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1 Abstract
Limited dispersal results in isolation by distance in spatially structured pop-
ulations, in which individuals found further apart tend to be less related to
each other. Models of populations undergoing short-range dispersal predict a
close relation between the distance individuals disperse and the length scale over
which two sampled individuals are likely to be closely related. In this work, we
study the effect of long jumps on patterns of isolation by distance by replac-
ing the typical short-range dispersal kernel with a long-range, power-law kernel.
We find that incorporating long jumps leads to a slower decay of relatedness
with distance, and that the quantitative form of this slow decay contains visible
signatures of the underlying dispersal process.

2 Introduction
Direct measurement of dispersal in natural populations is often difficult or im-
possible due to practical difficulties in tracking large numbers of individuals
over long periods of time. It is often more feasible to instead infer dispersal
from spatial patterns of genetic diversity [Cayuela et al., 2018, Bradburd and
Ralph, 2019, Battey et al., 2020]. Populations with limited dispersal should
exhibit “isolation by distance”: the more distant individuals are from each other
in space, the less related they tend to be [Wright, 1946, Rohlf and Schnell, 1971,
Slatkin, 1991]. While in general the spatial pattern of genetic diversity depends
on selection [Barton et al., 2013, Allman and Weissman, 2018], for populations
evolving neutrally the strength of isolation by distance is simply determined by
the balance between dispersal and mutation, and thus if the mutation rate is
known, the dispersal rate can be inferred directly [Malécot, 1975, Slatkin, 1993,
Slatkin and Arter, 1991].

For populations spread over a fairly continuous range, rather than being
clumped into a small number of discrete subpopulations, dispersal is typically
assumed to be short range, with displacement approximately following a normal
distribution [Barton et al., 2002, Ringbauer et al., 2017]. If dispersal is unbiased
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and homogeneous, it is then characterized by a single parameter, the dispersal
rate D (the diffusion constant). Pairwise genetic similarity is predicted to decay
exponentially with distance, with a decay rate of

√
µ/D, where µ is the mutation

rate [Ralph and Coop, 2013, Slatkin and Barton, 1989, Rousset, 2000, Barton
et al., 2002, Kimura and Weiss, 1964, Rousset, 1997].

However, many populations exhibit at least occasional long-range dispersal
[Aguillon et al., 2017, Brockmann et al., 2006, Atkinson et al., 2002, Dai et al.,
2007, Fric and Konvicka, 2007]. In such populations, it is not clear what the
pattern of isolation by distance should be. For many other populations, par-
ticularly non-animal ones, very little is known about dispersal, and we would
like to know how to use genetic data to determine if it is short- or long-range.
Even for populations where dispersal is primarily short-range, very rare long
jumps are unlikely to be observed directly [Koenig et al., 1996], and can have
large effects on the spread of alleles [Hallatschek and Fisher, 2014, Mancinelli
et al., 2003, Brockmann and Hufnagel, 2007, Paulose et al., 2019, Paulose and
Hallatschek, 2020], so we would also like to be able to infer their pattern and
frequency.

In this work, we explore the effects of long-range dispersal in neutrally evolv-
ing, demographically stable populations with constant density. Modifying the
stepping stone model of Kimura and Weiss [1964], we use a fractional diffusion
model [Jespersen et al., 1999] to study coalescence with power law dispersal, fol-
lowing Janakiraman [2017]’s recent results on an analogous problem in chemical
physics. Forien [2019] recently proposed a similar model for populations evolv-
ing according to a spatial Λ-Fleming-Viot process with long-range dispersal; our
analysis may also apply to this model. We find simple expressions for how the
pattern of isolation by distance reflects the underlying dispersal process. We
also find how the distribution of time to the most recent common ancestor of a
pair of individuals depends on the distance between them.

3 Model
We consider two lineages sampled in the present a distance x apart, and trace
their lineages backwards through time until they coalesce. We assume that
lineages follow Lévy flights through an infinite one-dimensional range; we later
also consider two-dimensional ranges. Lévy flights are a flexible, mathematically
tractable way to model long-range dispersal in which the distribution of jump
distances has a power-law tail [Jespersen et al., 1999, Metzler and Klafter, 2000,
Metzler et al., 2009]. They occur naturally as the limit of any trajectory com-
posed of many independent, identically distributed jumps, including the special
case of diffusive motion in which the jumps have a finite variance.

With this assumption, the displacement y of a lineage from its present posi-
tion t generations in the past follows a Lévy alpha-stable distribution:

K1(y|t) =
1

2π

∫ ∞
−∞

dk exp (−iky −Dαt|k|α) . (1)
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Symbol Definition
x Distance between samples
ρ Population density
α Stability parameter of dispersal tail
Dα Generalized dispersal constant
µ Mutation rate
ψ Probability of identity

x = (Dα/µ)1/α Characteristic length scale of identity

The parameterDα is a generalized diffusion constant with units of lengthα/time.
It sets the scale of dispersal: at time t, a typical lineage will have a displacement
y(t) ∼ (Dαt)

1/α. As shown in Fig. 1, the “stability parameter” α, 0 < α ≤ 2,
controls the tail of dispersal: for α < 2, the probability that at time t a lineage
has moved an abnormally long distance y � y(t) is K1(y|t) ∝ y−1−α, a power
law tail. In the limiting case α = 2, dispersal reduces to ordinary short-range
diffusion and K1 is just a normal distribution with standard deviation

√
Dt.

When the two lineages encounter each other, they coalesce at rate 1/ρ, where
ρ is the density of the population. Technically, for α ≤ 1 the two lineages will
never be at exactly the same position. In two dimensions, all values of α have this
problem, including ordinary diffusion [Mörters and Peres, 2010]. So really there
must be some small distance δ within which lineages coalesce at rate ∼ 1/(δρ).
At these small scales, even the model of independent diffusion of lineages breaks
down [Barton et al., 2010]. But we will see below that this coalescence length
scale does not affect isolation by distance on larger scales x� δ.

We are interested in the probability ψ of identity by descent of our sample
pair as a function of the distance between them, x, which we will also refer to
as the homozygosity or relatedness. If the time to their most recent common
ancestor is T and the mutation rate is µ, then ψ is given by:

ψ(x) = E
[
e−2µT |x

]
. (2)

Although usually it is ψ rather than the coalescence time T itself that is directly
observable, T is important for, e.g., determining whether it is reasonable to
assume stable demography, so we will also find expressions for its distribution
p(t|x).

4 Results
In this section, we will describe our main results and provide brief sketches of
the logic behind key features. Roughly speaking, the basic intuition is that the
sampled pair will be identical if their lineages coalesce within the past ∼ 1/µ
generations. In this time, they will disperse a typical distance ∼ x ≡ (Dα/µ)1/α,
so this is the key length scale over which identity decays: pairs separated by
x� x should be relatively closely related, while identity between pairs separated
by x� x should be rare.
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For the classic case of diffusive motion (α = 2), this length scale is x =√
D/µ, and the probability of identity falls off exponentially [Barton et al.,

2002]:

ψ(x) =
e−x/x

4ρxµ+ 1
. (3)

Here we generalize (3) to α < 2, and find simple approximate expressions for
ψ in different parameter regimes, illustrated in Fig. 2, including a universal
form for all dispersal kernels at long distances. Intuitively, long-range dispersal
broadens the distribution of coalescence times for pairs at a given separation x,
creating more overlap in the distributions for different x values (Fig. 3).

