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Abstract 22 

The SARS-CoV-2 pandemic of 2020 has mobilised scientists around the globe to research all 23 

aspects of the coronavirus virus and its infection. For fruitful and rapid investigation of viral 24 

pathomechanisms, a collaborative and interdisciplinary approach is required. Therefore, we 25 

have developed ViralLink: a systems biology workflow which reconstructs and analyses 26 

networks representing the effect of viruses on intracellular signalling. These networks trace 27 

the flow of signal from intracellular viral proteins through their human binding proteins and 28 

downstream signalling pathways, ending with transcription factors regulating genes 29 

differentially expressed upon viral exposure. In this way, the workflow provides a mechanistic 30 

insight from previously identified knowledge of virally infected cells. By default, the workflow 31 

is set up to analyse the intracellular effects of SARS-CoV-2, requiring only transcriptomics 32 

counts data as input from the user: thus, encouraging and enabling rapid multidisciplinary 33 

research. However, the wide-ranging applicability and modularity of the workflow facilitates 34 

customisation of viral context, a priori interactions and analysis methods. Through a case 35 

study of SARS-CoV-2 infected bronchial/tracheal epithelial cells, we evidence the functionality 36 

of the workflow and its ability to identify key pathways and proteins in the cellular response to 37 

infection. The application of ViralLink to different viral infections in a cell-type specific manner 38 

using different available transcriptomics datasets will uncover key mechanisms in viral 39 

pathogenesis. The workflow is available on GitHub 40 

(https://github.com/korcsmarosgroup/ViralLink) in an easily accessible Python wrapper script, 41 

or as customisable modular R and Python scripts. 42 

Author summary 43 

Collaborative and multidisciplinary science provides increased value for experimental datasets 44 

and speeds the process of discovery. Such ways of working are especially important at 45 

present due to the urgency of the SARS-CoV-2 pandemic. Here, we present a systems biology 46 

workflow which models the effect of viral proteins on the infected host cell, to aid collaborative 47 

and multidisciplinary research. Through integration of gene expression datasets with context-48 

specific and context-agnostic molecular interaction datasets, the workflow can be easily 49 

applied to different datasets as they are made available. Application to diverse SARS-CoV-2 50 

datasets will increase our understanding of the mechanistic details of the infection at a cell 51 

type specific level, aid drug target discovery and help explain the variety of clinical 52 

manifestations of the infection. 53 
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Introduction 54 

By mid-May 2020 at least 4000 scientific preprints and publications were released relating to  55 

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes 56 

(COVID-19) (Kwon 2020). This fast uptake in research efforts is vital to decrease the health 57 

and economic impacts of this new pandemic. However, many questions remain unanswered 58 

regarding the molecular processes driving host responses to this coronavirus. One key 59 

challenge to utilisation of new findings is that published datasets are mostly unlinked to each 60 

other (due to parallel efforts by multiple research groups) and not always connected to 61 

community standard resources. An integrated and reusable method to interactively capture 62 

new data and connect it to existing data sources is needed. Such a comprehensive approach 63 

that can be run regularly when relevant new data is available, will increase and update our 64 

understanding of the mechanistic details of the SARS-CoV-2 infection. Further, it will aid drug 65 

target discovery by enabling identification of high confidence mediators through which the 66 

virus is affecting host cells (Barabási et al. 2011).  Studying the effect of the virus at molecular 67 

level may explain the variety of clinical manifestations of the infection and the differences in 68 

susceptibility between different populations, and together with soon available human 69 

genomics data, could be used for identifying risk factors. 70 

 71 

Upon entry of a virus into a human cell via surface receptors, viral RNA is released and 72 

translated into proteins (Oberfeld et al. 2020). In addition to their role in direct viral replication, 73 

these proteins are able to bind to human proteins creating a host-virus interface (Gordon et 74 

al. 2020). This interaction can lead to downstream signalling changes in the host cell, either 75 

as a result of viral hijacking or through a defined viral immune response by the host cell (Alto 76 

and Orth 2012). Ultimately, this signal flow results in intracellular gene transcription changes, 77 

cell-cell signalling and systemic host responses which drive the tug-of-war between the host 78 

and the virus (Fung et al. 2020). In order to understand and control this conflict, it is necessary 79 

to study each of these levels of host response in detail, including the intracellular response of 80 

the primarily infected cell.  81 

 82 

Currently available data relating to intracellular SARS-CoV-2 infection includes human binding 83 

partners of viral proteins (Gordon et al. 2020) and transcriptomics datasets from infected cell 84 

lines/organoids (Blanco-Melo et al. 2020; Lamers et al. 2020), infected patients (Liao et al. 85 

2020; Huang et al. 2020) and other infected animals (Pfaender et al. 2020; Blanco-Melo et al. 86 

