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Abstract 9 

By enabling many brain structures' state changes, the explicit cascaded oscillators 10 

proposed here can generate the rhythmic neural activity found in EEGs.  The function of such 11 

synchronization in information processing systems is timing error avoidance.  The narrow 12 

requirement for the oscillator input pulse duration suggests a possible relationship to the 13 

abnormal electrical activity characteristic of epileptic seizures.  Together, flip-flops and 14 

synchronization by oscillators suggest a resolution to the longstanding controversy of whether 15 

short-term memory depends on neurons firing persistently or in brief, coordinated bursts.   16 

The proposed cascade of oscillators consists of a ring oscillator and four toggle flip-flops 17 

connected in sequence.  The novel oscillator and toggle are composed of three and six neurons, 18 

respectively.  Their operation depends only on minimal properties of excitatory and inhibitory 19 

inputs.   20 

The hypothesis that cascaded oscillators produce EEG phenomena implies that the 21 

distribution of EEG frequencies is determined by just two parameters, the mean (μd) and standard 22 

deviation (σd) of the delay times of neurons that make up the initial oscillators in the cascades.  23 

For example, if μd and σd are measured in milliseconds, the boundary separating the alpha and 24 

beta frequency bands is  25 

125/{μd + √[(μd)
2
 + (σd)

2
ln(4)]} hertz.  26 

With 4 and 1.5 ms being the best available estimates for μd and σd, respectively, this predicted 27 

boundary value is 14.9 Hz, which is within the range of commonly cited estimates obtained 28 

empirically from EEGs.  Four and 1.5 ms also accurately predict the peaks and other boundaries 29 

of the five major EEG frequency bands.   30 

  31 
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Significance statement 37 

The neuronal model proposed here implies several major aspects of 38 

electroencephalography.  The matched periods of neural activity found in EEGs, and their wide 39 

distribution across the brain and across the frequency spectrum, follow from selective pressure 40 

for a biologically useful function: timing error avoidance for diverse brain functions in the trade-41 

off between speed and accuracy.  This activity can be achieved with a simple organization of 42 

synaptic connections and minimal neuron capabilities of excitation and inhibition.  The 43 

multimodal distribution of EEG frequencies is an explicit function of the mean and variance of 44 

neuron delay times.  The model suggests a relationship to epileptic seizures and a resolution to a 45 

short-term memory controversy. Two EEG characteristics make other models implausible.   46 

1.  Introduction 47 

This article is the fifth in a series of articles that show how neurons can be connected to 48 

process information.  These articles show that the field of logic circuit design can inform 49 

neuroscience as well as vice versa.  The first three articles [1-3] showed that a neural fuzzy logic 50 

decoder can produce the major phenomena of color vision and olfaction.  The fourth article [4] 51 

showed that neurons can be connected to form Boolean neural flip-flops (NFFs) that are robust 52 

and generate the major phenomena of short-term memory.  A flip-flop is a mechanism that can 53 

be set repeatedly to either one of two stable states, commonly labeled 0 and 1.  Flip-flops are the 54 

basic building blocks of sequential logic systems, whose logic operations depend on both the 55 

current inputs and past sequence of inputs.  Some of the material in [4] will be reviewed and 56 

used here.  57 

The present article shows how neurons can be connected to generate major phenomena of 58 

electroencephalography.  Only minimal properties of the strengths of excitatory and inhibitory 59 

signals are required for the networks to accomplish this.  These properties are consistent with 60 

more complex neuron properties, such as synaptic plasticity and the effects of neuromodulators, 61 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2021. ; https://doi.org/10.1101/2020.06.24.168419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

5 

but the minimal properties are sufficient to produce the results found here.  The network 62 

proposed here together with NFFs proposed in [4] suggest a resolution to the longstanding 63 

controversy of whether short-term memory depends on neurons firing persistently or in brief, 64 

coordinated bursts [5, 6].   65 

The hypothesis that cascaded oscillators produce the distribution of frequencies found in 66 

EEGs is consistent with available data, but further research is needed for a rigorous test.  The 67 

hypothesis implies that the entire distribution of EEG frequencies in bands is determined by the 68 

mean and variance of the delay times of neurons that make up the initial oscillators in the 69 

cascades.  With samples of neuron delay times and EEG frequencies, this implication can be 70 

tested simply and rigorously with standard statistical tests for equal means and variances. 71 

The brain's need for oscillations with the distribution of frequencies found in EEGs 72 

suggests a possible relationship between the oscillators proposed here and the abnormal electrical 73 

activity in neurological disorders such as epileptic seizures.  This suggestion is summarized in 74 

the remainder of this introduction.   75 

Oscillations in EEGs have a wide variety of frequencies, including high frequencies.  76 

From an engineering standpoint, connecting logic gates to produce oscillations with such a 77 

variety of frequencies is not a straightforward design problem.  A toggle is a flip-flop with one 78 

input that inverts the state with each input pulse.  Toggles connected in sequence are ideal for 79 

generating oscillations with a wide variety of frequencies because of the exponential growth in 80 

periods (doubling with each successive toggle).  A three-inverter ring oscillator is the fastest 81 

oscillator that can be constructed with logic gates, and the distribution of frequencies that three-82 

neuron ring oscillators can produce closely matches the distribution of frequencies in the EEG 83 

gamma band.  But driving cascaded toggles with the ring oscillator presents several problems.   84 

The master-slave toggle is the standard choice for cascaded toggles because a long input 85 

pulse inverts the toggle only once.  A master-slave toggle can be constructed with neurons.  But 86 
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a three-neuron ring oscillator's pulse duration is too short, and the oscillation frequency is too 87 

high, to invert a master-slave toggle correctly.   88 

A JK flip-flop can be configured as a toggle, but it has a narrow range for an input pulse 89 

duration that can successfully invert it.  The range is approximately three to four neuron delay 90 

times.  Fortuitously, a three-neuron ring oscillator's pulse duration is just within the upper bound.   91 

The JK toggle's output pulse duration is too long to invert another JK toggle correctly.  92 

Fortunately the toggle's two initial neurons produce output pulses of nearly the same duration as 93 

the toggle input.  One of these signals can be used to invert the next toggle in the cascade.  The 94 

master-slave would work for subsequent toggles in the cascade after the first one, but since the 95 

simpler JK suffices, there may have been no selective pressure to find the master-slave.  There 96 

are other possibilities for toggles besides the JK design given here, but they would also have the 97 

problem of a narrow requirement for input pulse duration.   98 

Irregularities such as variations in neuron delay times could cause serious errors in the JK 99 

toggle because of its narrow margin for error.  For example, if the delay times of the neurons in a 100 

cascade's initial ring oscillator are substantially different from those in the cascade's first toggle, 101 

that could cause an error.  Delay times can be stabilized by averaging the signals from several 102 

neurons and by other error-correcting mechanisms such as neuromodulators.  But with such a 103 

narrow margin for error, such methods may not be foolproof.  Depending on the type of error 104 

that occurs, neural structures that are synchronized by the oscillator would either be disabled or 105 

enabled but unsynchronized.  The resulting timing errors in neural firing and the brain's efforts to 106 

deal with the errors could be related to the abnormal electrical activity characteristic of epileptic 107 

seizures.   108 

The oscillator and JK toggle designs proposed here, as well as cascaded oscillators 109 

composed of JK toggles, are likely to be new to engineering.   110 
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2. Materials and methods 111 