4.1 Distant pairs
For distant samples, x � x, we expect substantial isolation by distance. For
the pair to coalesce, their lineages must approach within δ of each other. The
most likely way for this to happen within time . 1/µ if for one lineage to cover
the distance in a long jump. Since such jumps occur at rate ∼ Dαx

−α−1δ, this
occurs with probability ∼ Dαx

−α−1δ/µ. The lineages must then coalesce within
their neighborhood of ∼ δρ individuals before they mutate, which occurs with
probability ∼ 1/(µρδ). We therefore expect that the probability of identity is
ψ ∼ Dαx

−α−1δ/µ/(µρδ) = Dαx
−α−1/(µ2ρ), i.e., that there is a power-law de-

pendence of identity on distance, with the same exponent as that of dispersal. A
more careful calculation (see Methods) confirms this prediction and determines
the prefactor:

ψ(x� x) ≈ Γ(1 + α) sin(πα/2)

2π

Dα

µ2ρx1+α
, (4)

up to an additional prefactor that enters when ψ(0) is close to one. We confirm
(4) with simulations and numerical analysis (Fig. 4).

4.2 Nearby pairs: moderately long-range dispersal
For moderately long-rage dispersal, 1 < α ≤ 2, nearby pairs should be nearly
as related as pairs from the same deme: ψ(x � x) ≈ ψ(0). In the time ∼ 1/µ
before they mutate, the lineages will disperse over a distance ∼ x. There are
∼ ρx individuals in this neighborhood, so the overall average rate of coalescence
is ∼ 1/(ρx). If this is large compared to the mutation rate, then homozygos-
ity will be high, ψ(0) ≈ 1, while if coalescence is slow compared to mutation,
homozygosity will be low, ψ(0) ∼ 1/(µρx). A more detailed analysis (see Meth-
ods) yields numerical factors, and the leading distance dependence was found
by Janakiraman [2017]:

ψ(x� x) ≈ (2α sin(π/α)ρxµ+ 1)
−1

[
1− α sin(π/α)

Γ(α) cos(π(1− α/2))

(x
x

)α−1
]
.

(5)
We confirm (5) with simulations and numerical analysis (Fig. 4). The scaling
in (5) reflects the superdiffusive dispersal of the lineages.
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4.3 Nearby pairs: very long-range dispersal
For very long-range dispersal in which the mean jump size diverges, α < 1,
nearby lineages that do not coalesce very quickly are likely to disperse across
the whole range before coalescing [Palyulin et al., 2014]. This “now-or-never”
dynamic has the interesting effect of making the local homozygosity independent
of the mutation rate (Fig. 5), since the main competition is between coalescence
and long-range dispersal rather than between coalescence and mutation. Intu-
itively, the pair of lineages take time t0 ∼ xα/Dα to disperse across the distance
between them. From that time on, they are roughly evenly spread over a range
∼ (Dαt)

1/α, and so coalesce at rate ∼ (Dαt)
−1/α/ρ. Integrating this rate over

time starting from t0 out to ∼ 1/µ, we find that ψ ∼ 1/(ρDαx
1−α), with the up-

per limit of integration only negligibly decreasing ψ. So ψ again follows a power
law, although a different one from the long-distance 1/x1+α. We calculate ψ
more carefully in the Methods to find:

ψ(δ � x� x) ≈ Γ(1− α) sin(πα/2)

2π

1

ρDαx1−α , (6)

again up to an additional prefactor that enters when ψ(0) is close to one. We
confirm (6) with simulations and numerical analysis (Fig. 4 and Fig. 5).

The power law in (6) makes it diverge at very short distances, where it breaks
down. Instead, for individuals within the same deme, x < δ, ψ flattens out.
Roughly speaking, individuals coalescence at rate 1/(ρδ) and disperse outside
of coalescence range at rate ∼ Dαδ

−α. When coalescence is faster, homozygosity
is high, ψ(0) ≈ 1, while when dispersal is faster it is low, ψ ∼ 1/(ρδ)/(Dαδ

−α) =
1/(ρDαδ

1−α). A more careful calculation gives (see Methods):

ψ(x� δ) ≈ 1

/[
1 +

2(α+3)/2π

Γ(1/2− α/2)
ρDαδ

1−α
]
, (7)

although these numerical factors depend on the details of the model and are
only valid when ψ(0) is small. We confirm (7) with simulations (Fig. 5).

4.4 Finite Variance Dispersal
In addition to considering Lévy flight dispersal kernels with 0 < α ≤ 2, we
consider F-distribution kernels (see Methods) with steeper power law tails α > 2.
These have finite variance and approach a diffusion after infinitely many steps,
but at any finite time will be different, particularly in the tail. As shown in
Fig. 6, for nearby pairs, x � x, relatedness decays exponentially, as in the
case of purely diffusive motion. For distant pairs, x � x, coalescence tends to
occur via one long jump, and the homozygosity shows the power law jump tail
∝ x−α−1 (Fig. 6), following the same behavior as the Lévy flights described
above.
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4.5 Two Dimensions
While we have focused above on the case of one spatial dimension, the same
intuition applies in two dimensions. In some ways the results are even simpler –
the same expressions apply for both α < 1 and 1 < α < 2 (Fig. 7). For distant
individuals, x � x, the dynamics of coalescence are again dominated by large
jumps in a single generation, and mean homozygosity again has the same power
law tail as the dispersal kernel, which is now α+ 2:

ψ(x� x) ≈ sin
(πα

2

) 2α−1Γ(α2 + 1)2

π2

Dα

ρµ2x2+α
. (8)

For nearby individuals, δ � x � x, all values of α < 2 display behavior
similar to that of α < 1 in one dimension. Coalescence tends to occur via
one “quick jump”, rather than many small jumps, and the competition is with
jumping very far away rather than with mutating. The same intuitive argument
used above applies, now with the lineages spread over an area of ∼ (Dαt)

2/α

and therefore coalescing at rate ∼ (Dαt)
−2/α/ρ, for a probability of identity

ψ ∼ 1/(ρDαx
2−α), independent of the mutation rate. We calculate this more

carefully in the Methods, finding:

ψ(δ � x� x) ≈
Γ(1− α

2 )

Γ(α2 )2απ

1

ρDαx2−α . (9)

Again, (9) must be cut off at very small distances, x . δ, at which point
homozygosity flattens out to its x = 0 value:

ψ(x� δ) ≈ 1

/[
1 +

22+α/2π

Γ(1− α/2)
ρDαδ

2−α
]
. (10)

Again, the numerical factors in (10) depend on the details of the model and are
only valid when ψ(0) � 1, but the basic scaling is general and arises from the
race between coalescence at rate ∼ 1/(ρδ2) and dispersing outside coalescence
range at rate ∼ Dαδ

−α.

5 Discussion
Limited dispersal produces a correlation between spatial and genetic distance
[Wright, 1946, Malécot, 1975, Slatkin, 1991, 1993, Slatkin and Arter, 1991].
While previous models have generally only considered diffusive dispersal, dis-
persal can be long-range in many natural populations [Aguillon et al., 2017,
Brockmann et al., 2006, Atkinson et al., 2002, Dai et al., 2007]. We therefore
generalize classic diffusive models of isolation by distance by allowing dispersal
distance to have a power law tail. We find that this leads to much more long-
range relatedness than diffusive dispersal, with relatedness having the same
power law tail in distance as the dispersal kernel. This is true even for steep
power law dispersal kernels with finite variance. In this case, even though a dif-
fusive approximation can fit the pattern of isolation by distance between nearby
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individuals, it will greatly underestimate the degree of relatedness between dis-
tant individuals.

Standard methods for dispersal inference typically assume either short-range,
diffusive motion [Rousset, 1997, 2000, Robledo-Arnuncio and Rousset, 2010,
Ringbauer et al., 2017, Bradburd et al., 2018] (perhaps with recent long-range
admixture [Bradburd et al., 2016]) or a small number of discrete demes [Slatkin,
1991, Whitlock and McCauley, 1999, Rousset and Leblois, 2011, Petkova et al.,
2016, Al-Asadi et al., 2019, Lundgren and Ralph, 2019]. Our results open the
way to methods for inferring more general, realistic dispersal patterns. One key
open question is whether it is possible to reasonably detect the genetic traces
of rare long-range dispersal in natural populations, and if so how well the form
of long-range dispersal (e.g., the tail exponent α) can be determined. Aguillon
et al. [2017] found clear patterns of isolation by distance across scales between
500 meters and 10 kilometers in Florida Scrub-Jays, and directly measured long-
range dispersal; a good first test of an inference method would be to apply it to
such a dataset to see if it can recover the known dispersal pattern.

