ABSTRACT
T-cells detect with their T-cell antigen receptors (TCRs) the presence of rare peptide/MHC complexes (pMHCs) on the surface of antigen presenting cells (APCs). How they convert a biochemical interaction into a signaling response is poorly understood, yet indirect evidence pointed to the spatial antigen arrangement on the APC surface as a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. We found that the minimum signaling unit required for efficient T-cell activation consisted of two ligated TCRs within a distance of 20 nanometers, if TCRs were stably engaged by monovalent antibody fragments. In contrast, antigenic pMHCs stimulated T-cells robustly as well-isolated entities. These results identify the minimal requirements for effective TCR-triggering and validate the exceptional stimulatory potency of transiently engaging pMHCs.
Competing Interest Statement
The authors have declared no competing interest.