevolution of coat pattern are cryptic in a wild population of sheep. Molecular 977 
Ecology. 2012;21(12):2977-90. doi: 10.1111/j.1365-294X.2012.05536.x. 978 
62. Jon E. Brommer, Lars Gustafsson, Hannu Pietiäinen, Juha Merilä. Single‐Generation Estimates of 979 
Individual Fitness as Proxies for Long‐Term Genetic Contribution. The American Naturalist. 980 
2004;163(4):505-17. doi: 10.1086/382547. PubMed PMID: 15122499. 981 
63. Mojica JP, Lee YW, Willis JH, Kelly JK. Spatially and temporally varying selection on 982 
intrapopulation quantitative trait loci for a life history trade-off in Mimulus guttatus. Molecular Ecology. 983 
2012;21(15):3718-28. doi: 10.1111/j.1365-294X.2012.05662.x. PubMed PMID: WOS:000306478800009. 984 
64. Byars SG, Huang QQ, Gray L-A, Bakshi A, Ripatti S, Abraham G, et al. Genetic loci associated with 985 
coronary artery disease harbor evidence of selection and antagonistic pleiotropy. PLOS Genetics. 986 
2017;13(6):e1006328. doi: 10.1371/journal.pgen.1006328. 987 
65. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, et al. The strength of 988 
phenotypic selection in natural populations. American Naturalist. 2001;157(3):245-61. PubMed PMID: 989 
ISI:000167301000001. 990 
66. Wu CA, Lowry DB, Cooley AM, Wright KM, Lee YW, Willis JH. Mimulus is an emerging model 991 
system for the integration of ecological and genomic studies Heredity. 2008;100:220-30. 992 
67. Holeski L, Monnahan P, Koseva B, McCool N, Lindroth RL, Kelly JK. A High-Resolution Genetic 993 
Map of Yellow Monkeyflower Identifies Chemical Defense QTLs and Recombination Rate Variation. G3: 994 
Genes|Genomes|Genetics. 2014;4(5):813-21. doi: 10.1534/g3.113.010124. 995 
68. Miller M, Dunham J, Amores A, Cresko W, Johnson E. Rapid and cost-effective polymorphism 996 
identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research. 997 
2007;17(2):240-8. 998 
69. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP Discovery and 999 
Genetic Mapping Using Sequenced RAD Markers. PLoS One. 2008;3:e3376. doi: 1000 
doi.org/10.1371/journal.pone.0003376. 1001 
70. Phillips PC. From complex traits to complex alleles. Trends in Genetics. 1999;15:6-8. 1002 
71. Natarajan C, Inoguchi N, Weber RE, Fago A, Moriyama H, Storz JF. Epistasis Among Adaptive 1003 
Mutations in Deer Mouse Hemoglobin. Science. 2013;340(6138):1324-7. doi: 10.1126/science.1236862. 1004 
72. Powell MJD. An efficient method for finding the minimum of a function of several variables 1005 
without calculating derivatives. The Computer Journal. 1964;7(2):155-62. doi: 10.1093/comjnl/7.2.155. 1006 
73. Colicchio J, Monnahan PJ, Wessinger CA, Brown K, Kern JR, Kelly JK. Individualized mating 1007 
system estimation using genomic data. Molecular Ecology Resources. 2019;n/a(n/a). doi: 10.1111/1755-1008 
0998.13094. 1009 
74. Willis JH. Partial self fertilization and inbreeding depression in two populations of Mimulus 1010 
guttatus. Heredity. 1993;71:145-54. 1011 

 1012 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.23.166736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.166736
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Author summary
	Introduction
	Results and Discussion
	A test of haplotype matching using Drosophila melanogaster

	Materials and methods