2.1.  Simulation materials and methods  112 

Simulations of electronic circuits were done in CircuitLab.  A 5V signal represents the 113 

logic value TRUE, and 0V represents FALSE.  The signal graphs are stacked for display by 114 

adding increments of 10V.   115 

The neural oscillators and toggles were simulated in MS Excel.  A neuron's state is its 116 

output signal strength, normalized for convenience to be in the interval [0, 1].  For the 117 

simulations, the number ti represents the time after i changes of state (i = 0, 1, 2, …).  The time 118 

required for a neuron to change from one state to another is the neuron's delay time.  The 119 

neurons' outputs are initialized at time t0 = 0.  For i > 0, the output of each neuron at time ti is 120 

computed as a function of the inputs at time ti-1.  This function is given below.  Baseline neuron 121 

activity and low level additive noise in neuron signals are simulated by a computer-generated 122 

random number uniformly distributed between 0 and 0.1.   123 

Specific predicted probabilities of unusually high gamma band frequencies were 124 

approximated numerically from the estimated frequency probability density function (PDF) of 125 

the initial oscillator in the oscillator cascade with Converge 10.0, although this could also be 126 

done with a substitution of u = 1,000/x to convert the frequency PDF to a normal distribution of 127 

periods.   128 

2.2.  Unexplained phenomena and alternative models 129 

2.2.1.  Short-term memory: persistent firing or brief, coordinated bursts? 130 

Memory tests have shown that certain neurons fire continuously at a high frequency 131 

while information is held in short-term memory [7, 8].  These neurons exhibit seven 132 
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characteristics associated with memory formation, retention, retrieval, termination, and errors.  133 

One of the neurons in the NFFs proposed in [4] was shown to produce all of the characteristics. 134 

In addition to neurons firing persistently, other neurons firing in brief, coordinated bursts 135 

are also associated with short-term memory [5].  Which of these two phenomena actually 136 

produces short-term memory has been a longstanding controversy [5, 6].  It will be shown that 137 

neural oscillators and NFFs together suggest a resolution to this issue.   138 

2.2.2.  Electroencephalography 139 

2.2.2.1.  EEG phenomena and previous models 140 

Electroencephalograms show widespread rhythms that consist of many neurons firing 141 

with matched periods.  The spectrum of frequencies has been partitioned into bands according to 142 

the behavioral and mental state associated with the frequencies in each band.  Five EEG 143 

frequency bands are considered here: gamma, beta, alpha, theta, and delta.  Some researchers 144 

have found more bands or divided the bands into sub-bands depending on the focus of their 145 

research, but these five are discussed most often in the literature.   146 

The distribution of frequencies within each of these bands is unimodal [9-12].  The ratios 147 

of consecutive band boundaries [13] and the ratios of consecutive band peak frequencies [9-12] 148 

are approximately 2.  The gamma band peaks at about 40 Hz [9-12], although it contains 149 

frequencies of 100 Hz or more [14, 15].  Several estimated frequencies have been found for each 150 

boundary between bands. 151 

The EEG phenomena raise several questions.  What produces the widespread, 152 

synchronized, periodic firing?  What is the function of this widespread synchronization?  What 153 

produces and what is the function of the wide distribution of EEG frequencies in bands?  What 154 

produces the unimodal distribution in each band and the octave relationships between the peaks 155 

and boundaries?  What determines the specific frequencies of the peaks and boundaries?  Why 156 
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do gamma oscillations peak at about 40 Hz?  Why does the gamma band contain frequencies that 157 

are considerably faster than 40 Hz?  Why is there little agreement on the boundaries separating 158 

the EEG bands?   159 

It will be shown that the cascaded oscillators model provides answers to all of the 160 

questions above.   161 

Many models have been proposed for producing EEG frequencies [e.g., 16-23].  These 162 

models have several significant differences from the cascaded oscillators model.  The models are 163 

far more complex than the cascaded oscillators' minimal architecture (three or six neurons per 164 

oscillator) and neuron requirements (minimal capabilities of excitation and inhibition).  The 165 

models are not explicit in the sense of showing all neurons and connections.  Each model focuses 166 

on a narrow aspect of EEGs, such as how some frequencies can be generated in one or two 167 

frequency bands.  The models do not produce any of the known characteristics of the distribution 168 

of EEG frequencies, such as the octave relationships between the bands or the specific band 169 

peaks or boundaries.  The models also do not show that EEG phenomena can arise from selective 170 

pressures for a biologically useful function.  None of the models can answer more than one or 171 

two of the questions above.  And none has a micro-level explanation for its results like the mean 172 

and variance of neuron delay times that determine the entire distribution of frequencies produced 173 

by cascaded oscillators. 174 

2.2.2.2.  Implausibility of alternative mechanisms  175 

The cascaded oscillators design is based on evolutionary selective pressure for the 176 

biologically useful function of synchronization of neural structures' state changes to avoid timing 177 

errors.  This includes two specific selective pressures: for some types of information to be 178 

processed as fast as possible, and for a wide variety of speeds for diverse brain functions in the 179 

tradeoff between speed and accuracy.  The first can be met by a three-inverter ring oscillator, the 180 
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fastest oscillator that can be achieved by a network of logic gates.  The second can be met by 181 

cascaded toggles, which double the period with each toggle.   182 

Conceivably, the biological need for fast oscillations could be met by a mechanism that is 183 

different from a three-neuron ring oscillator, and a wide variety of speeds could be achieved by 184 

something other than cascaded toggles.  But according to the available data for neuron delay 185 

times and EEG frequencies, the distribution of EEG gamma frequencies matches that of three-186 

neuron ring oscillators.  Also according to available data for EEG frequencies, the distributions 187 

of the other EEG bands halve the frequencies with each band.  These two EEG features are by-188 

products of a possible simple solution to selective pressures, but otherwise they have no apparent 189 

biological function.  This makes it implausible that EEG phenomena are produced by a 190 

mechanism that is fundamentally different from cascaded oscillators. 191 

2.3.  Analysis 192 

2.3.1.  Neuron signals 193 

2.3.1.1.  Neuron signal strength 194 

Neuron signal strength is normalized here by dividing it by the maximum possible 195 

strength for the given level of adaptation.  This puts intensities in the interval from 0 to 1, with 0 196 

meaning no signal and 1 meaning the maximum strength.  The normalized number is called the 197 

response strength or simply the response of the neuron.  The responses 1 and 0 are collectively 198 

referred to as binary signals and separately as high and low signals.   199 

The strength of a signal consisting of action potentials, or spikes, is measured by spike 200 

frequency.  A high signal consists of a burst of spikes at the maximum spiking rate.  For a signal 201 

that oscillates between high and low, the frequency of the oscillation is the frequency of bursts 202 

(not to be confused with the frequency of spikes). 203 
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Normalization is only for convenience.  Non-normalized signal strengths, with the 204 

highest and lowest values labeled Max and Min, rather than 1 and 0, would do as well.  Absolute 205 

maximum and minimum values are also not necessary for high and low.  These could be 206 

replaced by high and low ranges of values.   207 

Table 1 shows a truth table for the logic function X AND NOT Y.  The last column also 208 

represents the approximate response of a neuron with high and low excitatory and inhibitory 209 

inputs X and Y, respectively.  Of the 16 possible binary functions of two variables, this table 210 

represents the only one that is consistent with the customary meanings of "excitation" and 211 

"inhibition."  In simplest terms, a neuron is active when it has excitatory input and does not have 212 

inhibitory input.   213 

 214 

X Y X AND NOT Y 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

 215 

Table 1.  AND-NOT logic function.  The table is a logic truth table for the statement X AND 216 

NOT Y.  It also shows the approximate response of a neuron with one excitatory input of 217 

strength X and one inhibitory input of strength Y.   218 

Some of the networks presented here require continuous, high input.  In the figures, this 219 

input is represented by the logic value "TRUE."  For an electronic logic circuit, the high input is 220 

normally provided by the power supply.  If the components represent neurons, the high input can 221 

be achieved by neurons in at least four ways.  1) A continuously high signal could be provided 222 

by a neuron that has excitatory inputs from many neurons that fire independently [24].  The brain 223 

has many neurons that are active spontaneously and continuously without excitatory input 224 

[25, 26].  A network neuron that requires a high excitatory input could receive it from 2) a 225 
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spontaneously active neuron, or 3) the neuron itself could be spontaneously active.  4) The high 226 

input could be provided by one of an NFF's outputs that is continuously high (or nearly high).   227 

