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Abstract

Gene regulatory network inference is instrumental to the discovery of genetic
mechanisms driving diverse diseases, including cancer. Here, we present a theoret-
ical framework for PANDA, an established method for gene regulatory network
inference. PANDA is based on iterative message passing updates that resemble the
gradient descent of an optimization problem, OTTER, which can be interpreted as
relaxed inexact graph matching between a gene-gene co-expression and a protein-
protein interaction matrix. The solutions of OTTER can be derived explicitly
and inspire an alternative spectral algorithm, for which we can provide network
recovery guarantees. We compare different solution approaches of OTTER to
other inference methods using three biological data sets, which we make publicly
available to offer a new application venue for relaxed graph matching in gene
regulatory network inference. We find that using modern gradient descent methods
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with superior convergence properties solving OTTER outperforms state-of-the-art
gene regulatory network inference methods in predicting binding of transcription
factors to regulatory regions.

1 Introduction

Next generation genome sequencing technology has revolutionized genetic research and provides
data at an unprecedented scale. This progress facilitates large, genome-scale studies which provide
new insights into gene regulation, including the control of protein production through the expression
of genes. Proteins influence higher level cellular functions, which are often altered during the
development and progression of different diseases, including cancer. To gain an understanding of
the gene regulatory mechanisms perturbed by a disease, it is common practice to infer and compare
associated gene regulatory networks (GRNs) [20, 22, 26, 34]. In many cases, these networks are
weighted, bipartite, and have a representation as matrix W . W consist of two types of nodes –
transcription factors (TFs) and genes. A TF is a protein that can bind to the DNA in the vicinity of a
gene and regulate its expression, which constitutes a link in the gene regulatory network, see Fig. 1.
Gene expression often leads to the production of associated proteins (including TFs) that can interact,
form higher-order protein complexes, regulate genes, etc. Possible interactions of such proteins are
studied in detail and are commonly summarized in a known matrix P . Also data on gene expression
is widely accessible but is context specific, i.e. it depends on the tissue type, disease, etc. Based on
this data, we can define a gene-gene co-expression matrix C. A more detailed explanation of gene
regulation is given in the supplement. We also recommend the review article by Todeschini et al.
[30]).

Our main goal is to infer a gene regulatory matrix W given the two matrices P and C. We pose this
as a non-convex optimization problem, OTTER (Optimize to Estimate Regulation). It is related to
relaxed inexact graph matching, which seeks agreement between two graphs (that are represented by
matrices like P and C). The gene regulatory matrix W could be seen as relaxed permutation matrix
that matches vertices in P and C. Similarly to graph matching, OTTER is theoretically tractable
but the solutions are nonunique, which explains in part why GRN inference is challenging. We
characterize the solution space and propose two distinct approaches for model selection, a spectral
approach and gradient descent. For both, we provide theoretical network recovery guarantees. While
the spectral method is robust to small noise, gradient descent is more reliable in higher noise settings
and outperforms state-of-the-art gene regulatory network inference techniques.

Contributions 1) We pose a novel optimization problem for gene regulatory network inference,
OTTER, which is analytically tractable. 2) We gain insights into a state-of-the-art GRN inference
method, PANDA [12], as OTTER gradient descent resembles the related message passing equations.
3) We characterize OTTER’s solution space and derive a spectral algorithm on this basis, for which we
give network recovery guarantees. 4) We solve the gradient flow dynamics associated with gradient
descent for OTTER. 5) We draw a connection from OTTER to relaxed graph matching and open a
new application area for related algorithms. 6) OTTER gradient descent outperforms the current state
of the art in GRN inference on three challenging biological data sets related to cancer. 7) We make
the processed data publicly available to ease the use for researchers without a genetics background
and to foster furthter innovation in relaxed graph matching and GRN inference.

Related work The OTTER objective is inspired by a state-of-the-art GRN inference method,
PANDA (Passing Attributes between Networks for Data Assimilation) [12]. PANDA integrates
multiple data sources through a message passing approach, which we find resembles the gradient
descent of OTTER. A derivation is given in the supplement. PANDA has been used to investigate
gene regulatory relationships in both tissue specific [28] as well as several disease contexts, including
chronic obstructive pulmonary disease [20], asthma [26], beta cell differentiation [34], and colon
cancer [22]. OTTER can be seen as a theoretically tractable simplification of PANDA, which is
amenable to modern optimization techniques and draws connections to graph matching.

