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Abstract 
The manner through which individual differences in brain network organization track 
population-level behavioral variability is a fundamental question in systems 
neuroscience. ​Recent work suggests that resting-state and task-state functional connectivity 
can predict specific traits at the individual level. ​However, the focus of most studies on 
single behavioral traits has come at the expense of capturing broader relationships 
across behaviors.​ Here, we utilized a large-scale dataset of 1858 typically developing 
children to estimate whole-brain functional network organization that is predictive of 
individual differences in cognition, impulsivity-related personality, and mental health during 
rest and task states. Predictive network features were distinct across the broad behavioral 
domains: cognition, personality and mental health. On the other hand, traits within each 
behavioral domain were predicted by highly similar network features. This is surprising given 
decades of research emphasizing that distinct brain networks support different mental 
processes. Although tasks are known to modulate the functional connectome, we found that 
predictive network features were similar between resting and task states. Overall, our 
findings reveal shared brain network features that account for individual variation within 
broad domains of behavior in childhood, yet are unique to different behavioral domains. 
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Introduction 

A central question in systems neuroscience is how brain network architecture supports 
the wide repertoire of human behavior across the lifespan ​. Childhood is a period of rapid 
neural development and behavioral changes across cognition, personality, and mental 
health ​(Steinberg 2005, Casey ​et al.​ 2008, Paus ​et al.​ 2008)​. Consequently, there is 
particular interest in understanding the nature of brain-behavior relationships instantiated 
early in the lifespan ​(Spear 2013, Larsen and Luna 2018)​. Here, we utilized a large-scale 
dataset of typically developing ​9- to 10-year-old ​children ​(Volkow ​et al.​ 2018)​ to 
quantitatively characterize functional network organization that supports individual-level 
prediction of cognition, impulsivity-related personality, and mental health across resting and 
task states. 

Whole-brain connectome-wide neurodevelopmental studies have found associations 
between resting-state functional network organization and behavioral traits ​(Satterthwaite ​et 
al.​ 2015, Karcher ​et al.​ 2019, Marek ​et al.​ 2019, Pornpattananangkul ​et al.​ 2019)​. However, 
clinical decisions are made at the individual level ​(Milham ​et al.​ 2017, Bzdok and 
Meyer-Lindenberg 2018)​. As such, there is an increasing shift from associational analyses to 
individual-level prediction ​(Dosenbach ​et al.​ 2010, Finn ​et al.​ 2015, Hsu ​et al.​ 2018, Nostro 
et al.​ 2018, Kong ​et al.​ 2019)​. Using machine learning algorithms, we can exploit 
inter-individual heterogeneity in functional connectomes to make predictions about a single 
person’s behavior ​(Finn ​et al.​ 2015)​. Consequently, neurodevelopmental prediction studies 
have used resting-state functional connectivity (FC) to predict individual differences in 
cognition ​(Evans ​et al.​ 2015, Sripada ​et al.​ 2019, Cui ​et al.​ 2020)​, impulsivity ​(Shannon ​et al. 
2011)​ and autism symptoms ​(Uddin ​et al.​ 2013, Lake ​et al.​ 2019)​.  

Recent studies have further suggested that task-state FC yields better prediction of cognition 
over resting-FC ​(Rosenberg ​et al.​ 2016, Greene ​et al.​ 2018, Jiang ​et al.​ 2019)​, with 
additional performance improvements from combining task-FC and resting-FC ​(Elliott ​et al. 
2019, Gao ​et al.​ 2019)​. The improvements suggest that functional connections predictive of 
individual-level cognition (i.e., predictive network features) might differ between rest and task 
states. However, other studies have shown that the brain functional network architecture is 
broadly similar during rest and task ​(Smith ​et al.​ 2009, Cole, Bassett, ​et al.​ 2014, Krienen ​et 
al.​ 2014)​. Indeed, while task contexts reliably modulate functional network organization 
(Schultz and Cole 2016, Shine ​et al.​ 2016, Salehi ​et al.​ 2019)​, task modulation of the 
functional connectome within individuals is much smaller than differences between 
individuals ​(Gratton ​et al.​ 2018)​. Therefore, it remains unclear whether predictive network 
features differ across brain states. This is a central question we seek to address in this 
study. 
 
Furthermore, most previous connectome-based prediction studies have focused on specific 
behavioral traits ​(Rosenberg ​et al.​ 2016, Greene ​et al.​ 2018, Nostro ​et al.​ 2018, Wang ​et al. 
2018, Jiang ​et al.​ 2019, Lake ​et al.​ 2019, Sripada ​et al.​ 2019, Cui ​et al.​ 2020)​. Yet, the 
human brain has evolved to execute a diverse range of behaviors, so focusing on single 
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behavioral traits might miss the forest for the trees ​(Holmes and Patrick 2018)​. More 
specifically, it remains unclear whether predictive network features are similar or different 
across behavioral measures. For example, specialized brain networks support distinct 
cognitive processes, such as attention, language or attention (Corbetta and Shulman, 2002; 
Fedorenko and Thompson-Schill 2014; DiNicola et al., 2020). Thus, one might expect 
distinct network features to support prediction of different cognitive traits. On the other hand, 
many studies have also emphasized information integration across specialized brain 
networks ​(van den Heuvel and Sporns 2011, Cole ​et al.​ 2013, Bertolero ​et al.​ 2018)​. 
Consequently, one might also expect a common set of predictive network features that 
explain individual differences in cognition. To systematically revisit the two possible 
scenarios, we considered the prediction of a large number of behavioral measures. This 
population neuroscience re-assessment allowed us to estimate the degree of overlap in 
predictive network features across different behavioral domains (cognition, personality, 
mental health), as well as across phenotypes within the same behavioral domain. 
 
In the present study, we utilized the Adolescent Brain Cognitive Development (ABCD) study, 
a unique dataset with a large sample of children and a diverse set of behavioral measures 
(Volkow ​et al.​ 2018)​. We used resting-FC and task-FC to predict a wide range of cognitive, 
impulsivity-related personality, and mental health measures. We also investigated whether 
combining resting-FC and task-FC can improve behavioral prediction. Most importantly, we 
explored the existence of shared and unique predictive network features within and across 
behavioral domains, as well as across brain (resting and task) states. 
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Results 
We used resting-fMRI and task-fMRI from 11875 children (ABCD 2.0.1 release). There were 
three tasks: monetary incentive delay (MID), stop signal task (SST) and N-Back. We also 
considered all available dimensional neurocognitive ​(Luciana ​et al.​ 2018)​ and mental health 
(Barch ​et al.​ 2018)​ assessments, yielding 16 cognitive, 11 (impulsivity-related) personality 
and 9 mental health measures. After strict preprocessing quality control (QC) and 
considering only participants with complete resting-fMRI, task-fMRI and behavioral data, our 
main analyses utilized data from 1858 unrelated children (Figure 1A).  
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Figure 1. ​ Overview of preprocessing workflow. (A) Flowchart illustrating inclusion/exclusion 
criteria. (B) Cortical parcellation of 400 regions ​(Schaefer ​et al.​ 2018)​. Parcel colors are 
assigned according to 17 large-scale networks ​(Yeo ​et al.​ 2011)​. (C) Nineteen subcortical 
regions ​(Fischl ​et al.​ 2002)​. Panels B and C were reproduced from Orban and colleagues 
(2020)​. 