2020). Interdisciplinary and collaborative science can maximise the value of each of these 87 

datasets through data integration and comparison combined with application of different 88 

computational analysis approaches. One such computational analysis method is the utilisation 89 

of network approaches to model molecular interactions between the virus and human proteins 90 
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as well as within and between human cells (Guven-Maiorov et al. 2017). Network approaches 91 

have already been applied to study SARS-CoV-2 pathogenesis and to predict drug 92 

repurposing candidates and master regulators based on proteins in proximity to human 93 

binding proteins (which physically associate with SARS-CoV-2 proteins) (Gysi et al. 2020; 94 

Messina et al. 2020; Zhou et al. 2020; Guzzi et al. 2020). 95 

 96 

Here we present a systems biology workflow, to study the effect of viral infections on host 97 

cells. ViralLink reconstructs and analyses a causal molecular interaction network whose signal 98 

starts with the binding of an intracellular viral protein to a human protein, travels via multiple 99 

signalling pathways, and ends at the transcriptional regulation of altered genes. Subsequently, 100 

the workflow investigates the causal network using betweenness centrality measures, cluster 101 

analysis, functional overrepresentation analysis and network visualisation. Using currently 102 

available datasets from SARS-CoV-2 infected bronchial epithelial cells we demonstrate that 103 

this workflow can identify biologically relevant signalling pathways and predict key proteins for 104 

potential drug interventions. As the workflow is built in a modular, standardised and updateable 105 

fashion, it can be used easily in the future to analyse new SARS-CoV-2 related datasets (from 106 

human biopsy data, multiple tissues, etc.). 107 

Methods 108 

ViralLink workflow overview  109 

The ViralLink workflow investigates the effect of viral infection within cells by generating and 110 

analysing context-specific networks of intracellular signalling and regulatory molecular 111 

interactions. These networks link the intracellular binding of viral and human proteins to the 112 

transcriptional response of the infected cell (Figure 1). The context-specificity of the analysis 113 

is obtained through the choice of input transcriptomics datasets - it could refer to strain of virus, 114 

type of infected cell, severity of infection, age of host or any other context of interest. By 115 

default, the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring 116 

only transcriptomics counts data as input and thus encouraging and enabling rapid 117 

multidisciplinary research. However, the wide-ranging applicability and modularity of the 118 

workflow facilitates customisation of viral context, a priori interactions and analysis methods. 119 

ViralLink contains three primary stages: 1) collection and input of data; 2) reconstruction of 120 

the network; and 3) investigation of results using functional analysis, clustering, centrality 121 

measures and visualisation.  122 

 123 

 124 
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Collection and input of data 125 

Reconstruction of causal networks using ViralLink requires four separate input datasets 126 

(Figure 1): viral protein-human binding protein interactions, a priori human protein-protein 127 

interactions (PPIs), a priori human transcription factor (TF) - target gene (TG) interactions and 128 

an unnormalised counts matrix from a gene expression experiment. By default, all data except 129 

the transcriptomics counts are provided automatically. However alternative input files can be 130 

provided if desired. 131 

 132 

The default workflow uses SARS-CoV-2 protein-human binding protein interactions obtained 133 

from an affinity-purification mass spectrometry study (Gordon et al. 2020) via Intact 134 

(Hermjakob et al. 2004; Orchard et al. 2014). This data was reformatted to contain one row 135 

per molecular interaction with 2 columns of UniProt IDs: SARS-CoV-2 proteins and human 136 

binding proteins. Alternative viral-human PPIs can be provided using the same data format. 137 

The workflow assumes all viral-human interactions have an inhibiting action on the human 138 

protein, unless a third column named “sign” is present in the input file containing “+” for 139 

activatory and “-” for inhibitory interactions. In addition, data is provided with the workflow 140 

containing the gene names corresponding to each of the SARS-CoV-2 proteins, to enable 141 

easy interpretation of the reconstructed networks. 142 

 143 

For a priori human interactions, the workflow obtains and uses integrated collections of PPI 144 

and TF-TG interactions from OmniPath and DoRothEA, respectively (Türei et al. 2016; Garcia-145 

Alonso et al. 2019). These interactions are obtained using the ‘OmniPathR’ R package (Türei 146 

et al. 2016; R Core Team 2013) to download and filter signed and directed interactions. For 147 

DoRothEA, only high and medium confidence level interactions are used (confidence scores 148 

A-C).  In contrast to importing static input files, this script enables the use of up to date 149 

interaction data. Alternative interaction data can be used with the workflow provided it has the 150 

same format: specifically, it must contain source and target uniprot IDs in the columns ‘to’ and 151 

‘from’ and if the transcriptomics data uses gene symbols, the interaction data must additionally 152 

contain gene symbols in the columns ‘source_genesymbol’ and ‘target_genesymbol’. 153 

Furthermore, the interactions must be directed and signed with the sign of the interaction given 154 

in the column ‘consensus_stimulation’ where the value ‘1’ represents a stimulation and 155 

anything else represents an inhibition. 156 

 157 

The aforementioned a priori interactions are contextualised using transcriptomics data from 158 

any study of interest which compares viral infected to uninfected human cells or tissues. 159 