Graph matching [32] has strong theoretical foundations [16, 3] that can benefit a deeper understanding
of OTTER and vice versa. In particular, the quadratic assignment problem (QAP) [1] and its variants
[24] have a direct link to OTTER and can support similar biological theory. Graph matching has broad
applications in computer science ranging from machine learning [7], pattern matching [36], vision
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Figure 1: Gene regulation. A. Transcription factors (TFs) are represented by green, blue, and yellow
objects that bind to the genome (gray band) in vicinity of the start site of a gene (black arrow) to
regulate its expression. B. Representation of A as bipartite gene regulatory network.

[4, 35], and protein network alignment [27] to social network analysis [8], but has not been applied
to gene regulatory network inference to the best of our knowledge. As we show, simple relaxed
graph matching techniques outperform established GRN inference methods, which are detailed in the
experiment section (Sec. 4).

2 Theoretical framework

Our goal is to learn a bipartite and weighted gene regulatory network which we represent as a matrix
W ∈ Rnp×nc . An entry wij indicates whether TF protein i binds to a region of the DNA that is
associated with gene j and has evidence that it regulates that gene. A larger weight wij is assumed to
be associated with a higher probability of binding. We have np TFs and nc genes, where the number
of genes nc is much larger (np � nc). We assume that we observe only squares of W , which are
given as symmetric matrices P ∈ Rnp×np (the protein-protein interaction matrix) and C ∈ Rnc×nc

(the gene-gene co-expression matrix). Thus, W explains protein interactions as WWT ≈ P and gene
co-expression as WTW ≈ C. We formulate this reasoning as the following optimization problem:

min
W∈Rnp×np

f(W ) with f(W) =
(1− λ)

4
‖WWT − P‖2 +

λ

4
‖WTW − C‖2 +

γ

2
‖W‖2, (1)

which we call OTTER. λ ∈ [0, 1] denotes a tuning parameter that moderates the influence of P versus
C, and γ corresponds to a potential regularization. In principle, we could choose any matrix norm
but limit our following discussion to the Frobenius norm ‖A‖2 :=

∑n
i=1

∑m
j=1 a

2
ij = tr(ATA) for

a matrix A = (aij). For this choice, gradient descent resembles most closely the related message
passing equations of PANDA and we can derive the corresponding solutions.

These solutions depend on the spectral decomposition of P = UpDpU
T
p and C = VcDcV

T
c , which

exist with respect to orthogonal Up and Vc, as P and C are symmetric. Otherwise, the same results
hold for the spectral decomposition of (P + PT )/2 and (C + CT )/2. Dp and Dc are diagonal
matrices containing the eigenvalues of the respective matrix. In a slight abuse of notation, we denote
with Dp a matrix Dp ∈ Rnp×np and, if convenient, a matrix Dp ∈ Rnc×nc , which is padded with
zeros accordingly. Furthermore, let M [np] = (mij)i≤np,j≤np

denote a submatrix of a larger matrix
M with dimension np × np. Without loss of generality, we assume that the eigenvalues dp,ii of P
are indexed in descending order; dp,ii ≥ dp,jj for i < j. For C however, we require a good matching
with P . We therefore assume implicitly that the distance of Dc to Dp is minimized with respect
to permutations of the eigenvalues of C, that is ‖Dc −Dp‖2 = minπ∈P ‖Dc,π −Dp‖2, where P
denotes the set of permutations of {1, · · · , nc} and Dc,π the corresponding ordering of eigenvalues
on the diagonal. If Dp and Dc show little discrepancy, this will result in the eigenvalues of C being
in descending order as well. Note that ∆ := D

[np]
c −Dp measures the discrepancy in our biological

hypothesis from the start. Usually, we can further assume that P and C are positive semi-definite so
that dii ≥ 0, meaning that our model is specified well enough such that C and P have roots. Based
on this, we can characterize the solution space S in the general case.
Theorem 1. For given P ∈ Rnp×np with P = PT and C ∈ Rnc×nc with C = CT , for any spectral
decomposition P = UpDpU