In addition to predicting characteristic scaling of identity by descent with
distance, our results predict characteristic scalings with the mutation rate µ, and
also a scaling of the typical lengthscale of identity x with µ. While mutation
rate cannot be scanned directly as distance can, µ here should be understood
as referring to the mutation rate in a block of non-recombining genome, and so
a wide range of µ values can be scanned by considering identity by descent in
blocks of varying size [Weissman and Hallatschek, 2017]. This will be valid as
long as recombination is rare relative to mutation, or even if recombination is
frequent as long as “µ” is understood to mean the sum of the block mutation
and recombination rates. This suggests that it should be possible to measure
identity by descent statistics corresponding to “µ” values ranging over five orders
of magnitude in a single sample [Harris and Nielsen, 2013].

Our analysis has focused on the lineages of a particular pair of individu-
als sampled a fixed distance apart in an infinitely large habitat. We can also
consider a pair of individuals sampled from random locations from a habitat
with finite length L; the mean coalescence time between them would then be
the “effective population size”. The pair will typically be sampled a distance
∼ L from each other, and so it will typically take a time ∼ Lα/Dα for their
lineages to overlap in space. At this point the ancestry is effectively well-mixed,
and it takes time proportional to the total population size ∼ Ldρ, where d = 1
or 2 is the dimension of the habitat. For Lα/Dα � Ldρ, the mixing time has
little effect, while for Lα/Dα & Ldρ spatial structure substantially increases
genetic diversity. For short-range dispersal, α = 2, structure will be strong
in a one dimensional habitat of length L & Dρ [Maruyama, 1971], while in
two dimensions its strength depends only on the local neighborhood size Dρ
[Maruyama, 1972]. The amount of population structure thus either increases
with the spatial extent of the population (at fixed density) or is insensitive to
it. With long-range dispersal, however, we see a new qualitative pattern. For
α < d, i.e., for any amount of long-range dispersal in two dimensions, the effect
of structure on overall diversity counterintuitively becomes weaker as the range
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size L grows, because Lα/Dα grows more slowly than Ldρ. It seems plausible
that in many natural populations, spatial structure may be strong over short
time scales (as measured by ψ(x) at large µ) while having little effect on the
average coalescence time.

Our use of stable distributions for the dispersal kernel has been partly moti-
vated by the fact that any isotropic single-generation dispersal kernel will con-
verge to a stable one if it is repeated over many independent generations. But
as we have noted, this is only true asymptotically, and in any real population
there will be correlations across generations, spatial inhomogeneities, shifts in
dispersal over time, limits due to finite range size, and many other effects that
cannot be captured by a stable distribution. It is therefore better to see it as a
simple null model, one step closer to reality than the purely diffusive one, that
can serve as a background against which to measure all these other effects.

What other processes could produce similar patterns to long-range dispersal?
One obvious one is if individuals are performing something more like a “Lévy
walk” than a Lèvy flight, in which dispersal in any one generation is short but can
be correlated across many generations [Zaburdaev et al., 2015]. Such an effect
can be produced at the level of alleles by hitchhiking on beneficial substitutions
[Allman and Weissman, 2018]. But this should be readily distinguishable from
neutral long-range dispersal by considering the distribution of relatedness across
multiple individuals and loci – hitchhiking will produce long-range relatedness
at the same few loci across all individuals, whereas neutral effects will be more
evenly distributed. It is an open question whether other neutral processes, in
particular demographic fluctuations, might produce similar patterns.

6 Methods

6.1 Simulation Methods
All simulation code and displayed data are available at https://github.com/
weissmanlab/Long_Range_Dispersal. We simulate our model in two stages.
First, for each value of present-day separation x, dispersal constant Dα, and
tail parameter α, we simulate dispersal of the lineages, ignoring coalescence and
mutation. Then, for each value of ρ and µ, we calculate the expected homozy-
gosity and coalescence time distribution for each simulated trajectory. We then
average over many independent trajectories. A major advantage of this two
part method is that the same dispersal simulations can be used for calculating
the homozygosity and coalescence time distribution for multiple choices of ρ
and µ. Another advantage is that the second part of the method, in which con-
ditional expectations are calculated for previously generated paths, is entirely
deterministic. This reduces computational costs and noise in the estimations.

We simulate lineage motion using a discrete time random walk,

Xt+1 = Xt + ∆Xt, (11)

where Xt represents the signed distance between two lineages at a given time
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(ignoring coalescence., i.e., assuming ρ→∞), and the step size, ∆Xt, is a real
valued random variable drawn from the dispersal distribution at each integer
time t. For dispersal, we primarily use Lévy alpha-stable distributions, so ∆Xt

has distribution:

K(y) =
1

2π

∫ ∞
−∞

dk exp (−iky − 2Dα|k|α) . (12)

Note that this differs from (1) because ∆t = 1, and there is an extra factor of two
because ∆Xt is the sum of the two lineages’ independent jumps. To simulate
steeper tails with α > 2, we use an F-distribution, defined below in (15). We
use the GNU Scientific Library’s efficient pseudorandom generators for both
stable distributions and the F-distribution [Galassi et al., 2009]; because these
are available only for the one-dimensional distributions, all our simulations are
in one dimension.

For each simulated trajectory {xt}, we then compute the conditional dis-
tribution of coalescence times p(t|{xt′≤t}) and conditional mean homozygosity
ψ(x|{xt′≤t}):

p(t ≥ 1|{xt′≤t}) =
(

1− e−
1
ρR(xt)

)
exp

[
−1

ρ

t−1∑
t′=1

R(xt′)

]
, (13)

ψ(x|{xt′≤t}) =
∞∑
t=1

p(t|{xt′≤t})e−2µt. (14)

We start (13) and (14) at t = 1 because we assume that the individuals are
sampled immediately after dispersal, so no coalescence takes place at t = 0.
R(x) in (13) is a rectangular function representing a uniform rate of coalescence
of all lineages within a distance δ:

R(x) ≡

{
1
2δ if |x| < δ

0 otherwise.

For every time-step the lineages spend in this region, there is a probability of
coalescence 1− e−

1
2ρδ . We discussion issues with the microscopic interpretation

of this model after we introduce our analytical model below.
To obtain the unconditioned values p(t|x) and ψ(x), we then average (13)

and (14) across all simulated trajectories. All error bars in plots show 68% confi-
dence intervals, as determined by the percentile bootstrap with 10,000 bootstrap
samples [Davison and Hinkley, 1997]. At large distances, the distribution of the
probability of identity across sample trajectories is highly skewed, with most
trajectories having very low probabilities of identity, but a few having the lin-
eages rapidly jump close to each other and having a high probability of identity.
This means that we cannot use, for example, the standard error of the mean,
but it also means that we must simulate many independent trajectories to get
good enough coverage for the bootstrap to be accurate [Chernick, 2011].
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We set δ = 0.5 for all simulations. For the simulations of mean homozygosity
ψ shown in Fig. 4 and Fig. 6, we simulate 250,000 independent runs of 1000
generations each for each combination of initial separation x and tail parameter
α. We set the dispersal constant Dα indirectly by setting the characteristic
spread c of two lineages after one generation (t = 1), c = (2Dα)1/α to be
fixed at c = 250 for α < 2, and c = 179.68 for α = 2.05 (see below for the
definition of c for α > 2). For the largest initial separations, x = e10 and e11,
coalescence within 1000 generations is very rare, so we increase the number of
runs to 1.25× 106. For Fig. 5 and Fig. 9, we choose Dα such that c = 0.2, and
simulate 10,000 independent runs of length 1000 generations each.