2.3.1.2.  Additive noise in neuron signals 228 

2.3.1.2.1.  Noise reduction 229 

A sigmoid response to excitatory input produces an output that is closer to binary than the 230 

input by decreasing an input near 0 and increasing an input near 1.  Some neurons are known to 231 

have sigmoid responses to single inputs, including inhibitory inputs [27-29].  It will be 232 

demonstrated by simulation that a neuron response that is sigmoid in both excitatory and 233 

inhibitory inputs is sufficient to produce robust near-binary outputs of the NFFs and oscillators 234 

presented here.  But a sigmoid response is not necessary; a simpler, more general property is 235 

sufficient.   236 

Reduction of noise in both excitatory and inhibitory inputs can be achieved by a response 237 

function that generalizes a sigmoid function's features.  The noise reduction need only be slight 238 

for the proposed NFFs and oscillators because they have feedback loops that continuously reduce 239 

the effect of noise.   240 

Let F(X, Y) represent a neuron's response to an excitatory input with strength X and an 241 

inhibitory input with strength Y.  The function value, as well as X and Y, must be bounded by 0 242 

and 1, the normalized minimum and maximum possible neuron responses.  Suppose F satisfies:  243 

1.  F(X, Y) > X - Y or F(X, Y) = 1 for inputs (X, Y) near (1, 0) and  244 

2.  F(X, Y) < X - Y or F(X, Y) = 0 for inputs (X, Y) near the other three vertices of the 245 

unit square. 246 

The truth values of the logic function X AND NOT Y in Table 1 are max{0, X-Y} (the 247 

largest of 0 and X-Y).  For inputs X and Y that are somewhat close to binary, conditions 1 and 2 248 
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make the neuron's response F(X, Y) closer to, or equal to, the binary truth value X AND NOT Y 249 

of Table 1 than max{0, X-Y}.  Neurons that make up the networks proposed here are assumed to 250 

have these two minimal noise-reducing properties.   251 

There are many examples of functions that satisfy conditions 1 and 2.  A sigmoid neuron 252 

response to excitatory input with no inhibitory input satisfies the conditions.  The simple 253 

"threshold" response function of a neuron that has no response for low inputs, and fires at a high 254 

rate when the excitatory input strength is above a certain threshold value, is an extreme form of a 255 

sigmoid response and satisfies the conditions.  A function that is sigmoid in both excitatory and 256 

inhibitory inputs (e.g., the function in the next section) satisfies the conditions.  Also shown 257 

below is a single transistor with two inputs that satisfies the conditions.  Conditions 1 and 2 are 258 

also consistent with more complex models.  For example, each of the two inputs X and Y could 259 

represent nonlinear weighted sums (or even more complex functions) of several excitatory and 260 

inhibitory inputs, respectively, and F could be a nonlinear weighted sum of X and Y.   261 

Conditions 1 and 2 are sufficient to reduce additive noise in binary inputs and produce 262 

the NFF results found here.  The level of noise that can be tolerated by the NFFs depends on the 263 

two regions in the unit square where condition 1 or 2 holds for the input point (X, Y).  If a binary 264 

input (X, Y) has additive noise that is large enough to change the region in which it lies, an error 265 

can occur.  Because of the continuous feedback in NFFs, it will be seen that even a response 266 

function with only a moderate noise-reducing capability can maintain near-binary outputs with 267 

substantial noise in the inputs. 268 

2.3.1.2.2.  Example of a neuron response that satisfies conditions 1 and 2 269 

For any sigmoid function f from f(0) = 0 to f(1) = 1, the following function has the noise-270 

reducing properties 1 and 2:   271 

F(X, Y) = f(X) - f(Y), bounded below by 0.   272 
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This function is plausible as an approximation of a neuron response because it is sigmoid 273 

in each variable and some neurons are known to have sigmoid responses to single excitatory or 274 

inhibitory inputs, as mentioned above.  The same sigmoid function applied to X and Y is not 275 

necessary to satisfy conditions 1 and 2.  The function F could be the difference of two different 276 

sigmoid functions.   277 

The function F is illustrated in Fig 1 for a specific sigmoid function f.  The sine function 278 

of Fig 1A, which is somewhat close to the line y = x,  was chosen for f rather than any of the 279 

more common examples of sigmoid functions to demonstrate by simulation that a highly 280 

nonlinear function is not necessary for robust maintenance of binary signals.  On half of the unit 281 

square, where Y ≥ X, Fig 1B shows that F has the value 0.  This reflects the property that a large 282 

inhibitory input generally suppresses a smaller excitatory input.   283 

 284 

 285 

Fig 1.  Noise-reducing function.  The graphs show an example of a neuron response to analog 286 

inputs that reduces additive noise in binary inputs.  A. A sigmoid function f(x) = 287 

(1/2)sin(π(x - 1/2)) + 1/2.  B. Graph of F(X, Y) = f(X) - f(Y), bounded by 0.  The response 288 

function has the noise-reducing properties 1 and 2.  Wireframe: Graph of the function Z = F(X, 289 

Y).  Green and red lines: A triangle in the plane Z = X - Y.  Red: Approximate intersection of the 290 

plane and the graph of F.  Purple: Approximate region in the unit square where F(X, Y) > X - Y 291 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2021. ; https://doi.org/10.1101/2020.06.24.168419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

15 

or F(X, Y) = 1 (condition 1).  Blue: Approximate region in the unit square where F(X, Y) < X - 292 

Y or F(X, Y) = 0 (condition 2).   293 

2.3.1.2.3.  Neuron response for simulations 294 

The response function F(X, Y) in Fig 1 is used for the simulations as follows.  The 295 

number ti represents the time after i changes of state.  The increment ti - ti-1 is the delay time of 296 

the neuron that changed states.  The neurons' outputs are initialized at time t0 = 0.  At time ti for i 297 

> 0, the output Zi of each neuron that has excitatory and inhibitory inputs Xi-1 and Yi-1 at time ti-1 298 

is:  299 

3.  Zi = F(Xi-1, Yi-1), = max{0, f(Xi-1) - f(Yi-1)} 300 

 = max{0, [(1/2)sin(π(Xi-1 - 1/2)) + 1/2] - [(1/2)sin(π(Yi-1 - 1/2)) + 1/2]}. 301 

2.3.1.2.4.  A primitive noise-reducing gate 302 

Properties 1 and 2 do not indicate sophisticated capabilities of mathematics or logic.  A 303 

response with the properties can be produced by mechanisms that are quite simple.  Fig 2 shows 304 

that a single transistor and three resistors can be configured to accomplish this.  The inputs X and 305 

Y vary from 0V to 5V in steps of 0.05V.   306 

 307 
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 308 

Fig 2.  Single transistor gate that reduces noise.  This minimal logic circuit satisfies the noise-309 

reducing conditions 1 and 2.  A. A logic circuit consisting of one transistor and three resistors.  310 

B. CircuitLab simulation of the logic circuit in A.  Wireframe: Graph of the transistor response 311 

function Z = F(X, Y).  Three green and red lines: A triangle in the plane Z = X - Y.  Red: 312 

Intersection of the plane and the graph of F.  Purple: Region in the unit square where F(X, Y) > 313 

X - Y or F(X, Y) = 1 (condition 1).  Blue: Region in the unit square where F(X, Y) < X - Y or 314 

F(X, Y) = 0 (condition 2).   315 

2.3.2.  Neural logic gates and flip-flops  316 

For several reasons that were detailed in [4], the neural networks in the figures are 317 

illustrated with standard (ANSI/IEEE) logic symbols rather than symbols commonly used in 318 

neuroscience schematic diagrams.  One of the reasons is that the symbols can be interpreted in 319 

two ways.  As a logic symbol, the rectangle with one rounded side in Fig 3A represents the AND 320 

logic function, and the circle represents negation.  The input variables X and Y represent truth 321 

values TRUE or FALSE, and the output represents the truth value X AND NOT Y.  Second, Fig 322 

3A can also represent a single neuron, with a circle representing inhibitory input and no circle 323 

representing excitatory input.  With the minimal noise-reducing capabilities of conditions 1 and 324 