 

Task-FC outperforms resting-FC for predicting cognition, but not personality 
or mental health  
We computed FC (Pearson’s correlations) among the average time courses of 400 cortical 
(Schaefer ​et al.​ 2018)​ and 19 subcortical ​(Fischl ​et al.​ 2002)​ regions (Figures 1B & 1C), 
yielding a 419 x 419 FC matrix for each brain state (rest, MID, SST, N-back). We used kernel 
regression to predict each behavioral measure based on resting-FC, MID-FC, SST-FC and 
N-back-FC separately. We have previously demonstrated that kernel regression is a 
powerful approach for resting-FC behavioral prediction ​(He ​et al.​ 2020)​. The idea behind 
kernel regression is that subjects with more similar FC matrices would exhibit more similar 
behavior.  
 
To evaluate the kernel regression performance, we utilized an inner-loop (nested) 
cross-validation procedure in which participants were repeatedly divided in training and test 
sets. The regression model was fitted on the training set and used to predict behavior in the 
test set. Care was taken so that participants from the same site were not split between 
training and test sets. This cross-validation procedure was repeated 120 times to ensure 
stability ​(Varoquaux ​et al.​ 2017)​. See Methods for more details.  
 
Figure 2A shows the prediction performance averaged within each behavioral domain. Each 
behavioral domain was predicted better than chance (FDR q < 0.05) with p < 0.0005 across 
all brain states for cognition, (impulsivity-related) personality and mental health respectively.  
 
Consistent with previous studies ​(Greene ​et al.​ 2018)​, we found that MID-FC and N-back-FC 
outperformed resting-FC (p = 7.08e-08 and p = 4.85e-09 respectively) in predicting 
cognition. However, SST-FC had worse performance than resting-FC (p = 0.0082). In the 
case of personality and mental health, there was no statistical difference between resting-FC 
and any task state. Thus, task-FC appeared to improve prediction performance for cognition, 
but not personality or mental health. 
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Figure 2. ​ (A) Cross-validated prediction performance (Pearson’s correlation between 
observed and predicted values) using kernel ridge regression for resting-state and 
task-states (MID, SST, N-Back). Multi-kernel FC utilized FC from all 4 brain states for 
prediction. * denotes above chance prediction after correction for multiple comparisons (FDR 
q < 0.05). ^ denotes significantly different comparison after correction for multiple 
comparisons (FDR q < 0.05). The boxplots show the average accuracy across 120 
replications. Task-FC appeared to only improve prediction performance for cognition, but not 
(impulsivity-related) personality or mental health. Multi-kernel FC improved prediction 
performance for cognition and personality, but not mental health. Similar conclusions were 
obtained using coefficient of determination (COD) instead of Pearson’s correlation as a 
measure of prediction performance (Figure S1). MID: monetary incentive delay; SST: stop 
signal task. (B) The average difference in accuracy (Pearson’s correlation between observed 
and predicted values) between the Multi-kernel FC and N-back models across 120 
replications. 
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Figure 3. ​ Cross-validated prediction performance (Pearson’s correlation between observed 
and predicted values) using multi-kernel ridge regression by exploiting resting-FC, MID-FC, 
SST-FC and N-back-FC jointly. (A) Cognitive measures. (B) (Impulsivity-related) Personality 
measures. (C) Mental health measures. * denotes above chance prediction after correcting 
for multiple comparisons (FDR q < 0.05). The boxplots show the average accuracy across 
120 replications. Note the different scales across the three panels. The same set of 
behavioral measures were predicted better than chance when using coefficient of 
determination (COD) instead of Pearson’s correlation as a measure of prediction 
performance (Figure S2). 
 

Combining task-FC and resting-FC improves prediction of cognition and 
personality, but not mental health 
Previous studies have suggested that combining task-FC and resting-FC can improve 
prediction of fluid intelligence ​(Elliott ​et al.​ 2019, Gao ​et al.​ 2019)​ and reading 
comprehension ​(Jiang ​et al.​ 2019)​. We extended the previous studies by performing 
multi-kernel ridge regression using resting-FC, MID-FC, SST-FC and N-back-FC jointly to 
predict a broader range of cognitive measures as well as non-cognitive (personality and 
mental health) measures.  
 
Figure 2 shows the multi-kernel prediction performance averaged within each behavioral 
domain. Since N-back performed the best among the single-kernel regression for all 
behavioral domains (Figure 2A), we compared multi-kernel FC with N-back-FC (Figure 2B). 
We found that multi-kernel FC performed better than N-back-FC for cognitive (p = 5.27e-06) 
and personality (p = 0.02), but not mental health (p = 0.12).  
 
Figure ​3 shows the prediction performance of multi-kernel FC for all individual behaviors. As 
can be seen, the prediction performance varies widely across behavioral measures. All 16 
cognitive and 9 personality measures were significantly predicted better than chance, while 7 
out of 11 mental health measures were significantly predicted. On average, across 
behavioral measures that were predicted better than chance, the correlation between 
observed and predicted values for cognition was 0.316 ± 0.126 (mean ± std), personality 
was 0.103 ± 0.044 and mental health was 0.120 ± 0.064.  
 
Thus, prediction performance was better for cognition than personality or mental health. For 
example, the best predicted cognitive measure was crystallized cognition with an accuracy 
of r = 0.530, while the best predicted personality measure was positive urgency with an 
accuracy of 0.143 and the best predicted mental health measure was total psychosis 
symptoms with an accuracy of 0.184. Henceforth, we will focus on the 32 behavioral 
measures that were significantly predicted by multi-kernel FC. 

Predictive brain network features cluster together within behavioral domains 
across all brain states 
Most previous studies have focused on predicting a small number of behavioral measures. 
By considering a large number of behavioral measures across multiple behavioral domains, 
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we were able to explore the question of whether predictive brain network features were 
shared or unique across behavioral measures. The multi-kernel regression models were 
inverted ​(Haufe ​et al.​ 2014)​, yielding a 419 x 419 predictive-feature matrix for each brain 
state (rest, MID, SST, N-back) and each behavioral measure. Haufe's inversion approach 
yields a positive (or negative) predictive-feature value for an edge, indicating that higher FC 
for the edge was associated with predicting greater (or lower) behavioral values. Figure 4 
shows the predictive-feature matrices for positive urgency and negative urgency across all 
brain states. All predictive-feature matrices can be found in Figures S3 to S6.  
 