For the simulations of the cumulative distribution of coalescence times P (t)
shown in Fig. 8, we set initial separation x = 0 and generate 10,000 independent
trajectories of 1.5 million generations each for each combination of c and tail
parameter α. We set c = 3.59 for α > 2, c = 5 for 1 < α < 2, and c = 1 for
α ≤ 1.

6.1.1 Dispersal kernel for α > 2

To simulate dispersal kernels with tail exponents α > 2, we draw ∆Xt from a
Fisher F-distribution:

K(y) =
Γ(2α)

Γ2(α)ω
(y/ω)α−1 (1 + (y/ω))

−2α
. (15)

At long times, the displacement distribution approaches that of a diffusive ker-
nel, with dispersal constant equal to half the mean squared single-generation
displacement of one lineage:

D =
c2

2
=

(
α(2α− 1)

4(α− 2)(α− 1)2
+

α2

4(α− 1)2

)
ω2.

6.2 Analytical model in one dimension
We want to find a tractable analytical approximation to the model described
above. This can be done if we consider only the dynamics on times long com-
pared to a single time step, so that we can treat time as continuous. Then we
can again let Xt be the signed distance between the pair of lineages assuming
that they are completely independent and cannot coalesce, i.e., ρ → ∞. Since
the dispersal kernel is the sum of dispersal over a continuum of infinitesimal time
steps, it should approach a stable distribution, i.e., the lineages should follow
Lévy flights. This means that the distribution K(y, t) of Xt can be written in
terms of its characteristic function:

K(y|t) =
1

2π

∫ ∞
−∞

dk exp (−iky − 2Dαt|k|α) . (16)

The factor of two relative to the single-lineage distribution K1 (1) is because K
is the sum of the motion of two independent lineages.
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For α > 1, the lineages will sometimes be in exactly the same place, and
we can model coalescence with a δ distribution, i.e., as taking place at rate
1
ρδ(Xt). The problem then becomes mathematically identical to that considered
by Janakiraman [2017], and we will follow her approach, along with deriving
new asymptotic approximations. For α ≤ 1, however, they will never coincide
[Palyulin et al., 2014], and we must allow coalescence to take place at a finite
distance. Let the coalescence kernel be some normalized distribution N (x)
symmetric about x = 0 and with width ∼ δ, with coalescence taking place at
rate 1

ρN (Xt). The δ-distribution is just the limit of N as δ goes to 0, so we can
treat the two cases together. Forien [2019] avoids this issue by using a spatial
Λ-Fleming-Viot model, in which dispersal and coalescence are produced by the
same long-range events, but we wish to keep long-range dispersal as a distinct
process from short-range coalescence. As mentioned in the Simulation Model
section, this creates issues with the microscopic interpretation of the model,
which we discuss below in “Breakdown of models at small scales”.

The coalescence time distribution is then:

p(t|x) = E

[
1

ρ
N (Xt) exp

(
−1

ρ

∫ t

0

dτ N (Xτ )

)∣∣∣∣X0 = x

]
, (17)

and the probability of identity is its Laplace transform:

ψ(x) =

∫ ∞
0

dt p(t|x)e−2µt. (18)

When Xt follows a diffusion, (18) can be written as a Feynman-Kac (diffusion)
equation for ψ [Barton et al., 2002, Allman and Weissman, 2018]. For α < 2,
this generalizes to a fractional differential equation:

0 = 2Dα

(
∂2

∂x2

)α/2
ψ(x)− 2µψ(x) +

1

ρ
N (x) (1− ψ(x)) , (19)

where
(
∂2

∂x2

)α/2
is a Riesz fractional derivative, defined by its Fourier transform

F
{(

∂2

∂x2

)α/2
f

}
(k) = − |k|α F{f}(k) [Metzler et al., 2009, Carmi et al., 2010,

Janakiraman, 2017]. It is therefore simpler to consider the Fourier transform of
(19):

0 = −(2Dα|k|α + 2µ)ψ̂(k) +
1

ρ
F {N (x)(1− ψ(x))} (k), (20)

where ψ̂ is the Fourier transform of ψ.
In general, Fourier transforms of products such as F {N (x)(1− ψ(x))} do

not have a simple form in Fourier space. But we can make the ansatz that
1−ψ(x) is nearly constant over all x values where N (x) is non-negligible. This
is exactly true in continuous space for α > 1, where we can take N to be a
δ-function. For α ≤ 1, it will necessarily be accurate in the limit ψ(0) � 1. In
these regimes, we verify that our approximation is consistent below and check it
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with simulations (Fig. 4, Fig. 5, and Fig. 9). However, for α ≤ 1 and 1−ψ(0)�
1, the expression is inaccurate; we discuss this below. With this ansatz, the
Fourier transform is simply F {N (x)(1− ψ(x))} (k) ≈ N̂ (k)(1−ψ(0)), and (20)
simplifies to:

ψ̂(k)

1− ψ(0)
≈ N̂ (k)

2ρ(µ+Dα|k|α)
. (21)

(21) can be rewritten to emphasize the connection to the dispersal kernel
K. First, note that the Fourier transform of K is its characteristic function:
K̂(k, t) = exp(−2Dαt|k|α). Taking the Laplace transform, which we will denote
with a tilde, gives:

̂̃
K(k, 2µ) ≡

∫ ∞
0

dt e−2µt−2Dαt|k|α

=
1

2(µ+Dα|k|α)
.

We see that the denominator in (21) is coming from ̂̃
K:

ψ̂(k) ≈ 1− ψ(0)

ρ
N̂ (k)

̂̃
K(k, 2µ). (22)

The natural interpretation of (22) is that identity by descent is a kind of convo-
lution of coalescence ( 1

ρ (1− ψ(0))N ) and dispersal (K), integrated over a time
set by the inverse of the mutation rate. (22) is defined for any dispersal kernel,
not just stable ones, and we conjecture that it will still hold more generally.

To get an explicit expression for ψ, we need to specify a form for the coa-
lescence kernel N . We will use a normal distribution with standard deviation
δ, which has the simple Fourier transform N̂ (k) = exp(−δ2k2/2). Then we can
invert the Fourier transform in (21):

ψ(x)

1− ψ(0)
≈ 1

2πρ

∫ ∞
0

dk
cos(kx)e−δ

2k2/2

µ+Dαkα
, (23)

which can be re-expressed in dimensionless units as

ψ(x)

1− ψ(0)
≈ 1

2πρµx

∫ ∞
0

dκ
cos(κx/x)e−(δ/x)2κ2/2

1 + κα
. (24)

Examining (23), we see that the power law tail in the integrand can be cut off
either when oscillations in the cosine factor become rapid at k ∼ 1/x or by the
normal factor at k ∼ 1/δ. As long as we are sampling pairs that are outside the
immediate range of coalescence, x � δ, the former cutoff will happen at lower
k, and therefore the normal factor can be neglected, leaving (in dimensionless
form):

ψ(x� δ)

1− ψ(0)
≈ 1

2πρµx

∫ ∞
0

dκ
cos(κx/x)

1 + κα
. (25)
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Dropping the normal factor also allows us to trivially invert the Fourier trans-
form in (22) and see that ψ is just proportional to the Laplace transform of
K:

ψ(x� δ) ≈ 1− ψ(0)

ρ
K̃(x, 2µ). (26)

Again, although we have only shown that (26) holds for stable dispersal kernels,
it can be defined for any dispersal kernel, and we conjecture that it will hold
more generally (see α > 2 section).