2, if X and Y are binary with some additive noise, the output will be closer to, or equal to, the 325 

binary X AND NOT Y value of Table 1 than max{0, X-Y}.   326 
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 327 

Fig 3.  Neural logic gates and flip-flops.  A. A symbol for an AND-NOT logic gate, with output 328 

X AND NOT Y.  The symbol can also represent a neuron with one excitatory input and one 329 

inhibitory input.  B. An AND-NOT gate configured as a NOT gate, or inverter.  C. An active low 330 

Set-Reset (SR) flip-flop.  D. An active high SR flip-flop.  E. An active high SR flip-flop enabled 331 

by input from an oscillator.  F. A JK flip-flop or toggle.   332 
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As logic circuits, the rest of the figures' outputs shown in Fig 3 follow from Boolean 333 

logic.  The figures' outputs as networks composed of neurons will be illustrated as needed by 334 

simulation.  Fig 3B shows an AND-NOT gate with a continuously high input that functions as a 335 

NOT gate, or inverter.    336 

A flip-flop stores a discrete bit of information in an output with values usually labeled 0 337 

and 1. This output variable is labeled M in Fig 3.  The value of M is the flip-flop state or memory 338 

bit.  The information is stored by means of a brief input signal that activates or inactivates the 339 

memory bit.  Input S sets the state to M = 1, and R resets it to M = 0.  Continuous feedback 340 

maintains a stable state.  A change in the state inverts the state.   341 

Two basic types of flip-flops are the Set-Reset (SR) and JK.  Fig 3C shows an active low 342 

SR flip-flop.  The S and R inputs are normally high.  A brief low input S sets the memory bit M 343 

to 1, and a brief low input R resets it to 0.  Adding inverters to the inputs in Fig 3C produces the 344 

active high SR flip-flop of Fig 3D.  The S and R inputs are normally low.  A brief high input S 345 

sets the memory bit M to 1, and a brief high input R resets it to 0.  A disadvantage of the SR flip-346 

flop is that if S and R input signals are attempting to invert the flip-flop simultaneously, the 347 

outputs are unpredictable.   348 

Fig 3E shows a flip-flop with an enabling input.  The S and R inputs in Fig 3D have been 349 

replaced by AND-NOT gates that allow the S or R input to be transmitted only when the 350 

enabling input is low.  In synchronized signaling systems, several logic circuits are enabled by an 351 

oscillator signal to avoid timing errors.  Structures that are enabled by the same signal change 352 

states simultaneously.  Adding an inverter (Fig 3B) to the enabling signal can ensure that one 353 

structure does not change states simultaneously with another. 354 

For the so-called JK flip-flop in Fig 3F, the enabling input in Fig 3E has been replaced by 355 

input from the flip-flop outputs.  The advantage of the JK flip-flop over the SR flip-flop is that if 356 

S and R are both high simultaneously, the flip-flop state is inverted because one of the two input 357 
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gates is inhibited by one of the flip-flop outputs.  This means the JK flip-flop can be configured 358 

as a toggle by linking the Set and Reset inputs, as illustrated by the single input T in the figure.   359 

A problem with the JK toggle is that it functions correctly only for a short duration of 360 

high input.  If the input pulse is too long or too short, an error occurs.  This problem is discussed 361 

in the toggle section below. 362 

2.3.3.  Neural toggles and oscillators  363 

2.3.3.1.  Neural toggle  364 

Fig 4 shows a simulation of the JK flip-flop of Fig 3F composed of neurons and 365 

configured as a toggle.  The outputs were initialized in a stable state, and the simulation was 366 

carried out as described in the simulation methods with equation 3.  The slow rise and fall of the 367 

toggle input T, over several state changes, is exaggerated to clarify the robust operation of the 368 

network in the presence of additive noise.  369 

 370 

 371 

Fig 4.  Simulation of a neural toggle with noise in the inputs.  The figure shows a simulation 372 

of the JK flip-flop in Fig 3F composed of six neurons and configured as a toggle.  The input 373 

TRUE in Fig 3F is labeled Enable here because it contains additive noise.  The graphs show the 374 
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toggle's operation is robust in maintaining a nearly binary memory bit in the presence of 375 

substantial additive noise in the inputs.  Baseline noise in both the Enable input and the toggle 376 

input T has negligible effect on the memory bit M.  Two temporary bursts of larger noise in T 377 

have no lasting effect.  The two inputs that invert the toggle state have strengths 0.85 + noise and 378 

0.55 + noise, with durations of four and three state changes, respectively.  The values 0.85 and 379 

0.55 were chosen to show that high inputs subtantially reduced by noise as well as high inputs 380 

successfully invert the toggle.   381 

Low level additive noise and baseline activity in the inputs in Fig 4 are simulated by a 382 

computer-generated random number uniformly distributed between 0 and 0.1.  The high 383 

Enabling input is simulated by 1 minus noise.  Each of the two temporary bursts of larger noise 384 

in T is simulated by the sum of two sine functions and the computer-generated noise.   385 

The JK toggle is sensitive to the duration of the high input pulse T.  The simulations in 386 

Fig 5 illustrate the limitations on the input pulse durations.  The simulations were carried out as 387 

described in the simulation methods with equation 3.   388 
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 389 

Fig 5.  Neural toggle simulations illustrating the narrow requirement for input pulse 390 

duration.  The graphs show the simulated responses of a neuron implementation of the JK 391 

toggle in Fig 3F, with high input pulses T that last for two to five neuron changes of state.  These 392 

pulse durations include the pulse's rise and fall.  The piecewise linear (PWL) graphs in 393 

simulation A and piecewise square (PWS) graphs in simulation B indicate rise and fall that are 394 

spread uniformly over the change of state or that occur quickly, respectively.  For comparison, 395 

the PWS pulse T2 from Fig 5B is superimposed in red on the PWL T2 in Fig 5A.  The results in 396 
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the two simulations are the same, except that wherever one illustrates a Set (S) inversion, the 397 

other shows a Reset (R).   398 

A successful inversion of the toggle state requires the input T to be high long enough to 399 

invert the toggle, but not so long that it initiates a second toggle inversion.  An input pulse that is 400 

too short or too long causes the inhibiting feedback from a toggle output to begin too late or to 401 

end too soon, respectively.  For each high pulse of the toggle input T, the sequence of signal 402 

inversions numbered 1 through 5 in Fig 5 inverts the two toggle outputs.  The sequence A, B, C 403 

terminates the toggle inversion.   404 

If the input pulse T is too short, the terminating sequence A-C completes before the 405 

inverting sequence 1-5.  That is, step C occurs before step 5, which means the inhibiting 406 

feedback to the low toggle output begins too late to prevent an extra inversion of that output.  407 

This error occurs for T2 in Fig 5, highlighted with a red line.  In Fig 5A for example, step 5 408 

makes M high, which is supposed to keep M_bar inhibited in a low state.  But because step C 409 

returned S_bar to the high state before step 5 provides the inhibitory high input from M, M_bar 410 

returns to the high state.   411 

In the simulation, the toggle outputs M and M_bar happen to go high simultaneously and 412 

they continue oscillating together in a race condition.  As will be seen, real materials do not 413 

make such changes exactly simultaneously.  One of the two outputs will soon win the race, 414 

stabilizing the outputs.   415 

The too-short input error is only narrowly avoided in the case T3, where steps C and 5 416 

occur in the same change of state.  The near error is highlighted with a yellow line.  In case T4, 417 

step C occurs after step 5, highlighted with a green line. 418 

If the input pulse T is too long, the high toggle output inverts too soon to inhibit the 419 

toggle input from initiating another toggle inversion.  That is, step 4 occurs before step A.  This 420 
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error occurs for T5 in Fig 5, highlighted with a red line.  In Fig 5A for example, the toggle input 421 