This inversion process is critical to interpreting supervised prediction models. Most previous 
studies have either interpreted the model weights or selected features, which leads to less 
interpretable results that are sensitive to the choice of regression models (Haufe et al., 
2014). As will be shown in additional control analyses, we showed that the predictive 
features were highly robust across regression models, underlining the importance of this 
inversion process. 
 
As can be seen in Figure 4, the predictive features were very similar between positive 
urgency and negative urgency for each brain state. The predictive features were also similar 
across brain states, but to a lower extent than the between-behavior similarity. To more 
quantitatively explore these phenomena, we first investigated whether predictive network 
features were similar across behavioral measures. Predictive-feature matrices for each 
behavioral measure were concatenated across brain states and correlated between 
behaviors, yielding a 32 x 32 matrix shown in Figure 5A. Here, the behavioral measures are 
ordered based on ABCD’s classification of these measures into cognition, personality and 
mental health behavioral domains, so we referred to this ordering as “hypothesis-driven”. If a 
pair of behavioral measures exhibited a high value (green) in the matrix (Figure 5A), then 
this indicates that the two behavioral measures are predicted by highly similar network 
features. As can be seen, the predictive-feature matrices were much more similar within 
each behavioral domain than across behavioral domains (Figure 5A).  
 
Instead of ordering the behavioral measures in a hypothesis-driven fashion (Figure 5A), we 
also re-ordered the behavioral measures by hierarchical clustering of the predictive-feature 
matrices (Figure 6A). The hierarchical clustering yielded three data-driven behavioral 
clusters (Figure 6A) that were highly similar to the hypothesis-driven behavioral domains 
(Figure 5A). We again see that the predictive-feature matrices were much more similar within 
each data-driven behavioral domain than across domains  
 
We then tested whether predictive network features were similar across brain states. Since 
predictive-feature matrices were similar within each behavioral domain (Figure 5A), we 
averaged the predictive-feature matrices across behaviors, yielding a predictive-feature 
matrix for each behavioral domain and each brain state (Figure S7). The 12 
predictive-feature matrices were then correlated across behavioral domains and brain states. 
The predictive-feature matrices were similar across brain states within each behavioral 
domain (especially in the case of personality and mental health) (Figure 5B). ​Performing the 
same analyses using the data-driven behavioral clusters (Figures 6 & S8) yielded similar 
results.  
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Overall, these results suggest that predictive network features were more similar within 
behavioral domains (cognition, personality, mental health) than across behavioral domains. 
Furthermore predictive network features were similar across brain states. Critically, the 
similarity in predictive network features cannot be completely explained by similarity among 
the actual behavioral measures themselves (Figure S9). For example, “lacking of planning” 
and “sensation seeking” shared predictive features with cognitive measures (Figure 6A), 
although the behavioral measures themselves were more correlated with other mental health 
and personality measures (Figure S9). As another example, the average correlation of 
predictive network features across cognitive measures was ​0.68 ​± ​0.19 ​ (mean ± std), while 
the correlation among the raw cognitive scores was ​0.29 ​ ± ​0.22. 

 
 

 
 

Figure 4. ​ Predictive network features for positive urgency and negative urgency across all 
brain states. Haufe’s approach was utilized to invert the kernel regression models ​(Haufe ​et 
al.​ 2014)​, which allowed us to interpret which features were important for predicting a 
particular behavior. A positive (or negative) predictive-feature value indicates that higher FC 
was associated with predicting greater (or lower) behavioral values. As can be seen, the 
predictive features were similar between positive urgency and negative urgency across all 
brain states (although there were also some differences), motivating further analyses 
(Figures 5 and 6). Predictive-feature matrices for all behavioral measures can be found in 
Figures S3 to S6. For visualization, the values within each matrix were divided by their 
standard deviations. MID: monetary incentive delay; SST: stop signal task. 
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Figure 5. ​ Predictive network features are similar within hypothesis-driven behavioral 
domains and across brain states. (A) Correlations of predictive-feature matrices (Figure 4) 
across behavioral measures. The predictive-feature matrices were concatenated across 
brain states and correlated across behavioral measures. If a pair of behavioral measures 
exhibited a high value (green), then this indicates that the two behavioral measures are 
predicted by highly similar network features. (B) Correlations of predictive-feature matrices 
across brain states. Predictive-feature matrices were averaged within each behavioral 
domain and correlated across brain states. The behavioral measures were ordered and 
categorized based on ABCD’s classification of these measures into cognition, personality 
and mental health behavioral domains, so we referred to this ordering as 
“hypothesis-driven”. Figure S10 shows the analogue of this figure, but without collapsing 
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across either dimension of brain state or behavior. MID: monetary incentive delay; SST: stop 
signal task. 
 

 
 
Figure 6. ​ Predictive network features are similar within data-driven behavioral domains and 
across brain states. Both panels (A) and (B) are the same as Figure 5, except that 
behavioral measures are ordered and categorized based on the data-driven clusters of 
cognition, personality and mental health. These data-driven clusters were obtained by 
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hierarchical clustering of the predictive-feature matrices (Figure 4) as indicated by the 
dendrogram in panel A. Clustering was performed using hierarchical agglomerative average 
linkage (​UPGMA) ​clustering as implemented in scipy 1.2.1 ​(Virtanen ​et al.​ 2020)​. Figure S11 
shows the analogue of this figure, but without collapsing across either dimension of brain 
state or behavior. MID: monetary incentive delay; SST: stop signal task.1 
 

Distinct brain network features support the prediction of cognition, 
personality, and mental health  
Having established that predictive network features were similar within behavioral domains 
and across brain states, we investigated the topography of predictive network features that 
were shared across states within each behavioral domain. Predictive-feature matrices were 
averaged within each hypothesis-driven behavioral domain, yielding 12 predictive-feature 
matrices (one for each behavioral domain and each brain state; Figure S7). To limit the 
number of multiple comparisons, permutation tests were performed for each within-network 
and between-network block by averaging predictive-feature values within and between 18 
networks (FDR q < 0.05; Figure S12). 
 
To examine predictive features common across brain states, we averaged the 
predictive-feature matrices across all brain states, considering only network blocks that were 
significant and exhibited the same directionality across states (Figure 7A). This conjunction 
thus highlights predictive network features that are shared across brain states and across 
behavioral measures within a behavioral domain. Figure 7B illustrates the connectivity 
strength obtained from averaging within each significant block. Figures 7C and 7D illustrate 
the predictability of each cortical region obtained by summing the rows of Figure 7A for 
positive and negative predictive-feature values separately (see subcortical regions in Figure 
S13A). As can be seen (Figures 7 & S13A) and consistent with the previous section (Figures 
5 & 6), the patterns of predictive network features were distinct across the three behavioral 
domains.  
 