T
p and C = VcDcV

T
c , λ ∈ [0, 1], the minimization problem (1) has

solutions W ∗ ∈ S with singular value decomposition W ∗ = UpDwV
T
c , where

dw,ii =
√

max ((1− λ)dp,ii + λdc,ii − γ, 0) (2)

for i ≤ np. For dw,ii = 0, the corresponding columns of Uw and Vw are not restricted to the
eigenvectors of P and C. The eigenvalues of C are ordered such that Dc = Dc,π, where the
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permutation solves the minimization problem

π = argminπ′∈P
λ(1− λ)

2
‖Dp −D

[np]
c,π′‖

2 − λ

2
‖D[np]

c,π′‖
2 + (1− λ)γ tr

(
D

[np]
c,π′

)
, (3)

For ∆ := D
[np]
c −Dp, we further assume that

1

λ2

(
‖P‖2 +

1

np
tr (P )

2

)
+

1

np
(tr(∆))

2
> ‖∆‖2. (4)

Condition (4) is usually met and it is a minor technicality to exclude alternative global minima of
Objective (1) that defy our intuition. The nature of these alternatives is discussed in detail in the proof
of the Theorem in the supplement.

According to Thm. 1, OTTER (1) has at least 2np different solutions. Each column u:i of Up has
two optional signs that do not alter the spectral decomposition of P but can lead to a different W ∗.
The same applies to columns v:i of Vc. Only the product of corresponding columns (u:i and v:,i)
determines the respective solution W ∗, as we have w∗ij =

∑
k dw,kkuikvjk. This leaves us with 2np

alternatives. If the spectra are not simple, such that some eigenspaces have multiple choices of basis
functions, we have additional degrees of freedom in constructing the solutions.

As a consequence, we face a model selection problem and require additional information to make an
informed decision. Indeed, PANDA takes as an additional input an initial guess of a gene regulatory
matrix W0 ∈ Rnp×nc , which is typically based on data from a scan of the genome sequence using
known transcription factor binding motifs. Assuming that W0 provides good evidence, our first
proposal selects the closest solution to W0 using a spectral approach.

2.1 A spectral method for solving OTTER

For additional evidence W0, we turn problem (1) into

min
W∈S

‖W −W0‖2 = min
ds,ii∈{−1,1}

‖DwDs − UTp W0Vc‖2 (5)

where we fixUp and Vc and assume thatW has simple singular values, meaning the singular values are
different from each other. For simplicity, we write M0 = UTp W0Vc. For simple spectra of P and C
and matched eigenvalues,W ∗ is unique and given byW ∗ = UpD

∗
wV

T
c with d∗w,ii = dw,iisign(m0,ii),

where dw,ii is defined as in Thm. 1 and sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.

The question is how well this approach performs in the presence of noise. As the next proposition
shows, even if only W0 is noise corrupted so that we know DW , perfect recovery of W is unlikely for
large-scale problems. Let Φ denote the cumulative distribution function (cdf) of a standard normal
and X ∼ Ber(p) a Bernoulli random variable with success probability p.
Proposition 2. Assume that we observe P = W ∗TW ∗, C = W ∗W ∗T , and W0 = W ∗ + E for
a true underlying W ∗ ∈ Rnp×np and noise E ∈ Rnp×np with independent identically normally
distributed components eij ∼ N

(
0, σ2

)
. Further assume that P and C have a simple spectrum

{d1, . . . , dnp
}. Then, for the spectral approach Ŵ = argminW∈S‖W −W0‖2 with γ = 0, the

recovery loss is distributed as ‖Ŵ − W ∗‖2 = 4
∑np

i=1 d
2
iRi, where Ri ∼ Ber (Φ (−di/σ)) for

di > 0 and Ri = 0 for di = 0 are independent. For any ε > 0, the following holds with the usual
Chernoff bound:

P
(
‖Ŵ −W ∗‖2 ≤ ε

)
≥ 1− exp

(
ε− µ− ε

4
δ log

(
ε

µ

))
,

where µ =
∑
i pi and δ = 1

maxi(d2w,ii)
for ε ≤ µ and δ = 1

mini(d2w,ii)
otherwise.