T is still high when M_bar has inverted to low and is no longer suppressing R.  This begins 422 

another inversion of the toggle state, shown in red.  As before for short inputs, step C occurs 423 

before step 5, resulting in the race condition.   424 

The too-long input error is narrowly avoided in the case T4, where steps 4 and A occur in 425 

the same change of state.  The near error is highlighted with a yellow line.  In case T3, step 4 426 

occurs after step A, highlighted with a green line.  Longer pulses in T simply invert the toggle 427 

twice, leaving the toggle state unchanged.   428 

The next simulation may be more accurate in how real components actually function.  Fig 429 

6 shows an electronic implementation of an AND-NOT gate and two simulations of the JK 430 

toggle of Fig 3F composed of these gates.  The threshold for each transistor is 2V.   431 
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Fig 6.  An electronic simulation that verifies the narrow requirement for the JK toggle's 433 

input pulse duration.  A. A CMOS AND-NOT gate of Fig 3A composed of a NOR gate (NOT 434 

OR), an inverter for X, and a buffer for Y to even the timing of the inputs.  By De Morgan's law, 435 

the output NOT[NOT(X) OR Y] = X AND NOT Y.  B. A simulation of the JK toggle in Fig 3F 436 

composed of the AND-NOT gates in A with PWL inputs.  The simulation time is 900 ns.  C. A 437 

simulation of the toggle with PWS inputs.  The simulation time is 800 ns.   438 

The next electronic simulation will show that the delay time of the AND-NOT gate in Fig 439 

6A is about 15 ns.  So the input pulse durations for T1-T5 in Figs 6B and 6C are multiples of 15 440 

ns.  The electronic simulation software initializes the component states, so only one enabling 441 

input is needed for an asymmetry: the first 5V input to the first AND-NOT gate of the toggle. 442 

Except for the race conditions and time scales, the simulations of the electronic toggle in 443 

Fig 6 show results that are similar to the simulations of the neural toggle in Fig 5.  In Fig 6, the 444 

pulse T2 is simply too short to invert the toggle outputs.  Pulses T3 and T4 invert the toggle 445 

outputs correctly.  For the near error in T4, highlighted with yellow lines in Figs 6B and 6C, the 446 

pulse duration is long enough to produce a slight rise in R, the beginning of another toggle 447 

inversion.  But the rise is too small to have a discernable effect on subsequent steps.  Input T5 448 

successfully inverts the outputs, but the long input is enough to raise a brief pulse in S.  This 449 

causes the toggle outputs to be briefly malformed.  Input T6 is so long it inverts the toggle twice, 450 

ultimately leaving the outputs unchanged.  Longer input pulses also invert the toggle outputs 451 

only twice.  Fig 6C shows a somewhat greater response to the T2 input than Fig 6B, especially 452 

evident in R_bar, because the high portion in the PWS input pulse T2 is wider than in the PWL 453 

pulse.  The change in R_bar is not enough to have a `discernable effect on M.   454 

The AND-NOT gate of Fig 6A was used for the simulations because of the highly 455 

reliable CMOS architecture.  Although one-transistor AND-NOT gates like the one in Fig 2A 456 

can form functioning logic circuits [30, 31], the capability of electronic signals to travel both 457 
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ways between components can cause problems in circuits composed of such simple hardware.  458 

Neural synapses have the distinct advantage of conveying signals that are generally transmitted 459 

only one way.  This signal difference is one of the reasons that CMOS architecture is used almost 460 

exclusively in electronic logic circuits, and the reason that the AND-NOT gate in Fig 6A requires 461 

10 transistors to accomplish what a single neuron can do. 462 

The electronic simulations allow much more granular data than the neural simulations 463 

using equation 3, which evaluates only at the end of each state change.  The simulation of Fig 6B 464 

was done with time steps of 1 ns, i.e., 15 evaluations for each state change.  For Fig 6C, the time 465 

steps were 0.5 ns to simulate the PWS input more accurately.   466 

2.3.3.2.  Neural ring oscillator  467 

An oscillator produces periodic bursts of a high signal followed a quiescent period of a 468 

low signal.  It is the basic element of a timing mechanism.  A ring oscillator is a simple, reliable 469 

oscillator.  An odd number of three or more inverters connected sequentially in a ring produces 470 

periodic bursts as each gate inverts the next one.  The odd number of inverters makes all of the 471 

inverter states unstable, so the states oscillate between high and low.  All inverters in the ring 472 

produce oscillations with the same frequency.  Their phases are approximately uniformly 473 

distributed over one cycle, and the high and low signal durations are approximately equal.  Their 474 

common period is twice the sum of the inverters' delay times.  (The sum is doubled because each 475 

component inverts twice per cycle.)  A ring oscillator is the simplest type of oscillator that can be 476 

implemented with logic gates, and the simplest and fastest ring oscillator consists of three 477 

inverters.   478 

Fig 7 shows a three-inverter ring oscillator composed of AND-NOT gates and two 479 

simulations of the oscillator composed of three neurons.  Enable 1 rises two state changes before 480 

Enable 2 to initialize the cells.  Additive noise in the Enable inputs is simulated by a random 481 

number uniformly distributed between 0 and 0.1.  The Enabling input begins as baseline noise 482 
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and transitions between 0 and 1 as a sine function plus noise.  During the interval when the 483 

Enabling input is high, it is 1 minus noise.   484 

 485 

 486 

Fig 7.  Ring oscillator.  A. A ring oscillator consisting of three inverters of Fig 3B.  B. A 487 

simulation of the ring oscillator composed of three PWL neurons.  C. A simulation of the ring 488 
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oscillator composed of three PWS neurons.  The common period of six changes of state is the 489 

sum of the neurons' delay times (two changes of state for each neuron).  The phases are 490 

approximately uniformly distributed over the period, indicated by the black lines.  The duration 491 

of each neuron's high burst is four changes of state.  This is a burst duration that can successfully 492 

invert a JK toggle.   493 

Fig 8 shows a simulation of an electronic implementation of the three-inverter oscillator 494 

for comparison with the neural implementation.  The simulation time is 650 ns.   495 

 496 

 497 

Fig 8.  Simulation of an electronic ring oscillator.  The graphs show a simulation of the 498 

oscillator in Fig 7A composed of AND-NOT gates in Fig 6A.  Except for the time scale, the 499 

electronic simulation has essentially the same results as the neural simulations in Fig 7.  One 500 

cycle of the PWL wave of Fig 7B and one cycle of the PWS wave of Fig 7C are superimposed 501 

for comparison.  The slopes of the electronic oscillator's rise and fall lie between the two 502 

extremes of the simulated neural oscillators' PWL and PWS waves.  The period of about 90 ns 503 

means the AND-NOT gate's simulated delay time is about 15 ns.  The three phases are 504 

approximately uniformly distributed over one cycle, as indicated by the black lines.   505 
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2.3.3.3.  Cascaded neural oscillators  506 

As described in the introduction, an oscillator can be connected in sequence with toggles 507 

to form a cascade of oscillators.  Because two high inputs are required for each cycle of a toggle-508 

as-oscillator (one to set the memory state, another to reset it), a toggle produces a signal whose 509 

period is exactly double that of the toggle's input.  Fig 9 shows a cascade consisting of a ring 510 

oscillator and two toggles.    511 

 512 

 513 

Fig 9.  Three cascaded neural oscillators.  The cascade consists of the ring oscillator of Fig 7A 514 

and two JK toggles of Fig 3F connected in sequence.   A cascade could have any number of 515 

toggles.  The input to the first toggle comes from the ring oscillator, and the input to each 516 

succeeding toggle comes from one of the first gates in the previous toggle.  This makes the 517 
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duration of each toggle's high input pulse remain approximately the same throughout the 518 

cascade. 519 

Simulations of the cascaded oscillators in Fig 9 are shown in Fig 10.  Except for the time 520 

scales, the simulated neural results in Figs 10A and 10B are essentially the same as the simulated 521 

electronic results of Fig 10C.   522 

 523 
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Fig 10.  Simulations of the three cascaded oscillators in Fig 9.  A. Simulation of oscillators 525 

composed of PWL neurons.  B. Simulation of oscillators composed of PWS neurons.  C. 526 