Correspondingly, the workflow requires unnormalised counts data from a transcriptomics 160 

experiment (containing Uniprot or gene symbols as IDs) and a corresponding mapping table 161 
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which lists the sample IDs (from the headers of the counts table) in the ‘sample_name’ column 162 

and the ‘test’ or ‘control’ status of the sample in the ‘condition’ column. This mapping table is 163 

used to carry out differential expression of a test condition (e.g. infected) compared to a control 164 

condition (e.g. uninfected). An example expression dataset and mapping table are provided 165 

with the workflow. 166 

 167 

To process the transcriptomics data, the workflow uses ‘DESeq2’ in R to normalise the counts 168 

and to carry out differential expression analysis (Love et al. 2014). Any genes passing the log2 169 

fold change and adjusted p value cutoffs, based on the provided parameters (default 1 and 170 

0.05, respectively), are classed as differentially expressed genes (DEGs). Following removal 171 

of all genes with count = 0, normalised log2 counts across all samples are fitted to a gaussian 172 

kernel (Beal 2017). All genes with expression values above mean minus three standard 173 

deviations are considered as expressed genes. Subsequently, context-specific human PPI 174 

and TF-TG interactions are generated by filtering only interactions where both interacting 175 

molecules are expressed. 176 

 177 

File paths to all input datasets and associated parameters (such as desired log2 fold change 178 

cut off) are specified in the parameters text file which is read in by the workflow. 179 

Network reconstruction 180 

The reconstructed causal network contains three layers of interactions, which are obtained, 181 

by default, from the three a priori interaction resources:  182 

● Viral proteins interacting with human binding partners: from the SARS-CoV-2 collection 183 

in the IntAct database (Hermjakob et al. 2004; Orchard et al. 2014) 184 

● Intermediary signalling protein interactions: from protein-protein interactions (PPIs) of 185 

the OmniPath collection (Türei et al. 2016) 186 

● Transcription factors (TFs) regulating differentially expressed genes: from a 187 

transcriptomics dataset of interest and the DoRothEA collection (Garcia-Alonso et al. 188 

2019) 189 

 190 

A list of all TFs targeting the differentially expressed genes are obtained from the context-191 

specific TF-TG interactions. The human binding proteins of viral proteins are connected to the 192 

listed TFs through the context-specific human PPIs using a network diffusion approach called 193 

Tied Diffusion Through Interacting Events (TieDIE) (Paull et al. 2013). As inputs for the TieDIE 194 

tool, the following information is used: (1) The signed, directed and expression based filtered 195 

PPIs is used as the input network. (2) Human proteins which are interacting partners of the 196 

viral proteins are used as the start nodes. The number of viral proteins bound to each of the 197 
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human proteins are assigned as the weights of the start nodes. (3) The TFs of the DEGs in 198 

the dataset are used as the stop nodes. The weights for each of the TFs in the set of stop 199 

nodes were calculated using the following formula (Equation 1) which considers both the log2 200 

fold change of the DEGs as well as the sign (i.e stimulatory or inhibitory) of the relationship 201 

between the TF and the DEG.  202 

 203 

             Equation 1 204 

       205 
 206 

After running TieDIE, a custom R script is used to collate all the data into a final viral-initiated 207 

intracellular signalling network (causal network), outputting an edge table representation of 208 

the network, with a node table containing additional node annotations. Starting with the 209 

interactions output from TieDIE, viral protein-human binding protein interactions are added for 210 

each of the present human binding proteins. Similarly, TF-TG interactions (where the TG is a 211 

DEG) are added for each of the present TFs, creating a full network with three interaction 212 

types: SARS-CoV-2 protein-human binding protein, PPI and TF-DEG. All nodes of the network 213 

are added to a node table with annotations including heat values (output from TieDIE), Entrez 214 

IDs (obtained in R using the ‘org.Hs.eg.db’ package), gene symbols (obtained from UniProt 215 

(UniProt Consortium 2019)) and log2 fold change values from the differential expression 216 

analysis.  217 

Network investigation 218 

Following reconstruction of the causal network, ViralLink provides functionality to investigate 219 

the results using functional analysis, clustering, centrality measures and visualisation. 220 

Centrality measures  221 

To identify key molecules in the reconstructed network ViralLink uses a betweenness centrality 222 

measure - calculating the global importance of a node (in this case a protein) based on the 223 

number of shortest paths which pass through them when connecting all node pairs in the 224 

network (Koschützki and Schreiber 2008). Nodes with high betweenness centrality play a key 225 

role in transduction of signals through the network, and here represent proteins with biological 226 

importance in the cellular response to viral infection. Betweenness centrality is calculated for 227 

each node in the causal network using the R package ‘igraph’ and output as an annotation in 228 
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the node table (Csárdi and Nepusz 2006). Alternative centrality measures are available using 229 

the ‘igraph’ package and can be integrated into the workflow by the user if required. 230 