We can solve (24) for ψ(x) by first evaluating it at x = 0 to find ψ(0); we do
this below. But it is interesting that the ratio Ψ(x) ≡ ψ(x)/(1− ψ(0)) has the
simplest relationship to the underlying parameters, as shown by Rousset [1997]
for short-range dispersal. Ψ is closely related to Rousset [2000]’s statistic ar:
ar = Ψ(0)−Ψ(r). It is also related to the expected pairwise FST between demes
separated by x:

E [FST(x)] =
Ψ(0)−Ψ(x)

2 + Ψ(0)−Ψ(x)
.

6.2.1 Probability of identity for distant pairs x� x, α < 2

For large x � (Dαt)
1/α, the dispersal kernel has a simple asymptotic form for

α < 2 (Nolan [2018], Theorem 1.12):

K(x� (Dαt)
1/α|t) ≈ 2Γ(α+ 1)

π
sin
(πα

2

) Dαt

xα+1
.

Plugging this into (26) and evaluating the Laplace transform gives (4):

ψ(x� x)

1− ψ(0)
≈ Γ(α+ 1)

2π
sin
(πα

2

) Dα

ρµ2xα+1
. (27)

6.2.2 Probability of identity for distant pairs x� x, α > 2

There is no stable distribution with α > 2, but in discrete-time models such
as the one we use in our simulations, we can consider single-generation jump
kernels K(y|1) with power-law tails with α > 2. These will approach a diffusion
with diffusion constant D = Var(K)/2. At long distances y �

√
Dt, however,

the tail will still be dominated by the probability of taking a single large jump
[Vezzani et al., 2019], so for x � x, we will have K(x|t . 1/µ) ≈ K(x|1)t.
Plugging this into (26) and evaluating the Laplace transform gives:

ψ(x� x)

1− ψ(0)
≈ K(x|1)

4ρµ2
.

For the F-distribution kernel (15) used in the simulations, this is

ψ(x� x)

1− ψ(0)
≈ Γ(2α)

4Γ2(α)

Dα

ρµ2xα+1
, (28)
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where we have defined Dα ≡ ωα/generation. (28) is confirmed by simulations
(Fig. 6). We can then use the classic diffusive expression for ψ(0) to get an
explicit expression for probability of identity at large distances:

ψ(x� x) ≈
(

1 +
1

4ρxµ

)−1
Γ(2α)

4Γ2(α)

Dα

ρµ2xα+1
. (29)

6.2.3 Moderately long-range dispersal, 1 < α < 2

For α > 1, (25) and (26) are exact for all x. Evaluating (25) for x = 0 gives
ψ(0):

ψ(0) =
1

2α sin(π/α)ρxµ+ 1
. (30)

Plugging (30) into (27) lets us solve for ψ(x) at large distances x� x:

ψ(x� x) ≈
(

1 +
1

2α sin(π/α)ρxµ

)−1

sin
(πα

2

) Γ(α+ 1)

2π

Dα

ρµ2xα+1
. (31)

For 0 < x � x, Janakiraman [2017] (Eq. (C1)) found that to leading order
ψ falls off as:

ψ(x� x) ≈ ψ(0)

[
1− α sin(π/α)

Γ(α) cos(π(1− α/2))

(x
x

)α−1
]
. (32)

When α = 2, the above expression is equivalent to the classic diffusive result
(3) for x� x, which can be found by integrating (19) with δ = 0.

6.2.4 Very long-range dispersal, α < 1

For α < 1, the finite width δ of the coalescence kernel is important for deter-
mining ψ(0). Dropping the cosine factor in (24) gives:

ψ(0)

1− ψ(0)
≈ 1

2πρµx

∫ ∞
0

dκ
e−(δ/x)2κ2/2

1 + κα

≈ Γ(1/2− α/2)

2(α+3)/2ρDαδ1−α ,

where in evaluating the integral we have assumed that δ � x, i.e., that the
mutation rate is not extremely large. We see that on small scales, the proba-
bility of identity by descent is independent of the mutation rate, i.e., there is
a large probability that individuals from the same deme are differentiated even
for infinitesimal mutation rates:

ψ(0) ≈ 1

/[
1 +

2(α+3)/2π

Γ(1/2− α/2)
ρDαδ

1−α
]

(33)

Very long-range dispersal of nearby lineages causes them to quickly wander away
from each other, and for infinite range size many pairs will never coalesce. While
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(33) is only accurate for ψ(0)� 1, the independence from mutation rate should
persist even for large ψ(0).

Plugging (33) for ψ(0) into (27) gives an explicit expression for the proba-
bility of identity of distant pairs with x� x:

ψ(x� x) ≈
(

1 +
Γ(1/2− α/2)

2(α+3)/2πρDαδ1−α

)−1

sin
(πα

2

) Γ(α+ 1)

2π

Dα

ρµ2xα+1
.

For pairs that are nearby but still well outside of coalescence range, δ �
x� x, the integral in (25) is dominated by κ� 1 and is approximately:

ψ(δ � x� x)

1− ψ(0)
≈ Γ(1− α) sin(πα/2)

2π

xα−1

ρDα
.

Again, the probability of identity is independent of the mutation rate to lowest
order. Substituting in (33) gives an explicit expression for ψ:

ψ(δ � x� x) ≈
(

1 +
Γ(1/2− α/2)

2(α+3)/2πρDαδ1−α

)−1
Γ(1− α) sin(πα/2)

2π

xα−1

ρDα
. (34)

6.2.5 Marginal case α = 1

The analysis of the marginal case α = 1 is essentially the same as for α < 1
above, but we have separated it out because the form of the final expressions
is very different. As with α < 1, the finite coalescence width δ is important for
x = 0:

ψ(0)

1− ψ(0)
≈ 1

2πρD1

∫ ∞
0

dκ
e−(δ/x)2κ2/2

1 + κ

=
2 ln(x/δ) + ln 2− γ

4πρD1
,

where γ ≈ 0.58 is Euler’s constant. Again assuming δ � x = D1/µ, the constant
terms in the numerator can be neglected and ψ is approximately:

ψ(0) ≈
(

1 +
2πρD1

ln(x/δ)

)−1

. (35)

Recall that the ansatz we used to derive (35) is only justified when ψ(0)� 1.
For pairs that are nearby but still well outside of coalescence range, δ �

x� x, (25) gives:

ψ(δ � x� x)

1− ψ(0)
≈ ln(x/x)− γ

2πρD1
. (36)

Plugging the expression (35) for ψ(0) into (36) and (27) gives explicit expressions
for ψ(x) at both short and long distances:

ψ(δ � x� x) ≈ ln(x/x)

2πρD1 + ln(x/δ)
(37)

ψ(x� x) ≈ 1

2πρD1 + ln(x/δ)

(
x

x

)2

. (38)
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6.3 Analytical model in two dimensions
For a two-dimensional Lévy flight, the dispersal kernel takes the form of an
isotropic stable distribution [Zolotarev, 1981]:

K(y|t) =
1

2π

∫ ∞
0

dk kJ0(ky) exp (−2Dαtk
α) , (39)

whereK(y|t) is the probability density of being at a particular point a distance y
away from the position at time 0, and J0 is the zeroth Bessel function of the first
kind. (39) is the two-dimensional inverse Fourier transform (equivalently, the
inverse zeroth-order Hankel transform) of the characteristic function K̂(k|t) =
exp (−2Dαtk

α), where k is the radial coordinate in two-dimensional k-space. At
large distances, y � (Dαt)

1/α, K has a power-law tail [Nolan, 2013]:

K(y � (Dαt)
1/α|t) ≈ α2Γ(α/2)2

21−απ2
sin
(πα

2

) Dαt

xα+2
. (40)

In two dimensions, we must allow coalescence to take place at a finite distance
for all α [Mörters and Peres, 2010]. For the coalescence kernel, we use an
isotropic normal distribution N (x) with mean zero and standard deviation δ,
with coalescence taking place at rate 1

ρN (Xt).
For all α < 2, the solution for ψ in two dimensions can be written as a

fractional differential equation [Chen et al., 2012]:

0 = 2Dα

(
∂2

∂x2
+

1

x

∂

∂x

)α
2

ψ(x)− 2µψ(x) +
1

ρ
N (x) (1− ψ(x)) , (41)

where
(
∂2

∂x2 + 1
x
∂
∂x

)α
2

is a fractional Laplacian, defined by its Fourier transform

F
{(

∂2

∂x2 + 1
x
∂
∂x

)α/2}
(k) = − |k|α F{f}(k) [Kwaśnicki, 2017, Lischke et al.,

2020]. Note that the rotational symmetry of the problem allows us to write
the Laplacian in terms of just the radial coordinate x, and ignore the angular
coordinate.