Simulation of oscillators composed of the electronic AND-NOT gates of Fig 6A.  The simulation 527 

time is 800 ns. 528 

The simulations in Fig 10 illustrate the main properties of cascaded oscillators:  In each 529 

toggle, the period of every neuron's output is double the period of the toggle's input, as indicated 530 

by the black lines.  The pulse duration of each toggle's two initial gates is approximately the 531 

same as the pulse duration of the toggle's input, as indicated by the measures of four changes of 532 

state.  The duration of each toggle's output pulse is approximately half of the period.   533 

Because the input Ring to the first toggle has a pulse duration of four AND-NOT gate 534 

state changes, signal R1 in Fig 10C has a small rise in each cycle similar to the rise in R for input 535 

T4 in Fig 6, indicating the near error of the long input.  Signal R2 in Fig 10C also has a rise at the 536 

same place in each cycle, but it is barely visible because the input R1 to the second toggle has a 537 

slightly shorter duration than the input Ring to the first toggle.  Similarly, the pulse duration of 538 

R2 is slightly shorter than that of R1.  If neurons have this behavior of a slight shortening of each 539 

input pulse to consecutive toggles in the cascade, it makes the cascade more robust because a 540 

pulse duration of four state changes is near the upper bound on pulse durations that can 541 

successfully invert the JK toggle. 542 

2.3.4.  The relationship between the distributions of neuron delay times and cascaded 543 

neural oscillators' frequencies 544 

The distributions of cascaded neural oscillators' frequencies are determined by the mean 545 

and variance of neuron delay times of the cascades' initial oscillators.   546 
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2.3.4.1.  Exact relationships between inverter delay times and cascaded oscillator 547 

frequencies 548 

The interest here is in neural inverters and toggles, but the arguments in this section apply 549 

to any implementation of inverters and toggles, including electronic.  These results may not be 550 

found in electronics texts because engineers are not normally concerned with the small variances 551 

in component performance. 552 

2.3.4.1.1.  Distributions of oscillator periods and frequencies 553 

As noted earlier, each cycle time of a ring oscillator is the sum of the times it takes for 554 

each inverter to invert twice.  If X1, …, Xn are independent and identically distributed random 555 

variables representing the delay times of n inverters in a ring oscillator, the ring oscillator's 556 

period is:  557 

4.  P = 2(X1 + …+ Xn)  558 

If toggles are connected in sequence with the oscillator, each cycle time of each toggle's output is 559 

the sum of two of the input's cycle times.  Cascaded toggle number k = 1, 2, … has period:  560 

5.  Pk = 2
k
P   561 

The mean and standard deviation of the delay times of the inverters in ring oscillators in 562 

all cascaded toggles are denoted by μd and σd.  By equations 4 and 5 and the elementary 563 

properties of random variables, for i = 1, 2, … (with i = 1 representing the initial ring oscillator), 564 

the period of cascaded oscillator number i has mean and standard deviation: 565 

6.  μi = 2
i
nμd, σi = 2

i
√nσd 566 

The factor 2
i
 shows the octave relationship between the oscillators' distributions of periods.   567 
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The oscillators' distributions of frequencies can be derived from the distributions of 568 

periods by straightforward calculus.  If periods and frequencies are measured in milliseconds and 569 

hertz, respectively, then frequency = C/period for C = 1,000.  If the probability density function 570 

(PDF) of the period of oscillator i = 1, 2, … (with i = 1 representing the initial ring oscillator) is 571 

fi(x), then the PDF of the frequency of oscillator i is: 572 

7.  gi(x) = Cfi(C/x)/x
2
 573 

Equation 7 shows the oscillator period and frequency distributions are different.  For 574 

example, it will be seen that if the periods are normally distributed, the frequency distributions 575 

are skewed to the right.  But the intersections of consecutive period PDFs (converted to 576 

frequencies) are the same as the intersections of consecutive frequency PDFs because x
2
 and the 577 

initial constant C in equation 7 drop out of the equation gi(x) = gi+1(x).   578 

2.3.4.1.2.  Normal distributions 579 

If inverter delay times are normally distributed, then by equations 4 and 5 and the 580 

elementary properties of normal distributions, the periods of ring oscillators and cascaded 581 

toggles are also normally distributed. 582 

The normal PDF with mean μ and standard deviation σ, whose graph is commonly 583 

known as the bell curve, is:  584 

8.  f(x) = exp[-(x-μ)
2
/(2σ

2
)]/√(2πσ

2
) 585 

Equation 8 implies that a normal distribution is entirely determined by its mean and standard 586 

deviation.  By equations 6 and 7, this means cascaded oscillators' distributions of periods and 587 

frequencies are entirely determined by the number of inverters n in the initial ring oscillators and 588 

the inverter delay parameters μd and σd.   589 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2021. ; https://doi.org/10.1101/2020.06.24.168419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

35 

Substituting the cascaded oscillators' period parameters in equation 6 into equation 8 to 590 

obtain the period PDFs fi(x), the intersections of each pair of consecutive period PDFs can be 591 

found by elementary algebra.  For i = 1, 2, …, (i = 1 representing the ring oscillator), the 592 

intersection of fi(x) and fi+1(x) occurs at period: 593 

9.  Intersection(i) = 2
i
(2/3){nμd + √[(nμd)

2
 + 6nσd

2
ln(2)]} ms   594 

The factor 2
i
 shows the intersections also have the octave relationship.   595 

By substituting the period PDFs fi obtained from equations 6 and 8 into equation 7, the 596 

peak frequency (mode) for PDF gi can be found by calculus:  597 

10.  mode(i) = {250/(2
i
nσd

2
)}{-nμd + √[(nμd)

2
 + 8nσd

2
]} Hz 598 

Again, the factor 2
i
 shows the peak frequencies also have the octave property.  These peak 599 

frequencies are close to, but not the same as, the peak frequencies 1,000/μi derived from the 600 

means μi of the period's normal distributions in equation 6.   601 

2.3.4.2.  Neuron delay times 602 

Since neuron delay times are determined by several factors, the delay times are 603 

approximately normally distributed (by the central limit theorem).  For small networks with 604 

chemical synapses, nearly all of the delay occurs at the synapses.  Several studies have measured 605 

synapse delay times [e.g., 32, 33], but the literature apparently does not have empirical estimates 606 

of the parameters (mean and variance) of the delay times' distribution.  However, a description of 607 

the range of synapse delay times is “at least 0.3 ms, usually 1 to 5 ms or longer” [25].  Although 608 

the description is far from precise, delay time parameters can be estimated.   609 

The description of the range has two parts.  The first part “at least 0.3 ms" seems to refer 610 

to all observations.  The second part "usually 1 to 5 ms or longer" seems to describe the ranges of 611 

typical samples, with "5 ms or longer" representing the ranges' right endpoints.  In that case, the 612 
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interval [1 ms, 7 ms] is at least a reasonable, rough estimate of the range of a moderately sized 613 

sample.   614 

If only the range of a sample (minimum value, m, and maximum, M) is known, the 615 

midpoint can be used as an estimate of the mean of a distribution.  Simulations have shown that 616 

(M - m)/4 is the best estimator of the standard deviation for moderately sized samples [34].  617 