Cluster analysis 231 

Clustering algorithms are commonly used in network biology to investigate the complex 232 

structure of molecular interaction networks by extracting groups of densely connected 233 

molecules (Bader and Hogue 2003; Brohée et al. 2008). Depending on the number of 234 

molecules included, a cluster can represent a molecular complex or a group of molecules 235 

which function closely with each other. Cluster analysis can identify subsets of a large network 236 

with specific functions and indicate molecules that may have functional redundancy with each 237 

other - potentially having implications for drug targeting. ViralLink employs the MCODE 238 

clustering method to identify groups of densely connected nodes in PPI networks (Bader and 239 

Hogue 2003). To carry out this analysis, ViralLink requires a local version of the Cytoscape 240 

software to be open (Shannon et al. 2003; Su et al. 2014), which is controlled programmatically 241 

using the R package ‘RCy3’ with the Cytoscape ‘MCODE’ app (v1.6.1) (Gustavsen et al. 242 

2019). MCODE is run using default parameters: degree cut off =2, haircut=TRUE, node score 243 

cut off=0.2, k-core=2, max depth=100.  This analysis outputs the data as node annotations in 244 

the node table, which are used for the functional analysis and visualisation steps of the 245 

workflow. If Cytoscape is not running, this step of the workflow will be skipped. 246 

Functional analysis 247 

To further investigate important cellular functions and signalling pathways directly affected by 248 

the virus of interest, ViralLink carries out functional overrepresentation analysis on different 249 

parts of the causal network: 250 

1. The DEGs of the network 251 

2. The upstream human proteins (including human binding proteins, intermediary 252 

signalling proteins and TFs) 253 

3. Identified clusters (only those with ≥ 15 nodes are investigated) 254 

 255 

Functional overrepresentation analysis is carried out in R using packages ‘ClusterProfiler’ (for 256 

Gene Ontology annotations (Ashburner et al. 2000)) and ‘ReactomePA’ (for Reactome 257 

annotations (Yu et al. 2012; Yu and He 2016; Fabregat et al. 2018). For analysis of the 258 

upstream human signalling proteins and analysis of clusters, all proteins in the context-specific 259 

human PPI interactions are used as the background.  For analysis of the DEGs, all target 260 

genes in the context-specific human TF-TG interactions are used as the background. For 261 

Gene Ontology (Biological Process) analysis (except when running the compareCluster 262 
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command), the ‘simplify’ command is used (cutoff=0.1, select_fun=min) to remove redundant 263 

functions. All functions with q val ≤ 0.05 are considered significantly overrepresented.  264 

 265 

An additional R script is provided alongside the workflow which creates subnetworks of the  266 

causal network based on functions of interest. These function-specific subnetworks highlight 267 

how specific signalling pathways in the infected cell reach (and subsequently affect) specific 268 

functions of the DEGs. For example, the subnetwork could be created to show how viral 269 

proteins can affect different host toll-like receptor pathways, and how these pathways can 270 

ultimately affect DEGs associated with interleukins. In this network the DEG nodes would be 271 

replaced with nodes representing the interleukin functions (which must be overrepresented 272 

based on the functional analysis). This script requires the output files from the functional 273 

analysis, the node and edge tables of the causal network and a file of all Uniprot IDs 274 

associated with all Reactome functions (which is provided with ViralLink, following download 275 

from the Reactome website in April 2020). In addition, the script requires a list of 276 

overrepresented DEG functions (Reactome) and a list of upstream signalling functions 277 

(Reactome) to visualise. The script outputs an edge table, a node table and a Cytoscape file 278 

(if Cytoscape is open locally at the time of running the script). 279 

Visualisation 280 

Data visualisation is often an important part of biological network interpretation, providing new 281 

insights into the data and visually conveying analysis results (Pavlopoulos et al. 2008). As 282 

such, ViralLink has the capability to import reconstructed networks into the open-source 283 

Cytoscape network visualisation software (Shannon et al. 2003; Su et al. 2014). This 284 

functionality requires that the user has Cytoscape installed and open locally. Specifically, the 285 

workflow employs the ‘RCy3’ R package to interact with Cytoscape programmatically, 286 

importing the node and edge tables to create network visualisations and saving the data as a 287 

‘.cys’ file. The causal network, the network clusters (where containing ≥ 15 nodes) and the 288 

function-specific networks are visualised in this way. If calculated previously, the causal 289 

network nodes are coloured based on their betweenness centrality, however further style and 290 

layout customisation must be carried out by the user directly based on the data. 291 

Implementation 292 

The workflow consists of modular R and Python scripts which can be run separately or through 293 

the provided Python wrapper script. If running for the study of SARS-CoV-2, the only required 294 

input files are related to the transcriptomics data of interest: a raw counts table (using gene 295 

symbols or UniProt protein IDs) and a two-column metadata table specifying test and control 296 

sample IDs. One further script is provided to generate function-specific networks. This script 297 
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is not included in the wrapper because it requires the user to specify functions of interest from 298 

the output of the functional analysis. To run everything, it is necessary that the user has R, 299 