Cognitive performance of individual participants was predicted by a distributed set of 
large-scale network features (Figures 7A & 7B) with somatomotor and salience networks 
being particularly prominent (Figures 7C & 7D). For example, lower connectivity of 
somatomotor network B with subcortical and default network A regions was predictive of 
higher cognitive scores (i.e., better cognition). As another example, greater connectivity 
between salience/ventral attention network A and default network C, as well as lower 
connectivity between salience/ventral attention network A and control networks were 
predictive of better cognition.  
 
Personality measures of individual participants were predicted by a distributed set of 
large-scale network features (Figures 7A & 7B) with default and dorsal attentional networks 
being particularly prominent (Figures 7C & 7D). For example, greater connectivity between 
default networks A/B and dorsal attention networks A/B were predictive of greater 
personality scores (i.e., greater impulsivity and sensitivity to reward/punishment). On the 
other hand, lower connectivity within default networks A/B were predictive of greater 
impulsivity-related traits.  
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Mental health of individual participants was predicted by a distributed set of large-scale 
network features (Figures 7A & 7B) with default and frontoparietal control networks being 
particularly prominent (Figures 7C & 7D). For example, greater connectivity between default 
networks A/B and dorsal attention networks A/B were predictive of larger mental health 
scores (i.e., worse mental health). On the other hand, lower connectivity within default 
networks A/B were predictive of worse mental health.  
 
As a control analysis, we utilized the previously derived data-driven clusters of cognition, 
personality and mental health (Figure 6) to perform the same analyses, yielding highly 
similar results (Figures S14, S15 & S13B). Average correlations between the 
hypothesis-driven and data-driven predictive-feature matrices were r = 0.99 (cognition), 0.84 
(personality) and 0.92 (mental health).  
 

Control analyses  
We performed several additional control analyses to ensure robustness of our results. First, 
we regressed age and sex (in addition to FD/DVARS) from the behavioral variables before 
prediction, which only decreased the prediction performance slightly (Figure S16).  
 
Second, instead of multi-kernel FC prediction, we averaged functional connectivity across all 
brain states ​(Elliott ​et al.​ 2019)​ and utilized the resulting mean-FC for kernel regression. We 
found that mean-FC yielded worse prediction performance for cognition compared with 
multi-kernel regression (Figure S17, but not personality and mental health. This suggests 
that the improvement in predicting cognitive traits using multi-kernel FC was not simply due 
to more available data per individual.  
 
Third, to ensure our results were robust to the regression model, we also performed linear 
ridge regression. We obtained similar prediction performance, but linear regression achieved 
worse COD (Figure S18). Remarkably, the feature-predictive matrices were highly similar for 
both linear regression and kernel regression (average r = 0.99), suggesting the 
predictive-feature matrices are robust to the choice of regression algorithm. We note that if 
we interpreted the regression weights directly without model inversion, then the agreement 
between kernel regression and linear regression “only” achieved an average correlation of r 
= 0.66. This observation confirms the importance of inverting the regression models ​(Haufe 
et al.​ 2014)​.  
 
Fourth, we computed the predictive-feature matrices based on the single-kernel regression 
models and found that the results were highly similar to the predictive-feature matrices of the 
multi-kernel regression model (average r = 0.95).  
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Figure 7. ​ Brain network features that support individual-level prediction of cognition, 
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personality and mental health. (A) Predictive-feature matrices averaged across brain states, 
considering only within-network and between-network blocks that were significant across all 
four brain states (Rest, MID, SST, N-Back). (B) Predictive network connections obtained by 
averaging the matrices in panel (A) within each between-network and within-network block. 
(C) Positive predictive features obtained by summing positive predictive-feature values 
across the rows of panel (A). A higher value for a brain region indicates that stronger 
connectivity yielded a higher prediction for the behavioral measure. (D) Negative predictive 
features obtained by summing negative predictive-feature values across the rows of panel 
(A). A higher value for a brain region indicates that weaker connectivity yielded a greater 
prediction for the behavioral measure. See Figure S13A for the subcortical maps. For 
visualization, the values within each matrix in panel A were divided by their standard 
deviations. The current figure utilized hypothesis-driven behavioral domains. Conclusions 
were highly similar using data-driven behavioral clusters (Figure S15). 
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Discussion 
In a large sample of typically developing children, we found that compared to resting-FC, 
task-FC of certain tasks improves prediction of cognition, but not (impulsivity-related) 
personality or mental health. Integrating resting-FC and task-FC further improves prediction 
of cognition and personality, but not mental health. By considering a large number of 
measures across cognition, personality and mental health, we found that these behavioral 
domains were predicted by distinct patterns of brain network features. However, within a 
behavioral domain (e.g., cognition) and across brain states, the predictive network features 
were similar, suggesting the potential existence of shared neural mechanisms explaining 
individual variation within each behavioral domain. 

Predictive brain network features cluster together within behavioral domains 
Previous task-FC behavioral prediction studies have typically focused on specific cognitive 
traits, such as fluid intelligence ​(Greene ​et al.​ 2018)​, attention ​(Rosenberg ​et al.​ 2016)​ or 
reading comprehension ​(Gao ​et al.​ 2019)​. By exploring a wide range of behavioral 
measures, we gained insights into shared and unique predictive network features across 
traits within the same domain and across domains, as well as across brain states (rest and 
task). While there were differences among predictive network features within a behavioral 
domain (Figures S3-S6), the strong similarity was striking (Figures 5-6). This was especially 
the case for the cognitive domain (Figures 5-6 & S3-S6), where the average correlation of 
predictive network features across cognitive measures was ​0.68.  
 
Decades of studies, ranging from lesion to functional neuroimaging studies, have suggested 
the existence of brain networks that are specialized for specific cognitive functions ​(Petersen 
et al.​ 1988, Freiwald and Tsao 2010, Nomura ​et al.​ 2010, Laird ​et al.​ 2011, Yeo ​et al.​ 2015)​. 
For example, language tasks activate a specific network of brain regions ​(Binder ​et al.​ 1997, 
Fedorenko ​et al.​ 2012, Braga ​et al.​ 2019)​. Another example is the specific loss of episodic 
memory but not language after medial temporal lobe lesions ​(Scoville and Milner 1957, 
Corkin 2002)​. Of course, the networks that preferentially underpin aspects of behavior do not 
work in isolation and many studies have also emphasized information integration across 
specialized brain networks ​(van den Heuvel and Sporns 2011, Bzdok ​et al.​ 2016, Cohen and 
D’Esposito 2016, Bertolero ​et al.​ 2018)​. Lesion studies have also suggested that damage to 
connector hubs lead to deficits in multiple functional domains ​(Warren ​et al.​ 2014)​. Thus, 
while we did not expect predictive network features to be completely different across 
cognitive measures, we did not anticipate such strong similarity.  
 