In particular, for the probability of perfect recovery (ε = 0) we have P
(
Ŵ = W ∗

)
=∏np

i=1 (1− Φ (−di/σ)). In our examples, np = 1636 and dmin ≈ 0.0001. To achieve a proba-
bility of at least 0.5, we could allow for a noise variance of σ ≈ 3 · 10−5. In many applications, this
would be a reasonable range, considering that we have npnc ≈ 4.4 · 107 matrix entries. Biological
data is known to be noisy, so we expect levels of noise in P and C that will require regularization.
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Regularization Accounting for noise in P and C complicates the analysis considerably, as the
spectral decomposition of P and C (including their eigenvectors) are distorted. We focus on the
population version (the average matrices) to motivate the need for additional regularization (γ > 0).
Depending on the source of the noise, the spectrum can become biased. To see this, assume noise of
the form P = (W ∗+Ep)(W

∗+Ep)
T and C = (W ∗+Ec)

T (W ∗+Ec) or P = W ∗W ∗
T

+EpE
T
p

and C = W ∗TW ∗ + ETc Ec, respectively. If Ep and Ec have iid entries with zero mean, variance
σ2
p/c, and a symmetric distribution, we get E (P ) = W ∗W ∗T + σ2

pI and E (C) = W ∗TW ∗ + σ2
cI ,

where I denotes the respective identity matrix. The choice γ = λσ2
c + (1 − λ)σ2

p in Eq. (1) can
compensate for this spectral shift. It should be noted that, Thm. 1 states that such a l2 regularization
alters the solutions to Problem (1) in two ways. Not only are the singular values of W ∗ shifted by
−γ to compensate for the biases introduced by the noise, also the matching of the eigenvalues of P
and C is influenced by the additional penalty γ(1− λ) tr

(
D

[np]
c,π

)
in Eq. (3). Consequently, it may

be optimal to pair the eigenvalues of P with smaller eigenvalues of C rather than larger ones if γ is
large.

While the spectral method can be powerful in a setting in which noise is controlled such that our
assumptions are met approximately, the gradient descent alternative gives us more tuning options,
including the step size and early stopping, that will allow us to stay closer to the initial guess W0.

2.2 Gradient descent for solving OTTER

Indeed, the message passing equations of PANDA resemble a gradient descent procedure, where the
gradient of Objective (1) is given as∇f(W ) = WWTW − (1−λ)PW −λWC+γW . We explain
this relationship in detail in the supplement. In our experiments, we used the ADAM method [18]
for gradient descent but alternatives are equally applicable. From a theoretical perspective, we can
understand the gradient dynamics for specific choices ofW0. For this purpose, we take the continuous
time approximation (corresponding to infinitesimally small step size) and study the corresponding
gradient flow:

τ
dW

dt
= −∇f(W ) = −WWTW + (1− λ)PW + λWC − γW, (6)

where we set the time unit τ = 1 in the following for simplicity. If the initial W0 has a similar
singular value decomposition as a solution, the differential equation decouples and we can solve the
resulting one-dimensional ordinary differential equations for the diagonal elements explicitly.
Proposition 3. For initial W0 = UpD0V

T
c with UpDpU

T
p and VcDcV

T
c , the solution of the gradient

flow (6) is given by W (t) = UpDtV
T
c with

dt,ii = sign(d0,ii)dw,ii

√√√√1

2
h

(
d2
w,iit + h−1

(
2

d2
0,ii

d2
w,ii

− 1

))
+ 1,

where h(x) = tanh(x) if d20,ii < d2w,ii and h(x) = coth(x) otherwise.

Note that the square root factor converges to 1 for t → ∞ in both cases. Hence, the final solution
inherits the signs sign(d0,kk) of the initialization similar to our spectral approach. Thus, if we start
from a reasonable guess W0 that diagonalizes with respect to the same U and V as the global minima,
gradient descent will converge to the closest global minimum for small enough learning rate. For
general W0, however, it is important to keep in mind that gradient descent can converge to different
solutions. It does not necessarily stay close to our initialization and can even get stuck in a local
minimum.