Python3 and Cytoscape installed. The only file the user needs to edit is the parameters text 300 

file where input file paths and parameters are specified. All scripts, default input files and 301 

details of how to run the scripts are freely accessible on GitHub 302 

(https://github.com/korcsmarosgroup/ViralLink). 303 

Use case 304 

To demonstrate the application of this workflow for the study of SARS-CoV-2, we applied it to 305 

a published transcriptomics dataset. We downloaded raw counts tables from a transcriptomics 306 

study of SARS-CoV-2 infected (MOI 2, 24 hour incubation) NHBE cells (Normal Human 307 

Bronchial/tracheal Epithelial cell line) with uninfected controls (Blanco-Melo et al. 2020) via 308 

Gene Expression Omnibus (accession GSE147507) (Edgar et al. 2002; Barrett et al. 2013). 309 

OmniPath and DoRothEA (v2, A-C) were downloaded on 15/04/2020. Any genes with log2 310 

fold change ≥ |0.5| and adjusted p value ≤ 0.05 were classed as differentially expressed. All 311 

networks were visualised in Cytoscape (v3.7.2). 312 

Results 313 

Use case: SARS-CoV-2 infection of lung cells  314 

To demonstrate the application of this workflow for the study of SARS-CoV-2, we created 315 

intracellular signalling networks of NHBE cells (from Normal Human Bronchial/tracheal 316 

Epithelial cell lines) upon infection with SARS-CoV-2 based on data published by Blanco Melo 317 

et al. (Blanco-Melo et al. 2020) and viral-human binding protein interactions published by 318 

Gordon et al. (Gordon et al. 2020). The resulting causal network contains 804 nodes 319 

(molecules) and 5423 interactions (Figure 2A, Supplementary Tables 1-2, Supplementary File 320 

1). The 10 most central proteins of the reconstructed causal network (based on betweenness 321 

centrality) are involved in a wide range of cellular functions (Figure 2B). Taken together these 322 

proteins highlight the propensity for SARS-CoV-2 to affect cell proliferation, apoptosis, cell 323 

adhesion, exocytosis and proinflammatory immune responses. These functions are influenced 324 

through multiple cellular pathways, most notably MAPK/ERK and PI3K/AKT signalling 325 

pathways. 326 

 327 

 328 

 329 
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 330 

Functional overrepresentation analysis of the causal network identified an enrichment of 331 

interleukin and interferon related functions among the network DEGs, in line with previously 332 

published findings (Supplementary Figure 1, Supplementary File 2) (Zhang et al. 2020; Chua 333 

et al. 2020; Huang et al. 2020). Overrepresented functions and pathways of the upstream 334 

signalling proteins (human binding proteins, intermediary signalling proteins and TFs) included 335 

innate immunity-related functions, platelet signaling, PI3K/AKT signalling, MAPK activation, 336 

estrogen receptor-mediated signalling, senescence and a number of growth factor receptor-337 

associated functions (such as VEGF signalling, receptor tyrosine kinases, stem cell growth 338 

factor signalling (SCF-KIT) and neurotrophin receptor signaling). Therefore, we show that this 339 

analysis highlights additional pathways through which SARS-CoV-2 could be affecting the lung 340 

epithelial cells, which cannot be identified by looking at the transcriptomic results in isolation. 341 

 342 

Based on functional overrepresentation analysis, we created a function-specific network by 343 

sub setting the causal network. This visualisation was used to further explore the mechanisms 344 

of how specific signalling pathways are affecting the DEGs (Supplementary Figure 2A, 345 

Supplementary File 3). Specifically, we generated an innate-immunity associated subnetwork 346 

containing all upstream human signalling proteins associated with Reactome functions 347 

cytokine signalling in immune system, signaling by interleukins and MyD88-independent TLR4 348 

cascade and all overrepresented functions of the DEGs (in place of the DEG nodes). These 349 

pathways contain 9/10 of the top betweenness centrality nodes (all except RHOA), evidencing 350 

the centrality and importance of the innate immune response to viral infection. Inspecting the 351 

TF layer of this immune subnetwork, we find a number of key TFs including STAT proteins (3 352 

and 4), IRF proteins (1 and 5) and NFKB-related proteins (NFKB1, NFKBIA). 353 

 354 

Finally, we evidenced the application of MCODE clustering analysis to using the reconstructed 355 

SARS-CoV-2-infected NHBE cell causal network. We identified four clusters containing 15 or 356 

more nodes, making up 19% of the network (154/804) (Supplementary Figure 2B, 357 

Supplementary Table 2, Supplementary File 1). Assuringly, 9/10 of the top betweenness 358 

centrality nodes were included in these four clusters, further confirming the high connectivity 359 

and importance of these nodes in the causal network. Functional overrepresentation analysis 360 

of the cluster nodes highlighted a functional similarity between all four of the clusters 361 