The Fourier transform of (41) has the same form as the one-dimensional
equation (20):

0 = −(2Dαk
α + 2µ)ψ̂(k) +

1

ρ
F {N (x)(1− ψ(x))} (k). (42)

The expressions (21) and (22) for ψ̂(k) therefore remain the same. Note however
that their interpretation is different: if we want to transform back to real space,
we must use the two-dimensional inverse Fourier transform. Applying it to (21)
gives:

ψ(x)

1− ψ(0)
≈ 1

4πρ

∫ ∞
0

dk
kJ0(kx)e−δ

2k2/2

µ+Dαkα
(43)

=
1

4πρµx2

∫ ∞
0

dκ
κJ0(κx/x)e−(δ/x)2κ2/2

1 + κα
, (44)

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168211doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168211


where again we make the ansatz that 1 − ψ(x) is approximately constant over
the x values where N (x) is non-negligible. This is again accurate for ψ(0)� 1,
but needs to be adjusted for 1−ψ(0)� 1. The analysis of (44) parallels that of
the one-dimensional case, but all α < 2 can be treated together for all distances
x, not just x � x, and so we can conduct one unified analysis moving from
short distances to long ones.

6.3.1 Probability of identity for co-located pairs, x = 0

For pairs sampled from the same location, x = 0, the Bessel function in (44) is
simply equal to one and can be dropped:

ψ(0)

1− ψ(0)
≈ 1

4πρµx2

∫ ∞
0

dκ
κe−(δ/x)2κ2/2

1 + κα

≈ Γ(1− α/2)

22+α/2πρDαδ2−α , (45)

where in the last line we have assumed that δ � x. Intuitively, (45) can be
understood as roughly the ratio between the time to coalesce, i.e., the neigh-
borhood size ∼ ρδ2 and the time ∼ δα/Dα that the lineages will spend in the
same neighborhood before jumping apart. Note that mutation does not enter:
in two dimensions, all α < 2 act like α < 1 does in one dimension, where locally
mutation is irrelevant. Again, (45) is only accurate for ψ(0)� 1.

Solving (45) for ψ gives:

ψ(0) ≈
(

1 +
22+α/2π

Γ(1− α/2)
ρDαδ

2−α
)−1

. (46)

For α = 2, integrating (44) with x = 0 recovers the classic diffusive result in two
dimensions, which we expect to hold for pairs in contact when α ≥ 2 [Barton
et al., 2002]:

ψ(0) ≈ ln(x/δ)

ln(x/δ) + 4πρD2
. (47)

6.3.2 Probability of identity for separated but nearby pairs, δ � x�
x

For pairs that are outside coalescence range, x � δ, oscillations in the Bessel
function suppress the contribution of k & 1/x to (43), and the normal factor
can be neglected. This is a somewhat subtle point for α ≤ 1/2, for which
the amplitude of the integrand grows with k (or does not decay for α = 1/2).
But the oscillations are indeed sufficiently fast so that the contributions to the
integral cancel, as can be checked by numerical integration. One simple way to
see that this is at least plausible is to note that at t = 0 (39) must reduce to
K(y|0) = δ(y), i.e., the oscillations cancel the integral entirely even though the
integrand grows like

√
k.
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Without the normal factor, (44) is:

ψ(δ � x� x)

1− ψ(0)
≈ 1

4πρµx2

∫ ∞
0

dκ
κJ0(κx/x)

1 + κα
. (48)

For nearby pairs x � x, the integral in (48) is dominated by κ � 1 and for
α < 2 we can approximate the denominator in the integrand as 1 + κα ≈ κα,
giving:

ψ(δ � x� x)

1− ψ(0)
≈ Γ(1− α/2)

Γ(α/2)2απρDα
xα−2. (49)

The convergence of (48) to (49) is however quite slow in x/x when α is close to
0 or 2. For example, for x/x = 0.01, the two expressions differ by ≈ 30 − 40%
for α = 0.25 and α = 1.75, and only approach to within 10% of each other
at extreme values of x/x (≈ 10−5 and ≈ 10−4 for α = 0.25 and α = 1.75,
respectively).

Plugging (46) for ψ(0) into (49) lets us solve for ψ:

ψ(δ � x� x) ≈
(

1 +
Γ(1− α/2)

22+α/2πρDαδ2−α

)−1
Γ(1− α/2)

Γ(α/2)2απρDα
xα−2, (50)

We see that in two dimensions, relatedness at short distances is independent
of µ to leading order for all α < 2. However, the slow convergence mentioned
above means that for most biologically reasonable parameter values, this should
be interpreted as meaning that the dependence on mutation rate is weak rather
than negligible.

For α = 2 and δ � x � x we can recover the known result for diffusive
motion by approximating (44) as

ψ(δ � x� x)

1− ψ(0)
≈ 1

4πρµx2

∫ ∞
0

dκ
J0(κx/x)κ

1 + κ2
. (51)

Integrating (51) confirms that we find logarithmic scaling of ψ(x) at short dis-
tances [Barton et al., 2002]:

ψ(x)

1− ψ(0)
≈ 1

4πρD2
ln(x/x), (52)

which we expect to hold at δ � x� x for all α ≥ 2.

6.3.3 Probability of identity by descent for distant pairs, x� x

Since, as discussed in the previous section, the δ-dependent terms can be dropped
for x � δ, (26) still applies, just as it did in one dimension. The probability
of identity by descent for distant pairs x� x can then immediately be read off
from (26), now using the tail of the two-dimensional dispersal kernel (40) for
α < 2:

ψ(x� x)

1− ψ(0)
≈ α2Γ(α/2)2

23−απ2
sin
(πα

2

) Dα

ρµ2
x−α−2. (53)
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Plugging in (46) for ψ(0) lets us solve for ψ:

ψ(x� x) ≈
(

1 +
Γ(1− α/2)

22+α/2πρDαδ2−α

)−1
α2Γ(α/2)

23−απΓ(1− α/2)

Dα

ρµ2
x−α−2.

When α = 2, we instead recover classic expression for two dimensional dif-
fusive motion at large distances [Barton et al., 2002]:

ψ(x� x)

1− ψ(0)
≈ 1

4ρD2

exp(−x/x)√
2πx/x

. (54)

6.4 Coalescence time distribution
In this section we will find asymptotic expressions for the coalescence time dis-
tribution. As stated in the Results, intuitively we can think of the probability
of identity ψ as measuring the probability of the pair of lineages coalescing
. 1/(2µ) generations ago. We can make this statement more rigorous using the
Hardy-Littlewood tauberian theorem connecting the long (short) time proba-
bility of coalescence to the small (large) mutation rate limit of ψ. It states
that a function f(t) has the limiting behavior f(t) → 1

Γ(β) t
β−1L(t) as t → ∞

(t → 0), where L is a slowly varying function and β > 0, if and only if its
Laplace transform f̃(2µ) has the limiting behavior f̃(2µ) → (2µ)−βL(1/(2µ))
as µ→ 0 (µ→∞) (Feller [1971], XIII.5, Theorem 4).