Based on this and the estimated range [1 ms, 7 ms], neuron delay times are estimated to have 618 

distribution parameters: 619 

11.  μd = 4 ms, σd = 1.5 ms  620 

For a normal distribution with these parameters, about 99.3% of the distribution is at least 0.3 621 

ms.  This agrees well with the description “at least 0.3 ms.”  About 73% lies between 1 and 5 ms, 622 

and 95% is between 1 and 7 ms.  This agrees reasonably well with the description “usually 1 to 5 623 

ms or longer.”   624 

2.3.4.3.  EEG frequency distribution compared to estimated neural oscillator frequency 625 

distributions  626 

The graphs of the estimated frequency PDFs of five cascaded neural oscillators are 627 

shown in Fig 11.  As before, the period PDFs fi(x) are obtained by substituting the period 628 

parameters in equation 6 into equation 8.  With the estimated delay parameters of equations 11 629 

and n = 3 neurons for the ring oscillator, the estimated frequency PDFs gi(x) are obtained from 630 

equation 7.  The four intersections of consecutive PDFs, shown in blue, are found by converting 631 

the periods given by equation 9 to frequencies.  The five PDF modes, shown in yellow, are 632 

obtained from equation 10.  Frequencies that are commonly cited [9-12, 35-52] as partition 633 

points separating the EEG frequency bands and peak frequencies of three of the bands are shown 634 

in red and green, respectively.  Numbers in parentheses show how many times each frequency 635 
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was cited.  (Estimates of peak frequencies apparently have not been found for the lower 636 

frequency delta and theta bands.)   637 

 638 

 639 

Fig 11.  Estimated frequency distributions of cascaded neural oscillators compared to 640 

commonly cited EEG frequency band peaks and boundaries.  The graphs are the estimated 641 

PDFs of the frequencies of a three-neuron ring oscillator and four cascaded toggles.  The PDFs 642 

were determined solely by the estimated mean and variance of neuron delay times.  The five 643 

intervals defined by the intersections of consecutive PDFs are labeled with Greek letters to 644 
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distinguish them from EEG frequency bands, which are often written in the Roman alphabet.  645 

The intersections and modes are labeled in blue and yellow, respectively.  Also shown in red and 646 

green are frequencies that are commonly cited as partition points separating the EEG frequency 647 

bands and peak frequencies of three of the bands.  Numbers in parentheses and numbers of data 648 

points show how many times each frequency was found to be cited in a literature search.  As 649 

predicted by the cascaded oscillators hypothesis, the graphs show that the modes and 650 

intersections of the estimated oscillator frequency PDFs are close to the peaks and partition 651 

points commonly cited for the EEG frequency bands, respectively. 652 

2.3.5.  Synchronization  653 

The EEG frequency bands and associated behavioral and mental states are consistent with 654 

the advantages of synchronous logic systems.  Cascaded oscillators can produce the frequencies 655 

found in EEGs.   656 

2.3.5.1.  Synchronous logic systems  657 

Logic systems have a timing problem in ensuring the various subcircuits change states in 658 

the correct chronological sequence.  Synchronous logic systems generally have simpler circuit 659 

architecture and fewer errors than asynchronous systems.  This is the reason nearly all electronic 660 

logic systems are synchronized by an enabling pulse to each component circuit.  The enabling 661 

pulse in such systems is usually produced by an oscillator.  The enabling input in Fig 3E and the 662 

oscillators in Fig 9 illustrate how such synchronization is possible with neural networks.   663 

Timing problems are greater in sequential logic than in combinational logic, and greater 664 

in parallel processing than in serial processing.  Much of the information processing in the brain 665 

involves sequential logic and nearly all of it is parallel.  This means the selective pressure for 666 

synchronization in the brain would have been high, and the neural implementation proposed here 667 

is quite simple. 668 
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The processing speed in a synchronous system depends largely on the enabling 669 

oscillator’s speed.  A large system like the brain that performs many diverse functions may have 670 

several different processing speed requirements.  The trade-off for greater processing speed is a 671 

higher error rate.  Functions that can tolerate a few errors, and that need fast results with many 672 

simultaneous small computations, require high processing speeds.  Functions that are less 673 

dependent on speed or massive computation, or that require few errors, or whose component 674 

networks are large and complex and therefore slow to change state, call for slower processing.   675 

2.3.5.2.  Synchronization and EEG frequency bands 676 

The EEG frequency bands and associated behavioral and mental states are consistent with 677 

the function of multiple frequencies that was suggested in the preceding paragraph.  Gamma 678 

waves (high frequencies) are associated with vision [53, 54] and hearing [14], which make sense 679 

out of massive data input in a few milliseconds.  Beta waves are associated with purposeful 680 

mental effort [25], which may involve less data input while requiring few errors and complex 681 

operations.  Alpha waves are associated with relaxed wakefulness [16], theta waves with 682 

working memory and drowsiness [25, 55], and delta waves with drowsiness and sleep [25].  683 

These categories require successively slower information processing, and they have 684 

corresponding EEG bands of lower frequencies. 685 

The high frequencies provided by the three-neuron ring oscillator and the wide variety of 686 

frequencies provided by cascaded toggles can produce this neural activity, as shown in Fig 11.  687 

The enabling signal from a neural oscillator (as illustrated in Fig 3E) can synchronize state 688 

changes in neural structures.  The enabling pulse by itself does not produce state changes.  When 689 

state changes do occur, the enabling pulse only ensures that they occur at regular times to avoid 690 

timing errors.  So the initial ring oscillator's high frequency signal could simply be connected 691 

directly and permanently to the enabling gates of networks in the visual and auditory cortexes, 692 
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the first toggle's signal connected to networks in the prefrontal cortex for purposeful mental 693 

effort, etc.    694 

Providing synchronization for large numbers of neural structures performing many 695 

diverse brain functions would likely require more than a single cascade of oscillators.  Only 696 

neural structures that are processing the same information need to be synchronized.  Another set 697 

of structures processing different information could be synchronized by an oscillator in a 698 

different cascade.  Because of the variation in delay times in different cascades' initial ring 699 

oscillators, several cascades of oscillators could produce several different frequencies in each 700 

band simultaneously.  A large number of neural structures synchronized in this way by many 701 

cascaded oscillators could exhibit the bands of matched periods found in EEGs.   702 

3.  Results and discussion  703 

3.1.  Explanations of known phenomena 704 

3.1.1.  Short-term memory controversy 705 

Cascaded oscillators and NFFs suggest a resolution to the question of whether short-term 706 

memory depends on neurons firing persistently or in brief, coordinated bursts [5, 6]:  Memory is 707 

stored by persistent firing in flip-flops [4], and the coordinated bursts observed along with the 708 

persistent firing are due to the stored information being processed by several neural structures 709 

whose state changes are synchronized by a neural oscillator.  An example of such short-term 710 

memory processing is a telephone number being reviewed in a phonological loop.   711 

3.1.2.  Electroencephalography  712 

3.1.2.1.  The cascaded oscillators hypothesis  713 

The hypothesis that cascaded oscillators produce EEG frequencies is supported by the 714 

available data for neuron delay times and EEG frequency band peaks and boundaries, as shown 715 
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in Fig 11.  The oscillators' designs and estimated frequency distributions graphed in Fig 11 can 716 

be derived directly from selective pressure for a biologically useful function without regard to 717 

EEG data.  The useful function is synchronization of state changes in neural structures to avoid 718 

timing errors.  In the tradeoff between speed and accuracy, the selective pressure is for a wide 719 

variety of enabling frequencies for diverse brain functions, including high frequencies for some 720 

information to be processed as fast as possible. 721 

Cascaded oscillators provide a micro-level explanation of macro-level phenomena:  The 722 

entire distribution of EEG frequencies in bands is determined by only two parameters - the mean 723 

and variance of neuron delay times.   724 

EEG frequencies have two anomalous properties that are by-products of the cascaded 725 

oscillator solution to selective pressures, but otherwise have no apparent function: the octave 726 

relationship between EEG frequency bands and the close match between the distributions of 727 

EEG gamma frequencies and three-neuron ring oscillator frequencies.  This makes it implausible 728 

that EEG phenomena are produced by a mechanism that is fundamentally different from 729 

cascaded oscillators. 730 

3.1.2.2.  Answers to 16 questions raised by EEG phenomena 731 

The cascaded oscillators hypothesis answers the questions in the section on unexplained 732 