3 Relation to inexact graph matching

The biological justification for the OTTER objective function is also consistent with quadratic
assignments [1], a more common choice in graph matching. From P ≈ WWT and C ≈ WTW
we could deduce PW ≈WWTW ≈WC and thus minimize the Quadratic Assignment Problem
(QAP) objective

g(W ) =
1

2
‖PW −WC‖2 +

γ

2
‖W‖2 (7)
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A Bgradient descent spectral

Figure 2: OTTER recovery error using (A) gradient descent and (B) spectral decomposition for
artificial networks of size np = 100, nc = 200 and Gaussian noise with variance σ2

p/c for P and C
and σ2

0 for W0. Shaded regions correspond to the 0.95 confidence interval and lines to the average
over 10 repetitions. The legend applies to both figures.

(with additional l2-regularization). In graph matching however, P and C are usually assumed to
have the same dimension. They differ for inexact graph matching, but the smaller network is then
supposed to be similar to a subgraph of the bigger one. Thus, the minimization is performed under
the constraint that W is a permutation matrix. In contrast, we are interested not in a permutation
matrix, but in a weighted network W ∈ Rnp×nc that solves the relaxed QAP. The corresponding
gradient is ∇g(W ) = P 2W +WC2 − 2PWC + γW . While the related ADAM gradient descent
approach is computationally more costly than the one solving OTTER, both approaches perform
similarly well as we show in experiments (see Sec. 4).

This indicates that there is a great potential to perform gene regulatory network inference using
alternative graph matching methods in future investigations. In particular, GRAMPA [9, 10] is a
variant of QAP with strong recovery guarantees, also for the Wigner model where P − C has iid
noise entries. GRAMPA adds the term −δ1TW1 to the QAP objective (7), where 1 denotes a vector
with all entries equal to one. As a consequence, the solution to the minimization problem becomes
unique and explicitly solvable using a spectral approach. As the spectral version of OTTER, it does
not perform well in estimating GRNs. Solving the GRAMPA objective function with gradient descent
works better, though it is not competitive.

Graph matching can also be studied within the optimal transport framework [25, 29]. We could
formulate the OTTER objective with respect to a nonstandard metric and regularization term. Since
we are not searching for stochastic matrices W , this does not serve our purpose and we leave the
transfer of related methods to gene regulatory network inference to future explorations.

4 Experiments

4.1 Experiments on synthetic data

To showcase the performance of OTTER for cases in which our assumptions are met, we create
artificial data based on a ground truth W ∗ that we try to recover from noise corrupted inputs
W0 = W ∗ + N0, P = (W ∗ + Np)(W

∗ + Np)
T , and C = (W ∗ + Nc)

T (W ∗ + Nc). All noise
entries are Gaussian and independently distributed with n0,ii ∼ N

(
0, σ2

0

)
, np,ii ∼ N

(
0, σ2

p

)
, and

nc,ii ∼ N
(
0, σ2

c

)
. To obtain a realistic ground truth for which we can repeat each experiment 10

times conveniently, we sub-sample (in each repetition) the ChIP-Seq network for the liver tissue to
np = 100 and nc = 200. (See the next section for more details.) As this is unweighted, we draw the
weights iid from N (10−5, 1). For each network, we use the spectral and the gradient descent version
of OTTER and report the obtained recovery error ‖|W −W ∗‖2.

For simplicity, we do not align the eigenvalues of P and C optimally but arrange each of them in
descending order in the spectral approach. We run ADAM gradient descent for the OTTER objective
for 104 steps with the default ADAM parameters, as detailed in the supplement. For both the gradient
decent and the spectral approach, we use parameters γ = σ2

p/c = σ2
p = σ2

c and λ = 0.5.
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Table 1: TF binding prediction for different cancer tissues. The symbol † indicates that binding
predictions were made only for TFs with ChIP-seq data due to high computational demands. The
highest AUC-ROC/AUC-PR for each data set is shown in bold.