Similarly, in the case of mental health measures, while diagnostically distinct psychiatric 
disorders are likely the result of differentially disrupted brain systems, there is significant 
comorbidity among disorders and overlap in clinical symptoms ​(Kessler ​et al.​ 2011, 
Tamminga ​et al.​ 2013, Russo ​et al.​ 2014)​. Certain brain circuits have also been 
disproportionately reported to be transdiagnostically aberrant across multiple psychiatric and 
neurological disorders ​(Menon 2011, Whitfield-Gabrieli and Ford 2012, Goodkind ​et al.​ 2015, 
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Baker ​et al.​ 2019, Kebets ​et al.​ 2019)​. For instance, there is evidence for the core role of 
frontoparietal network disruptions across psychiatric diagnosis ​(Cole, Repovš, ​et al.​ 2014)​. 
Therefore, similarly to cognition, we did not expect predictive network features to be 
completely different across mental health measures, but the degree of similarity was still 
surprising. These findings underscore the importance of studying multiple facets of 
psychopathology at once in order to better characterize covariation among symptoms to 
redefine psychiatric nosologies ​(Kozak and Cuthbert 2016, Kotov ​et al.​ 2017)​. 
 
One possibility is that even though the regression models were trained on specific behavioral 
measures, the learned models might be predicting a broad behavior rather than the specific 
behaviors they were trained on. For example, in the case of cognition, perhaps the network 
features were simply predicting the ​g​ factor, a general cognitive ability that can account for 
half of the variance of cognitive test scores ​(Carroll 2003)​. In the case of mental health, the 
network features might be predicting the ​p​ factor, a general psychopathology factor that 
reflects individuals’ susceptibility to develop psychopathologies ​(Caspi ​et al.​ 2014)​. The 
similarity in predictive network features across the personality measures was less surprising 
since the personality measures we considered were mostly impulsivity-related. Thus, the 
regression models might simply be predicting an overall impulsivity trait ​(Leshem and 
Glicksohn 2007)​. 
 

Distinct brain network features support the prediction of cognition, 
personality, and mental health 
We found that cognitive performance was predicted by a distributed set of network features 
across the whole brain with connectivity of salience and somatomotor networks being 
particularly notable (Figures 6C & 6D). The involvement of the salience network might not be 
surprising given its involvement in saliency, switching, attention and control ​(Menon and 
Uddin 2010)​. The prominent role of the somatomotor network was more surprising, although 
somatomotor regions have been reported to be associated with fluid intelligence ​(Greene ​et 
al.​ 2018)​, attention ​(Rosenberg ​et al.​ 2016)​, and general cognitive dysfunction ​(Kebets ​et al. 
2019)​.  
 
Similarly to cognitive performance, (impulsivity-related) personality measures were predicted 
by a distributed set of network features across the whole brain. In the case of personality, 
connectivity involving default and dorsal attentional networks was particularly prominent. 
While classical models of impulsivity have typically highlighted dysregulation in fronto-striatal 
circuits, these have been predominantly informed by animal lesion, PET and case-control 
task activation studies ​(Jentsch and Taylor 1999, Dalley ​et al.​ 2008, Beck ​et al.​ 2009, 
Buckholtz ​et al.​ 2010, Fineberg ​et al.​ 2010, Balodis ​et al.​ 2012, Cubillo ​et al.​ 2012)​. 
Conversely, fMRI studies of healthy participants have reported correlations between trait 
impulsivity and resting-FC in default ​(Inuggi ​et al.​ 2014, Golchert ​et al.​ 2017)​ and attentional 
(Golchert ​et al.​ 2017)​ networks. FC measured during the SST in attentional regions has also 
been found to be correlated with impulsivity in adults ​(Farr ​et al.​ 2012)​. Our whole-brain 
connectome approach not only supports the roles of default and attentional networks in 
impulsivity from these seed-based studies, but also extends these findings to children.  
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Finally, mental health measures were predicted by a distributed set of network features with 
the connectivity of default and frontoparietal control networks being particularly prominent. 
Connectivity involving default and frontoparietal regions have been linked to multiple 
psychiatric disorders and associated symptom profiles ​(Whitfield-Gabrieli and Ford 2012, 
Baker ​et al.​ 2014, 2019, Xia ​et al.​ 2018, Sha ​et al.​ 2019)​. We extend these findings by 
showing that the connectivity of these networks were important for predicting mental health 
in typically developing children prior to the onset of psychiatric illness and at a point where 
association cortices are still maturing.  

Resting and task network organization 
A surprising result is that the predictive network features were similar across brain states 
(rest, MID, SST, N-Back) for all behavioral domains, particularly in the case of personality 
and mental health. On the one hand, task network reorganization has been shown to 
influence cognitive performance ​(Schultz and Cole 2016, Zuo ​et al.​ 2018)​. On the other 
hand, our results are consistent with studies showing that task states only modestly 
influence functional connectivity ​(Cole, Bassett, ​et al.​ 2014, Krienen ​et al.​ 2014, Bzdok ​et al. 
2015)​ with inter-individual differences dominating task modulation ​(Gratton ​et al.​ 2018)​.  
 
We note that a previous study ​(Gao ​et al.​ 2019)​ suggested that the regression models 
utilized different network features for prediction across different brain states, while another 
study ​(Greene ​et al.​ 2018)​ suggested that there was substantial overlap in predictive 
network features across resting-FC and task-FC. ​These discrepancies might arise 
because the previous studies only interpreted the most salient edges selected for 
prediction, which might yield unstable results. ​Here, we followed the elegant approach of 
Haufe and colleagues ​(2014)​ to invert the prediction models, leading to highly consistent 
predictive network features across two regression models (kernel regression and linear 
regression). A lack of inversion leads to weaker agreement between the two models. 
 
Consistent with previous studies ​(Greene ​et al.​ 2018, Yoo ​et al.​ 2018, Fong ​et al.​ 2019)​, we 
found that task-FC outperforms resting-FC for the prediction of cognitive performance, at 
least in the case of N-back and MID. Although resting-FC was better than SST-FC for 
predicting cognition (Figure 2), we note that there was more resting-fMRI data than 
SST-fMRI data, which might explain the gap in performance. Here, we did not control for 
fMRI duration because our goal was to maximize  prediction performance and to 
quantitatively characterize the predictive network features ​(Bzdok and Ioannidis 2019)​. 
Similarly, the prediction improvement from integrating information across brain states 
(multi-kernel regression) partly comes from the use of more fMRI data per child, but at least 
in the case of cognition, the improvement was not entirely due to more data (Figure S17).  
 