6.4.1 Recent times

First we will consider the limit of recent times, t → 0 / µ → ∞. For pairs
sampled within coalescence range, x . δ, by definition the coalescence time
distribution approaches p(t|x) ∼ 1/(ρδd), up to numerical factors that depend
on the details of the coalescence kernel. Here d is the dimensionality of the
range, d = 1 or 2. For pairs sampled well outside coalescence range, x� δ, we
can assume that x � x as well, since x = (Dα/µ)1/α → 0 as µ → ∞. We can
also assume that 1−ψ(0)→ 1 is independent of µ to leading order. (For α < d
our expressions for ψ(0) (35) and (46) are also independent of µ and non-zero,
but these are only valid when x � δ, i.e., when µ is not arbitrarily large.) We
can therefore apply the tauberian theorem to (27) and (53) to obtain:

p(t� xα/Dα|x) ≈ 2dα
(

Γ(1 + α/d)

π

)d
sin
(πα

2

) Dαt

ρxα+d

≈ 1

ρ
K(x|t). (55)

Our heuristic derivation in the Results section essentially proceeded in the op-
posite direction, starting from p(t � xα/Dα|x) ≈ 1

ρK(x|t) and then deriving
ψ(x) from that. (55) is thus essentially just a restatement of our expressions
for the tail of ψ, and its accuracy can be seen from the same simulation results
shown in Fig. 4 and Fig. 6.
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6.4.2 Long times

While there is a single unified expression for p in the t→ 0 limit, corresponding
to the single expression for ψ in the x→∞ limit, for the opposite limit, t→∞
/ µ→ 0, we must treat different values of α separately, just as we did for ψ at
small x. We verify our results with simulations, shown in Fig. 8.

For α < d, we can simply take the inverse Laplace and Fourier transforms of
(22) to find p, because 1− ψ(0) is independent of µ to leading order. Since we
are concerned with times long compared to the time for the lineages to traverse
the coalescence zone, t � δα/Dα, the normal factor in (22) can be neglected
and p(t|x) is simply given by the inverse Laplace transform of (26):

p(t� δα/Dα|x) ≈ 1− ψ(0)

ρ
K(x|t) (56)

≈ 1− ψ(0)

α(2π)d−1ρ
Γ(d/α)(2Dαt)

−d/α for t� xα/Dα. (57)

Integrating yields the cumulative distribution:

P (t� δα/Dα|x) = P (∞|x)− 1− ψ(0)

(d− α)(2π)d−1

Γ(d/α)(2Dα)−d/α

ρ td/α−1
for t� xα/Dα,

(58)

where P (∞|x) = limµ→∞ ψ(x) is given by (7), (34), (46), or (50), depending on
x and d.

For the marginal case α = d, we can use a slightly different statement of the
tauberian theorem that applies for β = 0 (Feller [1971], XIII.5, Theorem 2) to
convert (35), (37), (47), and (52) to expressions for the cumulative distribution
P :

P (t� x/Dd|x) ≈

{
[1 + 2dπρDd/ ln(2Ddt/δ)]

−1 for x� δ

ln(2Ddt/x)/ [2dπρDd + ln(2Ddt/δ)] for x� δ.
(59)

We can then differentiate to find the density p:

p(t� x/Dd|x) ≈

{
t−1 (2dπρDd) / [2dπρDd + ln(2Ddt/δ)]

2 for x� δ

t−1 (ln(x/δ) + 2dπρDd) / [2dπρDd + ln(2Ddt/δ)]
2 for x� δ.

(60)
Note that in two dimensions, α = d represents the diffusive limit, and we expect
these expressions for the marginal case to hold for all α ≥ 2.

For d = 1 < α ≤ 2, since the leading behavior of the cumulative distribution
is trivial, limµ→0 ψ(x) = limt→∞ P (t|x) = 1, we must instead consider the com-
plementary cumulative distribution, P (t|x) ≡ 1−P (t|x). Its Laplace transform
is:

P̃ (2µ) =
1

2µ
− P̃ (2µ|x)

=
1

2µ
[1− ψ(x)] .
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We can now apply the tauberian theorem to P and P̃ . Since we are taking the
µ→ 0 limit, we have x→∞, and we need only consider ψ(x� x). Inspecting
(30) and (32), we see that they have the limit:

1

2µ
[P (∞|x)− ψ(x)]→ α sin(π/α)ρx as µ→ 0.

Since x = (Dα/µ)1/α, P has the limit:

P (t� xα/Dα|x) ≈ α sin
(π
α

) ρ(2Dα)1/α

t1−1/α
. (61)

Differentiating (61) yields the density p(t|x):

p(t� xα/Dα|x) ≈ (α− 1) sin
(π
α

) ρ(2Dα)1/α

t2−1/α
, (62)

in agreement with Janakiraman [2017]’s Eq. 19.
For α = 2, (61) and (62) simplify to the classic diffusive results:

P (t� x2/D|x) ≈ 2ρ
√

2D/t, (63)

p(t� x2/D|x) ≈ ρ
√

2D/t3. (64)

For α > 2, we expect the coalescence rate p(t|x)/P (t|x) to behave similarly
at long times, since the dispersal approaches a diffusion. But the distribution
P may be different, due to differences in the probability of early coalescence
(Fig. 8, bottom right).

6.5 Breakdown of models at small scales
Great care must be taken in defining coalescent models in continuous space in
order to guarantee that they have a consistent forward-time biological inter-
pretation [Felsenstein, 1975, Barton et al., 2010]. We have not done this, and
therefore the microscopic behavior of our models does not correspond to any
biological population. However, the behavior at large scales (time long com-
pared to one generation, distance long compared to the coalescence scale δ and
the typical single-generation dispersal distance c ≡ (2Dα)1/α) should still be
realistic [Barton et al., 2002]. Forien [2019] has recently given an example of
a biologically consistent forward-time, continuous-space model that we believe
would be described by our results on macroscopic scales. We also believe that
our results would describe a stepping-stone model of discrete demes of size ∼ ρδd
separated by distance ∼ δ.

The key place in which the microscopic details matter even for large dis-
tances and long times is the factor 1 − ψ(0) which appears in many of our
expressions. As discussed above, for α < d even here the microscopic details
are not necessarily important, but for α ≥ d they are. Practically speaking,
this quantity would typically have to simply be measured in a population or
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else treated as a fitting parameter when matching the large-scale predictions to
data.

At a microscopic level, we expect that our continuous-time analytic model
should deviate from discrete-time models such as the one we use in our simu-
lations. As shown in Fig. 9, this becomes apparent for α < 1 in one dimension
(or more generally, α < d). The two differ at scales smaller than the typical
single-generation dispersal distance, x < c = (2Dα)1/α, when this scale is large
compared to the coalescence scale, c � δ. In continuous time, nearby pairs
with x� c would be able to coalesce at times smaller than a single generation,
t� 1. But in discrete time no pairs can coalesce until t = 1, by which time the
dispersal kernel K(x|1) is roughly flat out to x . c, and probability of identity
thus becomes approximately constant for x . c. (For α ≥ d, the continuous-
time model already predicts that ψ should be changing slowly at x � x, and
therefore we do not expect a disagreement with the discrete-time model.) Recall
that our discrete-time model assumes no coalescence at t = 0 even for lineages
starting at x < δ; if we were to change this, ψ would discontinuously jump up
to a second, higher plateau for x < δ.