(Supplementary Figure C-D, Supplementary File 2). Likely this is due to the high number of 362 

inter-cluster molecular interactions and because of the functional similarities between the top 363 

central nodes. 364 

 365 

Collectively, we show that our systems biology workflow, ViralLink, reconstructs a functionally 366 

relevant intracellular signalling network affected by SARS-CoV-2 infection. Investigation of the 367 
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networks through functional analysis, centrality measures and cluster analysis, combined with 368 

network visualisations, enables detailed study of the key proteins and pathways involved in 369 

signal transduction.   370 
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Discussion 371 

Infection by SARS-CoV-2 can cause a complex and systemic response by the human body. 372 

As such, a better mechanistic understanding of the effects of SARS-CoV-2 will aid 373 

identification of effective drug treatments and help to explain the differences in susceptibilities 374 

across different populations (Kirby 2020). This understanding can be gained using cross-375 

disciplinary approaches which combine ‘omics data generation, computational  systems 376 

biology and validatory web lab experiments (Korcsmaros et al. 2017). Here we present a 377 

computational workflow that can be used to model the cellular response to infection by 378 

integrating knowledge of human binding proteins of viral proteins with the transcriptional 379 

response of a cell/cell type. Whilst set up primarily to run analyses based on SARS-CoV-2, 380 

ViralLink can be applied to any viral infection, provided data is available describing possible 381 

interactions between the viral proteins and human proteins.  382 

 383 

ViralLink builds on our previously published resource MicrobioLink, which reconstructs 384 

networks representing the effect of extracellular and intracellular microbial proteins on cellular 385 

processes (Andrighetti et al. 2020). Differing from MicrobioLink, ViralLink inputs a 386 

predetermined list of viral-host PPIs and focuses only on pathways ending in transcriptional 387 

regulation: thereby reducing the complexity of the workflow (for accessibility and speed 388 

purposes) and increasing its predictive confidence. Furthermore, ViralLink extends the 389 

functionality of MicrobioLink with more advanced network analysis (functional enrichment, 390 

clustering and centrality measures) and visualisation options. 391 

 392 

By exploiting previously collated and comprehensive collections of molecular interactions 393 

(Türei et al. 2016; Garcia-Alonso et al. 2019), ViralLink predicts how signal flows from the 394 

initial interaction with a viral protein or protein fragment to the ultimate transcriptional changes 395 

induced by the virus. Through mapping the direct intracellular effect of viral infection (using a 396 

network approach), this workflow enables further investigation into specific signalling 397 

pathways and transcription factors which play a key role in signal transduction. Signalling 398 

pathways are primarily regulated through post-translational modifications and thus would not 399 

be identified using transcriptomics datasets (Antebi et al. 2017). In addition, the resulting 400 

intracellular networks allow identification of differentially regulated genes that are affected as 401 

a direct result of viral recognition by protein-protein signalling pathways, rather than by 402 

secondary signals such as elevated cytokine levels. This permits a more focused analysis of 403 

possible drug targets and adds to the understanding of viral pathomechanisms. Functional 404 

analysis and visualisation methods included in the workflow are vital for interpretation of the 405 

generated intracellular networks, enabling detailed investigation of key proteins and signalling 406 

pathways. 407 
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 408 

Due to the modularity of  the workflow, it can be easily adjusted or extended - different diffusion 409 

and propagation algorithms, such as HotNet2 (Leiserson et al. 2015; Cowen et al. 2017), could 410 

be implemented as required. The implemented diffusion tool, TieDIE, adds mechanistic value 411 

by accounting for local causality (e.g. sign) but, on the other hand, has a reduced possible set 412 

of input a priori interactions. If desired, a diffusion tool which does not need signed a priori 413 

interactions can be implemented to increase the input dataset size. Alternatively, a different 414 

method, such as an integer linear programming approach which identifies paths based on an 415 

optimisation problem (as implemented in CARNIVAL), could be used for network 416 

reconstruction (Liu et al. 2019). In addition, integration of CARNIVAL could extend the 417 

workflow to permit network reconstruction without supplying upstream perturbations (in this 418 

case the viral-host protein interactions). Whilst not currently integrated due to data availability 419 

issues, the addition of phosphoproteomics data to the pathway propagation methods could 420 

improve the prediction of active pathways (Dugourd et al. 2020) Alternatively, methods to 421 

predict protein activity based on transcriptional signatures, such as VIPER and PROGENy 422 

(Alvarez et al. 2016; Schubert et al. 2018) could be added to the workflow in addition to 423 

network diffusion methods to increase the confidence of pathway predictions. Finally, 424 

extension of the network to include additional regulatory molecule types (e.g. miRNAs) or to 425 

study non-human hosts, could uncover further mechanisms by which SARS-CoV-2 can affect 426 

host cells. 427 

 428 

Accessible through GitHub, the workflow requires R and Python3 to be installed (and 429 

Cytoscape for clustering and visualisation), however only a limited programming ability is 430 

required to run the code. All code is wrapped into a Python script with a separate file where 431 

all input file paths and parameters are specified. At a minimum, only two user specified input 432 

files are required: a raw counts table from a transcriptomics study (using gene symbols or 433 