Consistent with previous studies ​(Elliott ​et al.​ 2019, Gao ​et al.​ 2019, Jiang ​et al.​ 2019)​, we 
found that combining rest-FC and task-FC improved prediction of cognition. Extending upon 
this work, we demonstrate that combining rest-FC and task-FC modestly improved prediction 
of personality, but not mental health. We also found that regardless of using resting-FC, 
task-FC, or both resting-FC and task-FC, greater performance was achieved for predicting 
cognition than personality or mental health. This is again consistent with previous studies 
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relating resting-fMRI with inter-individual variation in multiple behavioral domains ​(Dubois ​et 
al.​ 2018, Kong ​et al.​ 2019, Liégeois ​et al.​ 2019, Maglanoc ​et al.​ 2019)​. 

Strengths and limitations 
One strength of our study was the use of a whole-brain connectomics approach to predict a 
wide range of behavioral traits. Many neurodevelopmental studies have focused on specific 
brain circuits ​(Bjork ​et al.​ 2004, Galvan ​et al.​ 2006, Van Leijenhorst ​et al.​ 2010, Satterthwaite 
et al.​ 2012, Gee ​et al.​ 2013, Swartz ​et al.​ 2014, Jalbrzikowski ​et al.​ 2017, Silvers ​et al. 
2017)​. Yet, the human brain comprises functional modules that interact as a unified whole to 
support behavior (Spreng et al. 2010, Bertolero et al. 2015, Bassett and Sporns 2017). 
Therefore, whole-brain network-level approaches could provide critical insights into 
neurodevelopment that might be missed by studies focusing on specific networks. Our 
results were also robust across brain states, simple and more advanced predictive 
algorithms and recruitment sites. However, since the ABCD cohort comprises typically 
developing children, it is unclear how our results, especially those pertaining to mental 
health, might generalize to groups with clinical diagnoses. Furthermore, the cross-sectional 
nature of our study and the limited age range of the participants prevented us from 
thoroughly examining neurodevelopmental changes across time or age. Whole-brain 
neurodevelopmental studies have shown that functional networks become more distributed 
throughout adolescence ​(Fair ​et al.​ 2009, Supekar ​et al.​ 2009, Power ​et al.​ 2010)​. As such, it 
remains to be seen how the predictive network features from our study might be similarly 
affected by the developmental process. Lastly, we did not include any non-imaging features, 
which could have enriched our predictive models ​(Eickhoff and Langner 2019)​. 

Conclusions 
Our study demonstrated that combining task-FC and resting-FC can yield improved 
predictions of cognition and personality, but not mental health. Each behavioral domain was 
predicted by unique patterns of brain network features that were distinct from other 
behavioral domains. These features were robust across brain states and regression 
approaches. Overall, our findings revealed distinct brain network features that account for 
individual variation across broad domains of behavior, yet are shared for behaviors within 
the same domain. 
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Methods 

Participants 
We considered data from 11875 children from the ABCD 2.0.1 release. After strict 
preprocessing quality control (QC) and considering only participants with complete rest-fMRI, 
task-fMRI and behavioral data, our main analyses utilized 1858 unrelated children (Figure 
1A). See further details below.  

Imaging acquisition & processing 
Images were acquired across 21 sites in the United States with harmonized imaging 
protocols for GE, Philips, and Siemens scanners. We used structural T1, resting-fMRI, and 
task-fMRI from three tasks: monetary incentive delay (MID), N-Back, stop signal task (SST). 
See Supplemental Methods S1 for details. 
 
Minimally preprocessed T1 data were used ​(Hagler ​et al.​ 2019)​. The structural data were 
further processed using FreeSurfer 5.3.0 ​(Dale ​et al.​ 1999, Fischl, Sereno, and Dale 1999, 
Fischl, Sereno, Tootell, ​et al.​ 1999, Fischl ​et al.​ 2001, Ségonne ​et al.​ 2004, 2007)​, which 
generated accurate cortical surface meshes for each individual. Individuals’ cortical surface 
meshes were registered to a common spherical coordinate system ​(Fischl, Sereno, and Dale 
1999, Fischl, Sereno, Tootell, ​et al.​ 1999)​. Individuals who did not pass recon-all QC ​(Hagler 
et al.​ 2019)​ were removed.  
 
Minimally preprocessed fMRI data ​(Hagler ​et al.​ 2019)​ were further processed with the 
following steps: (1) removal of the first four frames, (2) slice time correction with the FSL 
library ​(Jenkinson ​et al.​ 2002, Smith ​et al.​ 2004)​, (3) motion correction using rigid body 
translation and rotation with FSL, and (4) alignment with the T1 images using 
boundary-based registration ​(Greve and Fischl 2009)​ with FsFast 
(​http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast​). Functional runs with boundary-based 
registration costs greater than 0.6 were excluded. Framewise displacement (FD) ​(Jenkinson 
et al.​ 2002)​ ​and voxel-wise differentiated signal variance (DVARS) ​(Power ​et al.​ 2012)​ were 
computed using fsl_motion_outliers. Volumes with FD > 0.3 mm or DVARS > 50, along with 
one volume before and two volumes after, were marked as outliers and subsequently 
censored. Uncensored segments of data containing fewer than five contiguous volumes 
were also censored ​(Gordon ​et al.​ 2016, Kong ​et al.​ 2019)​. fMRI runs with over half of their 
volumes censored were removed. We also excluded individuals who did not have at least 4 
minutes for each fMRI state (rest, MID, N-Back, SST) from further analysis.  
 
The following nuisance covariates were regressed out of the fMRI time series: global signal, 
six motion correction parameters, averaged ventricular signal, averaged white matter signal, 
and their temporal derivatives (18 regressors in total). Regression coefficients were 
estimated from the non-censored volumes. We chose to regress the global signal because 
we were interested in behavioral prediction and global signal regression has been shown to 
improve behavioral prediction performance ​(Greene ​et al.​ 2018, Li ​et al.​ 2019)​. The brain 
scans were interpolated across censored frames using least squares spectral estimation 
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(Power ​et al.​ 2014)​, band-pass filtered (0.009 Hz ≤ f ≤ 0.08 Hz), and projected onto 
FreeSurfer fsaverage6 surface space and smoothed using a 6 mm full-width half maximum 
kernel.  

Functional connectivity 
We used a whole-brain parcellation comprising 400 cortical regions of interest (ROIs) 
(Schaefer ​et al.​ 2018)​ (​Figure ​1B) and 19 subcortical ROIs ​(Fischl ​et al.​ 2002)​ (​Figure ​1C). 
For each participant and each fMRI run, functional connectivity (FC) was computed as 
Pearson’s correlations between the average time series of each pair of ROIs. FC matrices 
were averaged across runs from each state, yielding a 419 x 419 FC matrix for each fMRI 
state (rest, MID, N-back, SST). Censored frames were ignored when computing FC.  