AUC-ROC AUC-PR
METHOD BREAST CERVIX LIVER BREAST CERVIX LIVER

COR 0.5857 0.5692 0.5785 0.2774 0.2219 0.3094
PARTIAL COR† 0.5366 0.5209 0.5175 0.2361 0.1952 0.2525
ARACNE 0.6150 0.5234 0.5636 0.2858 0.2027 0.2986
GENIE3 0.4818† 0.4832 0.4846 0.2064† 0.1836 0.2437
TIGRESS† 0.4945 0.4808 0.5018 0.2088 0.1845 0.2523
OTTER SPECTRAL 0.5787 0.5420 0.5345 0.2555 0.2024 0.2614
GRAMPA GRAD 0.6000 0.5896 0.5670 0.2729 0.2214 0.2796
QAP GRAD 0.5722 0.6031 0.5335 0.2526 0.2346 0.2587
OTTER GRAD 0.6936 0.6826 0.6477 0.3752 0.3176 0.3717
PANDA 0.6739 0.6642 0.6211 0.3481 0.2960 0.3503

TRANSFORMED P AND W0

OTTER∗ SPECTRAL 0.6123 0.6070 0.5973 0.2773 0.2367 0.3183
GRAMPA∗ GRAD 0.6312 0.6312 0.6021 0.3150 0.2551 0.3098
QAP∗ GRAD 0.7114 0.7096 0.6883 0.3568 0.3216 0.3764
OTTER∗ GRAD 0.7161 0.7215 0.7166 0.3574 0.3280 0.4063
PANDA∗ 0.7008 0.6642 0.6180 0.3497 0.2676 0.3340

The results are shown in Fig. 2. For small levels of noise in P and C, the spectral approach performs
reliably and better than gradient descent. However, for high σ2

p/c gradient descent outperforms the
spectral method. Since we biological data are inherently noisy, gradient descent seems to be the
method of choice. Furthermore, it provides us with additional tuning options that we can leverage to
outperform state of the art methods.

4.2 Experiments on cancer data

The most abundant data source for studying gene regulation is gene expression data. These data are
often measured using bulk RNA-sequencing (RNA-seq) with samples corresponding to different
individuals.

Datasets and experimental set-up We obtained bulk RNA-seq data from the Cancer Genome
Atlas (TCGA) [31]. The data is downloaded from recount2 [6] for liver, cervical, and breast cancer
tumors and normalized and filtered as described in the supplement. The corresponding Pearson
correlation matrix defines the gene-gene co-expression matrix C consisting of nc = 31, 247 genes
for breast cancer, nc = 30, 181 for cervix cancer and 27, 081 for liver cancer. The protein-protein
interaction matrix P is derived using laboratory experiments and represents possible interactions; we
use a padded version of that provided in [28]. It consists of np = 1, 636 potential TFs. Our initial
guess of a gene regulatory network, W0, is similar across tissues but varies slightly depending on
the number of genes (nc) included after filtering and normalization. W0 is a binary matrix where
there is a “1" if there is a TF sequence motif in the promoter of the target gene, and a “0" otherwise.
Sequence motif mapping was performed using the FIMO software [13] from the MEME suite [2] and
the GenomicRanges R package [21]. In addition to the standard PANDA input P and W0, we also
consider transformations thereof, i.e., P̃ = P + 2.2 with element-wise addition and W̃0 = P̃W0, that
have been inspired by aspects of GRAMPA graph matching and increase the performance of most
methods considerably. Note that neither W0, P̃W0 or P carry sign information about edge weights
so that we cannot infer whether TFs inhibit or activate the expression of a gene. We therefore focus
on the prediction of link existence with the understanding that the type of interaction can be estimated
post hoc.

Validation of gene regulatory networks is a major challenge. Data from Chromatin immunoprecipi-
tation (ChIP)-sequencing (ChIP-seq) experiments, which measures the binding of TFs to DNA in
the genome, provides a validation standard against which to benchmark our results. It provides only
partial validation as only a small fraction or the collections of TFs are typically profiled for any tissue.
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Figure 3: Performance curves for liver tissue.

However, because of the destructive nature of collecting molecular data from biological samples,
ChIP-seq and RNA-seq data cannot be easily collected from the same biological samples, and so
ChIP-seq data is generally collected from cell lines in the laboratory rather than from patient tumor
samples. We used ChIP-seq data from the HeLa cell line (cervical cancer, 48 TFs), HepG2 cell
line (liver cancer, 77 TFs) and MCF7 cell line (breast cancer, 62 TFs) available in the ReMap2018
database [5]. Because of the limitations in the available data we use AUC-ROC (area under the
receiver operating characteristic curve) and AUPR (or AUC-PR) (area under the precision recall
curve) to measure the performance of link classification on the subnetwork in each tissue that is
constrained to the measured TFs.