UniProt protein IDs) and a two-column metadata table specifying test and control sample IDs. 434 

All other files are provided or acquired directly within the workflow - but can be changed by 435 

the user if required. However, one limitation of the current workflow is that creation of 436 

Cytoscape visualisations and clustering analysis require the user to install and open the 437 

Cytoscape app. If this is not possible, for example because the scripts are not being run on a 438 

machine with a graphical interface, these steps are skipped. Furthermore, only basic 439 

visualisation is possible programmatically, due to challenges applying one visualisation 440 

strategy to all possible output networks, especially with regard to the function-based networks. 441 

 442 

In addition to accessibility through a default emphasis on SARS-CoV-2, a key strength of this 443 

workflow is the ability to use different input datasets: including different a priori molecular 444 

interactions, viral-human binding protein interactions and expressed/differentially expressed 445 
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gene lists. This allows extensive customisation and permits rapid implementation to the most 446 

cutting-edge data soon after publication. Running the workflow across different 447 

transcriptomics datasets will allow comparison of intracellular viral responses between 448 

different cell types, different species and across different conditions (such as severe vs 449 

asymptomatic infection). For example, application of the workflow to transcriptomics data from 450 

specific immune cell-types, such as macrophages, will likely uncover different host affected 451 

signalling pathways and key TFs based on the infected cell-type. This, in turn, could increase 452 

our understanding of the role of different immune populations in fighting the infection. In 453 

addition, the workflow can be run on data from other SARS-CoV-2 strains when and if they 454 

emerge, thereby aiding comparisons of mechanisms of action between the strains. 455 

 456 

To evidence the use of this workflow, we applied it to study the effect of SARS-CoV-2 infection 457 

in lung epithelial (NHBE) cells using transcriptomics data published by Blanco-Melo et al. 458 

(Blanco-Melo et al. 2020).  In the resulting causal network, DEGs directly affected by SARS-459 

CoV-2 initiated signalling are associated with functions that are known responses to SARS-460 

CoV-2 and other viral infections (Cao 2020; Shi et al. 2020; Sallard et al. 2020; Arvanitakis et 461 

al. 1998). Upstream of these affected genes we identified a number of potentially important 462 

signalling pathways relating to classical viral-immune responses, cell survival and cytoskeletal 463 

rearrangements and cell adhesion. Previous investigation of the first SARS coronavirus 464 

(SARS-CoV) identified an inhibition of cell proliferation and an increase in apoptosis regulated 465 

to PI3K/AKT signalling (Mizutani et al. 2006; Tsoi et al. 2014). Our network of SARS-CoV-2-466 

initiated intracellular signalling suggests that the PI3K/AKT signalling and the AKT1 protein 467 

itself are key mediators of SARS-CoV-2 initiated signal transduction and that apoptosis and 468 

cell proliferation pathways are affected by SARS-CoV-2, thus highlighting similarities between 469 

the two viruses. However, further experimentation and/or data curation is required to confirm 470 

the direction of change of specific pathways (up- or downregulated) based on the results of 471 

the presented workflow. Together our results indicate that SARS-CoV-2 can affect NHBE cells 472 

through a variety of signalling pathways which have been previously associated with similar 473 

viruses, including growth factor signalling, MAPK/ERK signalling and PI3K/AKT signalling. 474 

Furthermore, centrality measures and cluster analysis identified proteins which likely play a 475 

key role in transduction of these signals, and could be good targets for drug treatments. 476 

 477 

Several other network reconstruction methods exist which could be and have been applied to 478 

study SARS-CoV-2 infections. For example Messina et al. and Gysi et al. (Messina et al. 2020; 479 

Gysi et al. 2020) use diffusion algorithms and other similar methods to investigate proteins in 480 

close proximity to human binding proteins based on PPI interactions and gene co-expression 481 

networks. Our workflow builds on these approaches by linking viral proteins to DEGs. Through 482 

this method we can observe which signalling pathways mediate the effect of the virus on 483 
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cellular transcription levels, creating a systems level view of cellular changes as a result of the 484 

virus. Using the functional analysis methods and network visualisation capabilities of the 485 

workflow, it is possible to predict which viral proteins and host signalling pathways can affect 486 

specific cellular functions, enabling more focused identification of drug targets. In addition to 487 

protein mediators, this method describes TFs which are involved in the cellular response and 488 

identifies which DEGs can be affected as a direct result of viral proteins hijacking host 489 

signalling and which are affected through a different mechanism. In addition to the presented 490 

workflow, at least one other method has been used to reconstruct SARS-CoV-2-initiated 491 

intracellular signalling networks (Ding et al. 2020) corroborating the benefits of such analysis 492 

methods. Differing from the here presented approach, this work uses an extended version of 493 

the Signaling Dynamic Regulatory Events Miner method to reconstruct the networks, resulting 494 

in a more mathematically complex but computationally heavy analysis (Gitter et al. 2013). 495 