Behavioral data 
We analyzed data from all available dimensional neurocognitive ​(Luciana ​et al.​ 2018)​ and 
mental health ​(Barch ​et al.​ 2018)​ assessments, yielding 16 cognitive, 9 mental health and 11 
impulsivity-related personality measures. See Supplemental Methods S2 for more details. 
Participants who do not have all behavioral measures were excluded from further analysis.  

Single fMRI-state prediction 
We used kernel ridge regression to predict each behavioral measure based on resting-FC, 
MID-FC, N-back-FC and SST-FC separately. We chose kernel regression because of its 
strong prediction performance in resting-FC based behavioral prediction ​(He ​et al.​ 2020)​. 
Briefly, let and be the behavioral measure and FC of training individual . Let and 

be the behavioral measure and FC of a test individual. Then, kernel regression would 
predict the test individual’s behavior as the weighted average of the training individuals’ 
behavior, i.e. , where 
was defined as the Pearson’s correlation between and . Thus, kernel regression 
assumed that individuals with more similar FC exhibit more similar behavior. To reduce 
overfitting, an l ​2​-regularization term was included ​(Kong ​et al.​ 2019, Li ​et al.​ 2019, He ​et al. 
2020)​. Details of this approach can be found elsewhere  ​(Kong ​et al.​ 2019, Li ​et al.​ 2019, He 
et al.​ 2020)​.  
 
Kernel regression was performed within an inner-loop (nested) cross-validation procedure. 
More specifically, there were 22 ABCD sites. As recommended by the ABCD consortium, 
individuals from Philips scanners were excluded due to incorrect pre-processing. Our final 
sample for the main analysis comprised 1858 children. To reduce sample size variability 
across sites, we combined sites together to create 10 “site-clusters”, each containing at least 
150 individuals (Table S4). Thus, participants within a site are in the same site-cluster.  
 
We performed leave-3-site-clusters-out nested cross-validation for each behavioral measure 
with 120 replications. For each fold, a different set of 3 site-clusters was chosen as the test 
set. Kernel ridge regression parameters were estimated from the remaining 7 site-clusters 
using cross-validation. For model selection, the regularization parameter was estimated 
within the “inner-loop” of the inner-loop (nested) cross-validation procedure. For model 
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evaluation, the trained kernel regression model was applied to all unseen participants from 
the test site-clusters.  
 
Head motion (mean FD and DVARS) were regressed from each behavioral measure before 
the cross-validation procedure. More specifically, regression coefficients were estimated 
from the 7 training site-clusters and applied to the 3 test site-clusters. This regression 
procedure was repeated for each split of the data into 7 training site-clusters and 3 test 
site-clusters.  
 
Prediction performance was measured by correlating predicted and actual measures ​(Finn ​et 
al.​ 2015)​. We also computed coefficients of determinations, which yielded similar 
conclusions.  

Multi-state prediction 
To explore whether combining resting-FC and task-FC would result in better prediction 
accuracy, we utilized FC matrices from all four brain states (Rest, MID, SST, N-back) for 
prediction using a multi-kernel framework (Supplemental Methods S3). Similarly to 
single-kernel regression, multi-kernel regression assumed that subjects with similar FC 
exhibit similar behavioral scores. However, instead of taking into account FC from one fMRI 
state, here we utilized FC from all four fMRI states. 

Statistical tests of prediction accuracy 
To test whether a model achieved better-than-chance accuracy, we performed permutation 
tests by shuffling behavioral measures across participants and repeating the entire 
leave-3-site-clusters-out nested cross-validation procedure. To compare two models, a 
permutation test was not valid, so the corrected resampled t-test was utilized ​(Nadeau and 
Bengio 2003, Bouckaert and Frank 2004)​. The resampled t-test corrected for the fact that 
accuracies of test folds were not independent. We corrected for multiple comparisons using 
FDR (q < 0.05). 

Model interpretation 
As can be seen, multi-kernel FC yielded the best prediction performance. Models estimated 
for prediction can be challenging to interpret ​(Bzdok and Ioannidis 2019)​. Here, we utilized 
the approach from Haufe and colleagues ​(2014)​, yielding a 419 x 419 predictive-feature 
matrix for each FC state and each behavioral measure (Supplemental S4). A positive (or 
negative) predictive-feature value indicates that higher FC was associated with predicting 
greater (or lower) behavioral values. 
 
The predictive-feature matrices were more similar among behavioral measures within the 
same behavioral domain (cognition, mental health and personality) than across domains. 
Thus, we averaged the predictive-feature matrices within the same behavioral domain 
(cognitive, mental health and personality) considering only behavioral measures that were 
successfully predicted by multi-kernel FC regression. This yielded a 419 x 419 
predictive-feature matrix for each fMRI state and each behavioral domain.  
 

24 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

https://paperpile.com/c/RepFEZ/TwEG
https://paperpile.com/c/RepFEZ/TwEG
https://paperpile.com/c/RepFEZ/TwEG
https://paperpile.com/c/RepFEZ/TwEG
https://paperpile.com/c/RepFEZ/pVWK+bw3v
https://paperpile.com/c/RepFEZ/pVWK+bw3v
https://paperpile.com/c/RepFEZ/kXWh
https://paperpile.com/c/RepFEZ/rzYl/?noauthor=1
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Statistical significance of the predictive-feature values was tested using a permutation test 
(2000 permutations). To limit the number of multiple comparisons, tests were performed for 
each within-network and between-network block by averaging predictive-feature values 
within and between 18 networks (Figures 6B & 6C). We corrected for multiple comparisons 
using FDR (q < 0.05). 

Control analyses 
Because the multi-kernel model contained more input data compared to the single-kernel 
models, we explored the potential effect of the amount of input data on model performance. 
To this end, we performed a single-kernel ridge regression on a general functional 
connectivity matrix created by averaging the functional connectivity across all fMRI 
conditions (rest + MID + N-Back + SST) to predict behaviors, which we called Mean FC. We 
then compared the performance of the Mean FC model with the best single-kernel fMRI 
model (e.g. N-Back only) and the multi-kernel model. To assess the impact of age and sex 
on model performance, we performed kernel ridge regression to predict behaviors after 
regressing out age and sex, in addition to head motion (mean FD and DVARS). 

Data availability 
The ABCD data are publicly available: ​http://dx.doi.org/10.15154/1504041 ​ . 