EEG phenomena.   733 

What produces the widespread, synchronized, periodic firing?  1) The firing is produced 734 

by cascaded oscillators.  2) The firing is periodic because neural structures are being enabled by 735 

oscillators.  3) The periodic firing is widespread because many neural structures are being 736 

enabled.  4) The firing is synchronized because a group of neural structures is being enabled by 737 

the same oscillator.   738 
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What is the function of this widespread synchronization?  5) The function of 739 

synchronization is timing error avoidance in processing information.   740 

What produces and what is the function of the wide distribution of EEG frequencies in 741 

bands?  6) The frequencies occur in bands because each band is produced by a different 742 

oscillator.  7) The wide distribution of frequencies is due to the octave relationship between 743 

cascaded oscillators (100% exponential growth in periods with each successive oscillator by 744 

equation 5) and five oscillators.  8) The distribution of frequencies within each band is 745 

determined by the mean and variance of neuron delay times in the initial oscillators in the 746 

cascades (equations 6).  9) The function of the wide distribution of frequencies is meeting the 747 

needs of diverse brain functions in the trade-off between speed and accuracy.   748 

What produces the unimodal distribution in each band and the octave relationships 749 

between the peaks and boundaries?  10) The unimodal distributions are due to the normal 750 

distribution of neuron delay times in the initial ring oscillators in cascades of oscillators.  This 751 

makes the distribution of periods of each oscillator normal and the distributions of frequencies 752 

unimodal.  11) The ratio of consecutive boundaries and peak locations is 2 because consecutive 753 

cascaded oscillators increase the oscillation period by a factor of 2 (equations 5, 9, 10). 754 

What determines the specific frequencies of the peaks and boundaries?  The number of 755 

neurons in the ring oscillators must be the minimum of 3 to produce the high frequencies in the 756 

gamma band.  12) Equations 9 and 10 show the EEG band boundaries and 13) peaks are 757 

determined by this number (n = 3), the ring oscillators' delay parameters μd and σd, and the 758 

boundary or peak number i.     759 

Why do gamma oscillations peak at about 40 Hz?  14) The three-neuron ring oscillator is 760 

the fastest neural ring oscillator.  The estimated peak frequency from equation 10 is 38.4 Hz 761 

(illustrated in Fig 11).   762 
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Why does the gamma band contain frequencies that are considerably faster than 40 Hz?  763 

The frequencies vary because of the variance in neuron delay times in the cascades' initial 764 

oscillators.  15) As Fig 11 illustrates, all of the oscillator frequency distributions are skewed to 765 

the right, with the initial oscillator producing frequencies substantially greater than 40 Hz.  In the 766 

particular estimate of Fig 11, 2% of the frequencies are greater than 75 Hz, and 0.4% are greater 767 

than 100 Hz.   768 

Why is there little agreement on the boundaries separating the EEG bands?  16) The 769 

oscillators hypothesis implies that the estimates of EEG band boundaries are estimates of the 770 

intersections of the oscillators' PDFs.  This makes estimating boundaries difficult for two 771 

reasons.   772 

The oscillators hypothesis implies that the probability of an EEG frequency being 773 

observed has a local minimum near each intersection of consecutive oscillator PDFs (Fig 11).  774 

This means that in a random sample of observed EEG frequencies, relatively few will be near the 775 

intersections.  A small number of data points has a negative effect on the accuracy of estimates.   776 

The overlapping oscillator PDFs (Fig 11) imply that the distributions of EEG frequencies 777 

associated with the various behavioral and mental states have overlapping ranges rather than 778 

discrete bands.  Because two PDFs are equal at their intersection, a frequency near the 779 

intersection of two PDFs is almost equally likely to be produced by either of two oscillators.  780 

That is, an observed EEG frequency near a band "boundary" is almost equally likely to be 781 

observed along with the behavioral and mental state that defines the band on either side of the 782 

intersection.  This makes obtaining accurate estimates of band "boundaries" especially difficult.  783 

3.1.3.  A possible relationship between cascaded oscillators and epilepsy 784 

Oscillations found in EEGs have a wide variety of frequencies, including high 785 

frequencies.  These two properties necessitate a low tolerance for error in the duration of the 786 
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input pulse to the oscillators proposed here.  Irregularities such as variations in neuron delay 787 

times could cause serious errors in an oscillator's output.  Depending on the type of error that 788 

occurs, neural structures that are synchronized by the oscillator would either be disabled or 789 

enabled but unsynchronized.  The resulting timing errors in neural firing and the brain's efforts to 790 

deal with them may cause the abnormal electrical activity characteristic of epileptic seizures.   791 

3.2.  A simple, rigorous, statistical test of the cascaded oscillators hypothesis 792 

3.2.1.  The data problem 793 

Although the hypothesis that cascaded oscillators produce EEG phenomena is consistent 794 

with available data, as illustrated in Fig 11, the data are too imprecise for a rigorous statistical 795 

test of the hypothesis.  The estimates found here for the neuron delay time parameters μd and σd 796 

were based on a description of the range of synapse delay times [25].  Available estimates of the 797 

EEG frequency bands' peak frequencies are few and available only for three of the five major 798 

frequency bands.  Estimates of band boundaries vary widely for reasons implied by the cascaded 799 

oscillators hypothesis as explained in the previous section.  Estimates of both peaks and 800 

boundaries are routinely rounded to whole numbers.  Some researchers do not even attempt to 801 

estimate a boundary separating two bands, instead giving a whole number frequency as the upper 802 

endpoint of one band and the next consecutive whole number as the lower endpoint of the next 803 

band.  Estimates of means and variances of both neuron delay times and EEG frequency bands 804 

are apparently nonexistent.   805 

3.2.2.  A simple test of the cascaded oscillators hypothesis from sampling data 806 

A simple, rigorous test of the cascaded oscillators hypothesis is possible.  All EEG 807 

phenomena predicted by the hypothesis follow from the main implication that the EEG bands 808 

and cascaded oscillators have the same distributions of frequencies.  This implication can be 809 

tested statistically with random samples and the distribution relations of equations 6.  As 810 
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discussed previously, neuron delay times should be approximately normally distributed by the 811 

central limit theorem.  This implies cascaded oscillator periods are also approximately normally 812 

distributed.  A normal distribution is completely determined by its mean and variance.  So it 813 

remains to be shown that EEG band periods are normally distributed and that the five main EEG 814 

band periods and five cascaded oscillator periods have equal means and variances.   815 

The neuron delay time parameters μd and σd can be estimated from a random sample of 816 

neuron delay times.  These estimates can be used to estimate the oscillator period distribution 817 

parameters μi and σi from equations 6.  The mean and variance of the periods of one or more 818 

EEG bands can be estimated from a random sample of EEG periods (or frequencies).  With 819 

standard tests for equal means and variances, the EEG estimates can be compared to the 820 

oscillator estimates of μi and σi.  The EEG sampling data can also be used to test EEG band 821 

periods for normal distributions.  If the application of the central limit theorem to neuron delay 822 

times may be questionable, neuron delay times can also be tested for a normal distribution with 823 

the neuron delay time sampling data. 824 

3.2.3.  Caveats  825 

  Because the oscillators' frequency ranges overlap (Fig 11), the band to which an 826 

observed EEG period or frequency is assigned should be determined by the observed behavioral 827 

and mental state that defines a band, not by predetermined endpoints of bands.  If EEG sampling 828 

data are measured in frequencies, they must be converted to periods before computing the 829 

sample mean and variance.  (The period of the sample mean of frequencies is not the same as the 830 

sample mean of periods.)  Sampling data should not be rounded to whole numbers.  In using 831 

equations 6 to find the estimated oscillator parameters, recall that the value of n must be the 832 

minimum of 3.  Sampling data for neuron delay times and EEG periods (or frequencies), or even 833 

estimates of means and variances, may already be available in some database.   834 
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Although it is possible that EEG frequencies are produced by cascaded oscillators with 835 

initial oscillators that are made up of specialized neurons whose delay times are different from 836 

the general population of neurons, this appears to be unlikely.  Fig 11 shows the EEG frequency 837 

distributions are at least close to the values predicted by the general description of the range of 838 

neuron delay times that was used here to estimate oscillator neuron delay time parameters.  839 

Moreover, neurons in general and initial oscillator neurons in particular may have both evolved 840 

under selective pressure to function as fast as possible.   841 
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