Furthermore, the workflow by Ding et al. is a less reusable and accessible workflow because 496 

it was designed for a specific analysis.  497 

 498 

In conclusion, ViralLink is an easily accessible, reproducible and scalable systems biology 499 

workflow to reconstruct and analyse molecular interaction networks representing the effect of 500 

the viruses on intracellular signalling. We believe it is the first available integrative workflow 501 

for analysing the downstream effects of viral proteins using viral host interactions and host 502 

response data. Application of this workflow to study COVID-19 based on a wide variety of 503 

conditions and datasets will uncover mechanistic details about SARS-CoV-2 infection of 504 

different cell types, providing valuable predictions for wet-lab and clinical validation.  505 

 506 

 507 
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Figure and Tables 527 

Figure 1: ViralLink workflow overview. 528 

 529 
Figure 2. Causal network of SARS-CoV-2-infected NHBE cells. A) Signalling flows from 530 

left to right: SARS-CoV-2 proteins/protein fragments (red triangles), human binding proteins 531 

(yellow parallelograms), intermediary signalling proteins (blue circles), transcription factors 532 

(green rectangles) and differentially expressed genes (grey rhombuses). Where a human 533 

protein/gene is acting in multiple layers of the network, it is only visualised once based on the 534 

following priority: DEGs, binding proteins, TFs, signalling proteins. B) Results of betweenness 535 

centrality analysis, which measures the global importance of nodes (molecules) in the network. 536 

Nodes coloured based on their betweenness centrality parameter, with the gene names of the 537 

10 highest scoring (most central) nodes overlaid. DEGs have log2 fold change ≥ |0.5| and 538 

adjusted p value ≤ 0.05. 539 

 540 

 541 

Supplementary Figure 1. Overrepresented Reactome functions (A, B) and Gene 542 

Ontology Biological Processes (C, D) of the causal network of SARS-CoV-2 infected 543 

NHBE cells. A) Top 10 overrepresented Reactome functions of upstream signalling proteins 544 

(including human binding proteins, intermediary signalling proteins and TFs) B) Top 10 545 

overrepresented Reactome functions of network DEGs C) Top 10 overrepresented GO-BP 546 

functions of upstream signalling proteins (including human binding proteins, intermediary 547 

signalling proteins and TFs) D) All overrepresented GO-BP functions of network DEGs (q 548 

value ≤ 0.05). DEGs have log2 fold change ≥ |0.5| and adjusted p value ≤ 0.05. 549 

 550 

Supplementary Figure 2: Function-specific network SARS-CoV-2- infected NHBE cells 551 

and cluster analysis on SARS-CoV-2-infected NHBE causal network. A) Function-specific 552 

subnetwork containing upstream signalling proteins related to the top overrepresented (q 553 

value ≤ 0.05) innate immunity-related Reactome functions (cytokine signalling in immune 554 

system, signaling by interleukins and MyD88-independent TLR4 cascade) and all 555 

overrepresented functions of the DEGs (in place of the DEG nodes). Layers of the network 556 

and node shapes same as in Figure 2. DEGs = differentially expressed genes. DEGs have 557 

log2 fold change ≥ |0.5| and adjusted p value ≤ 0.05. See Supplementary File 3. B) Cluster 558 

analysis results where clusters have ≥ 15 nodes. Position of clustered proteins shown within 559 

the causal network and to the right as isolated clusters. Nodes coloured by their cluster 560 

membership (black=unclustered, green=cluster 1, yellow=cluster 2, pink=cluster 3, 561 

blue=cluster 4). Presence of top 10 betweenness centrality nodes in the clusters is indicated 562 

to the right of the clusters. B) Gene Ontology (GO) overrepresentation analysis of the clusters. 563 
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Top five GO terms (by adjusted p value) displayed for each cluster. C) Reactome 564 

overrepresentation analysis of the clusters. Top five Reactome terms (by adjusted p value) 565 

displayed for each cluster. See Supplementary Table 2 and Supplementary File 2. 566 

 567 

Supplementary Table 1: Causal network of SARS-CoV-2-infected NHBE cell. 568 

 569 

Supplementary Table 2: Node annotations for causal network of SARS-CoV-2-infected 570 

NHBE cell. Includes betweenness centrality measures and clusters identified by MCODE. 571 

MCODE clusters 1,3,4 and 5 correspond to the clusters in the manuscript labelled 1,2,3 and 572 

4 respectively. Clusters 2 and 6 were excluded due to size. 573 

 574 

Supplementary File 1: Causal network of SARS-CoV-2-infected NHBE cell, Cytoscape 575 

file. 576 

Supplementary File 2: Functional overrepresentation results. Reactome and Gene 577 

Ontology Biological Processes (q value <= 0.05) for differentially expressed genes (DEGs), 578 

protein-protein (PPI) interaction nodes (human binding proteins, signalling proteins and 579 

transcription factors) and the clusters of the causal network of SARS-CoV-2-infected NHBE 580 

cell. 581 

Supplementary File 3: Function-specific network of SARS-CoV-2- infected NHBE cells, 582 

Cytoscape file.  583 
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