New Results
IMIX: A multivariate mixture model approach to integrative analysis of multiple types of omics data
View ORCID ProfileZiqiao Wang, View ORCID ProfilePeng Wei
doi: https://doi.org/10.1101/2020.06.23.167312
Ziqiao Wang
1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
2The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
Peng Wei
1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

- Supplementary Materials[supplements/167312_file02.pdf]
Posted June 24, 2020.
IMIX: A multivariate mixture model approach to integrative analysis of multiple types of omics data
Ziqiao Wang, Peng Wei
bioRxiv 2020.06.23.167312; doi: https://doi.org/10.1101/2020.06.23.167312
Subject Area
Subject Areas
- Biochemistry (4992)
- Bioengineering (3495)
- Bioinformatics (15277)
- Biophysics (6923)
- Cancer Biology (5420)
- Cell Biology (7766)
- Clinical Trials (138)
- Developmental Biology (4553)
- Ecology (7179)
- Epidemiology (2059)
- Evolutionary Biology (10257)
- Genetics (7528)
- Genomics (9823)
- Immunology (4894)
- Microbiology (13290)
- Molecular Biology (5163)
- Neuroscience (29562)
- Paleontology (203)
- Pathology (842)
- Pharmacology and Toxicology (1470)
- Physiology (2151)
- Plant Biology (4776)
- Synthetic Biology (1341)
- Systems Biology (4021)
- Zoology (770)