Hyperparameter tuning of OTTER was assisted by MATLAB’s bayesopt function utilizing a Gaus-
sian process prior to maximize the joint AUC-PR for breast and cervix cancer, max AUPRbreast ·
AUPRcervix. Breast and cervix data serve therefore as training data while the liver cancer data is
an independent test set. The parameters of all compared methods are reported in the supplementary
information.

Related literature and methods Many methods try to infer regulatory relationships solely based on
gene expression with two possible (non-exclusive) objectives: structure learning and gene expression
prediction. Note that the latter usually includes the former. TFs are proteins that are created from the
mRNA expressed by their corresponding genes. Hence, predicting target gene expression from the
expression of the genes coding for the TFs assumes a biologically reasonable structure.

The most common and basic approach is to analyse the Pearson correlation (COR) matrix or, if
feasible, partial correlations (PARTIAL COR). Alternatives are based on mutual information, where
ARACNe [19] is one of the most commonly used representatives. Among graphical models, mainly
Gaussian graphical models are used because the learning algorithms have to scale to approximately
nc = 30000 genes (in the case of human tissue). The GLASSO [11] method is among the best
performing candidates and uses LASSO regularization to enforce sparsity. However, it still does not
scale to our setting, and thus we have omitted it from our analysis. Linear models [14] and random
forests [15] have been used for a similar purpose, where TIGRESS [14] and GENIE3 [15] were top
scorers at the DREAM5 challenge [23] (although the challenge was somewhat different from the
GRN modeling we describe here). Both methods have high computational requirements and are less
suitable for the human genome that consists of more than 25,000 genes. An alternative approach is to
treat ChIP-seq binding predictions as a supervised learning problem [17, 33]. While such models
can be quite accurate, they are limited to the small number of TFs for which ChIP-seq experiments
are available and thus limited in their discovery of new gene regulatory relationships. Note that, in
contrast, P and W0 for PANDA-related objectives are always available and include a much larger set
of known TFs.

Results Table 1 compares the feasible GRN inference and relaxed graph matching methods based
on comparison to experimental ChiP-seq binding data. Overall, the OTTER∗ (or OTTER) gradient
descent approach achieves the best performance on all tissues, in particular, on the liver test set
(see also Fig. 3). An enrichment analysis of Gene Ontology terms between networks for healthy
and cancerous liver tissue in the supplement provides additional evidence that OTTER∗ (GRAD)
is biologically meaningful. The ADAM gradient descent solving the relaxed quadratic assignment
problem (QAP∗ grad) is almost on par with OTTER∗ (GRAD).
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In general, we observe better performance for the methods that incorporate additional biological
evidence such as (transformed) protein-protein interactions and binding motifs, even though these
are not tissue specific. A reason for this is that correlations in gene expression can be caused by
many factors and that many TFs are expressed at very low levels but strongly activate their target
genes, obscuring correlations between TFs and their targets Hence, graph matching approaches are a
promising alternative to models that make predictions based on gene expression alone.

5 Discussion

We have gained theoretical insights into a state-of-the-art gene regulatory network inference method,
PANDA. Our reformulation of the biological intuition behind PANDA as a non-convex optimization
problem, OTTER, has multiple global minima, which we have characterized explicitly. Alternative
solution approaches can therefore select different minima.

While a gradient descent approach resembles the original PANDA algorithm more closely, the spectral
approach selects solutions closest to a biologically reasonable guess based on DNA motif information.
The latter has network recovery guarantees in low noise settings and performs well on artificial data,
while the former is more robust with respect to noise. The gradient descent outperforms state-of-the
art gene regulatory network inference approaches on real world data sets corresponding to three
human cancer tissues, which we make publicly available in their processed form for this task.

As we highlight, relaxed graph matching approaches like the relaxed quadratic assignment problem
apply to this setting and achieve competitive performance. Hence, we see great potential in transfer-
ring alternative relaxed graph matching techniques to gene regulatory network inference in future
investigations.

Data availability

OTTER is available in R, Python, and MATLAB through the netZoo packages: netZooR v0.7
(https://github.com/netZoo/netZooR), netZooPy v0.7 (https://github.com/netZoo/netZooPy), and
netZooM v0.5 (https://github.com/netZoo/netZooM).
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