We can estimate the discrete-time value of ψ(x� c) from a heuristic argu-
ment, at least when ψ � 1. In the absence of coalescence, the probability of
the lineages being within coalescence range of each other in generation t ≥ 1 is
≈ (2δ)K(x|t) ≈ (2δ)K(0|t). For ψ � 1, including the possibility of coalescence
will only slightly decrease this probability. Given that the lineages are in coa-
lesce range, they coalesce with probability 1/(2δρ). So in any one generation
the probability of coalescence is ≈ K(0|t)/ρ and we can find ψ by summing over
all generations:

ψ(x� c) ≈
∞∑
t=1

K(0|t)
ρ

=
Γ(1/α)ζ(1/α)

α

1

ρc
, (65)

where ζ is the Riemann zeta function. Fig. 9 shows that (65) accurately de-
scribes the simulations.
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Figure 1: α controls the size and number of long-range jumps. Two-
dimensional Lévy flights with α values 0.95, 1.5, and 2. When α = 2, Lévy
flight motion reduces to normal diffusion without any long-range jumps. Lévy
flights with α < 2 have divergent mean squared displacement and a power law
dispersal kernel proportional to x−α−1. For α < 1, the mean displacement
also diverges, and large jumps become noticeably more prevalent than for 1 <
α < 2. Circles mark the beginnings of the trajectories, while squares mark
the ends. The generalized dispersal constants Dα are chosen such that the
flights all have the same characteristic displacement at the time step marked
by triangles. On shorter time scales, the diffusive trajectory tends to have the
largest displacement, while on longer time scales the trajectory with α < 1 tends
to have the largest displacement.
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Figure 2: The form of isolation by distance in one dimension is univer-
sal at long distances and varies at short distance. Approximate form for
the probability of identity as a function of distance, ψ(x), for different disper-
sal kernels α. Different regimes of the parameter space are separated by solid
lines, and labelled by their qualitative dynamics. Coalescence for distant pairs,
x� x, where x = (Dα/µ)1/α is the characteristic length scale of identity, occurs
via one long jump for all α, leading to the power law scaling at large distances
predicted by (4). Coalescence for nearby pairs, x� x, depends on the value of α
considered. For α > 2, the motion of lineages across short distances is diffusive
and ψ scales exponentially, as shown in (3). For 1 < α < 2, short distances are
covered via many small jumps, but lineages spread faster than they would under
diffusion, leading to the broader scaling found in (5). For α < 1, even short
distances are covered by one quick jump, leading to the power law shown in (6).
Lineages that do not coalesce quickly (at t � 1/µ) will likely never coalesce,
and probability of identity is limited by δ, rather than µ, as shown in (7). We
use “∼” to denote proportionality in the limit of large population density where
ψ(0)� 1.
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Figure 3: Long-range jumps affect when and where lineages coalesce.
Qualitative illustrations of lineage dynamics for each of the three α regimes in
1 dimension. Typical histories are shown for nearby samples (x � x, blue)
and distant samples (x � x, red). Left: For diffusive motion, α = 2, initial
separation x is a relatively good predictor of coalescence time. Center: For
moderately long-range dispersal, 1 < α < 2, large jumps broaden the spatial
and temporal ranges over which lineages coalesce. Lineages at large separations
x � x are occasionally able to coalesce at times comparable to 1/µ. Right:
For very long-range dispersal, α < 1, large jumps are common. This allows for
rapid coalescence of lineages at both small and large distances, but also lets
lineages jump very far away from each other and avoid coalescing.
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Figure 4: Isolation by distance follows the same power law as disper-
sal. Each panel shows the scaled probability of identity between a sampled pair
of individuals, ψρxµ, as a function of the scaled distance x/x between them.
Points show simulation results, black curves show numerical solutions of ψ(x)
calculated from (23) with δ = 0, and magenta lines show the power law that
emerges at large distances (4). Red curves show the asymptotic behavior pre-
dicted at short distances by (6) (α < 1), (5) (1 < α < 2), and (37) (α = 1).
For all plots, error bars show 68% percentile bootstrap confidence intervals (see
Methods). ρ = 100 in all plots, and data with ρ = 10 and ρ = 1 (not shown)
yield indistinguishable plots.
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Figure 5: For very long-range dispersal, α < 1, relatedness at short
distances is independent of mutation rate. Nearby lineages at x � x
either coalesce quickly and are identical, or jump very far away from each other
and never coalesce. Points show simulation results, and red and magenta lines
show the asymptotic predictions of (6) and (7), respectively. The black curve
shows a numerical solution of ψ(x) calculated from (23) with µ = 10−4. ρ = 100
in all plots, and data with ρ = 10 and ρ = 1 (not shown) yield indistinguishable
plots.
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Figure 6: Even for α > 2, relatedness still follows the same power law as
dispersal, rather than the diffusive prediction. Points show simulation
results with ρ = 100; ρ = 10 and ρ = 1 yield indistinguishable plots. Since
the dispersal kernel has finite variance, it approaches a diffusion, and at short
distances x� x the probability of identity is well-approximated by the diffusive
prediction (3) (red curve). But at long distances x� x, relatedness is driven by
rare long-range jumps, and therefore has the same power-law tail as dispersal,
(28) (magenta line).
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Figure 7: The form of isolation by distance in two dimensions is uni-
versal at long distances. Approximate form for the probability of identity as
a function of distance, ψ(x), for different dispersal kernels α. Different regimes
of the parameter space are separated by solid lines, and labelled by their quali-
tative dynamics. Coalescence for distant pairs, x� x, typically occurs via one
long jump, which leads to the power law scaling at large distances predicted by
(8). Nearby pairs, x � x, typically either coalesce very quickly or disperse far
away from each other, so the probability of identity is nearly independent of the
mutation rate, as shown in (9). This quick coalescence is effectively diffusive for
α > 2, while for α < 2, it is typically driven by a single jump. We use “∼” to
denote proportionality in the limit of large population density where ψ(0)� 1.
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Figure 8: The distribution of coalescence times has a power law tail.
Points show simulation results. Dashed magenta curves show the asymptotic
predictions (in order of increasing α) (58), (59), (61), and (63). Time is scaled
to dimensionless units. See Simulation Methods section for Dα values. We show
statistics based on the cumulative distribution P (t) rather than the density p(t)
because simulation estimates for the latter are very noisy. Top left: for α < 1,
the distribution of coalescence times is proportional to the probabil-
ity of lineages being nearby, K(0|t) ∝ t1−1/α. Plot shows P (∞) − P (t)
rather than 1−P (t) because lineages can disperse infinitely far away from each
other and avoid coalescing entirely, i.e., P (∞) < 1. We use the simulated value
of P (t = 106) to approximate P (∞). This empirical value deviates from the
continuous-time prediction (7) by ≈ 30% due to differences in the amount of
coalescence in the first few generations (see “Breakdown of models at small
scales”). Top right: the distribution of coalescence times has a loga-
rithmic tail for α = 1. In this marginal case, lineages do eventually coalesce
even in infinite ranges, but can take extremely long to do so. Bottom left: for
1 < α < 2, the distribution of coalescence times decays more quickly
than the probability of lineages being nearby. The coalescence time dis-
tribution has a power-law tail, p(t|x) ∝ t1/α−2. This deviation from the scaling
of the dispersal kernel at long times is due to the high probability of previous
coalescence events. Bottom right: for α > 2, the coalescence time distri-
bution may approach the diffusive limit. The scaling of 1− P appears to
be close to that of the diffusive prediction, (63), but there is at least a difference
in prefactor, perhaps again due to different probabilities of coalescence at very
recent times.
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Figure 9: For very long-range dispersal, α < 1, continuous-time and
discrete-time models differ at short distances. Scaled probability of iden-
tity ψ as a function of distance x for α = 0.5, δ = 0.5, and ρ = 100. Points
show discrete-time simulation results. For the continuous-time model, the black
curve shows the result of numerically integrating (23), while the dashed red and
magenta lines show the asymptotic approximations (6) and (7), respectively.
The continuous-time model predicts that ψ should only plateau within the coa-
lescence distance δ, but for distance between δ and the typical single-generation
dispersal distance c, the change in ψ is driven by the probability of coalescing at
0 < t� 1. In the discrete-time model, these lineages have to wait until t = 1 to
coalesce, leading to a lower, broader plateau, given by (65) (dashed green line).
This discrepancy only exists for δ < x � c, i.e., if c < δ then the discrete-time
and continuous-time models agree (blue points).
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