Code availability 
Preprocessing utilized code from previously published pipelines ​(Kong ​et al.​ 2019, Li ​et al. 
2019)​: 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_f
MRI_Preproc2016 ​ Preprocessing code specific to this study can be found here: 
GITHUB_LINK. Analysis code specific to this study can be found here: GITHUB_LINK. 
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Supplementary methods and materials 

S1. MRI acquisition 
For each participant, twenty minutes of resting-state fMRI data were acquired in four 
5-minute runs. The task fMRI data consisted of three tasks (MID, N-back, SST) that were 
each acquired over two runs (for a total of six task fMRI runs). Each fMRI run was acquired 
in 2.4 mm isotropic resolution with a TR of 800 ms. The structural data consisted of one 1 
mm isotropic scan for each participant. Full details of image acquisition can be found 
elsewhere ​(Casey ​et al.​ 2018)​.  
 

S2. Behavioral data 
We analyzed data from all available dimensional neurocognitive ​(Luciana ​et al.​ 2018)​ and 
mental health ​(Barch ​et al.​ 2018)​ assessments. For the neurocognitive assessments, we 
included the NIH Toolbox, Rey Auditory Verbal Learning Test, Little Man Task, and the 
matrix reasoning subscale from the Wechsler Intelligence Scale for Children-V, in order to 
measure different aspects of cognition. For the mental health assessments, we included the 
Achenbach Child Behavior Check List (CBCL), the mania scale from the Parent General 
Behavior Inventory, Pediatric Psychosis Questionnaire. For the personality measures, we 
included the Modified UPPS-P for Children and Behavioral Inhibition and Activation scales. 
See Tables S1 & S2 for more details for each individual scale.  
 
Table S1. ​ Behavioral measures used in this study. 

Scale Subscale/Measure 

NIH Toolbox ​(Hodes ​et al.​ 2013) Flanker 
List sorting working memory 
Dimensional change card sort 
Oral reading recognition 
Pattern comparison processing speed 
Picture sequence memory test 
Picture vocabulary test 
Cognition fluid composite 
Crystallized composite 
Cognition total composite 

Rey Auditory Verbal Learning Test (RAVLT) 
(Strauss ​et al.​ 2006) 

Short delay recall 
Long delay recall 

Little Man Task ​(Acker and Acker 1982) Accuracy 
Reaction time (correct responses) 
Efficiency 

Wechsler Intelligence Scale for Children-V 
(WISC-V) ​(Wechsler 2014) 

Matrix reasoning 
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Achenbach Child Behavior Check List 
(Achenbach and Rescorla 2013) 

Anxious/Depressed 
Withdrawn/Depressed 
Somatic complaints 
Social problems 
Thought problems 
Attention problems 
Rule-breaking behavior 
Aggressive behavior 

Parent General Behavior Inventory 
(Youngstrom ​et al.​ 2013) 

Mania 

Pediatric Psychosis Questionnaire - Brief 
Version ​(Loewy ​et al.​ 2012) 

Total number of psychosis symptoms 
Symptom severity score 

Modified UPPS-P for Children from PhenX 
(Lynam 2013) 

Negative urgency 
Positive urgency 
Lack of planning 
Lack of perseverance 
Sensation seeking 

Behavioral Inhibition & Activation 
(Pagliaccio ​et al.​ 2016) 

Behavioral inhibition sum 
Reward responsiveness 
Drive 
Fun seeking 

 
Table S2 ​.​ Lookup table showing the original ABCD variable names with the corresponding 
descriptive labels used in the manuscript. More details of the behavioral measures can be 
found in the ABCD data dictionary.  

Description ABCD field ABCD file 

Anxious depressed cbcl_scr_syn_anxdep_r abcd_cbcls01.txt 

Withdrawn depressed cbcl_scr_syn_withdep_r abcd_cbcls01.txt 

Somatic complaints cbcl_scr_syn_somatic_r abcd_cbcls01.txt 

Social problems cbcl_scr_syn_social_r abcd_cbcls01.txt 

Thought problems cbcl_scr_syn_thought_r abcd_cbcls01.txt 

Attention problems cbcl_scr_syn_attention_r abcd_cbcls01.txt 

Rule-breaking behavior cbcl_scr_syn_rulebreak_r abcd_cbcls01.txt 

Aggressive behavior cbcl_scr_syn_aggressive_r abcd_cbcls01.txt 

Vocabulary nihtbx_picvocab_uncorrected abcd_tbss01.txt 

Attention nihtbx_flanker_uncorrected abcd_tbss01.txt 
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Working memory nihtbx_list_uncorrected abcd_tbss01.txt 

Executive function nihtbx_cardsort_uncorrected abcd_tbss01.txt 

Processing speed nihtbx_pattern_uncorrected abcd_tbss01.txt 

Episodic memory nihtbx_picture_uncorrected abcd_tbss01.txt 

Reading nihtbx_reading_uncorrected abcd_tbss01.txt 

Fluid cognition nihtbx_fluidcomp_uncorrected abcd_tbss01.txt 

Crystallized cognition nihtbx_cryst_uncorrected abcd_tbss01.txt 

Overall cognition nihtbx_totalcomp_uncorrected abcd_tbss01.txt 

Negative urgency upps_y_ss_negative_urgency abcd_mhy02.txt 

Lack of planning upps_y_ss_lack_of_planning abcd_mhy02.txt 

Sensation seeking upps_y_ss_sensation_seeking abcd_mhy02.txt 

Positive urgency upps_y_ss_positive_urgency abcd_mhy02.txt 

Lack perseverance upps_y_lack_of_perseverance abcd_mhy02.txt 

Behavioral inhibition bis_y_ss_bis_sum abcd_mhy02.txt 

Reward responsiveness bis_y_ss_bas_rr abcd_mhy02.txt 

Drive bis_y_ss_bas_drive abcd_mhy02.txt 

Fun seeking bis_y_ss_bas_fs abcd_mhy02.txt 

Total psychosis 
symptoms 

pps_y_ss_number abcd_mhy02.txt 

Psychosis severity pps_y_ss_severity_score abcd_mhy02.txt 

Mania pgbi_p_ss_score abcd_mhp02.txt 

Short delay recall pea_ravlt_sd_trial_vi_tc abcd_ps01.txt 

Long delay recall pea_ravlt_ld_trial_vii_tc abcd_ps01.txt 

Fluid intelligence pea_wiscv_trs abcd_ps01.txt 

Visuospatial accuracy lmt_scr_perc_correct lmtp201.txt 

Visuospatial reaction time lmt_scr_rt_correct lmtp201.txt 

Visuospatial efficiency lmt_scr_efficiency lmtp201.txt 
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S3. Multi-kernel ridge regression 

S3.1. Single-kernel ridge regression 
For completeness, we provide a brief explanation of single-kernel ridge regression. The 
following section is adapted from our previous study (Kong et al., 2019). Suppose we have 

 training subjects. Let be the behavioral measure (e.g., fluid intelligence) and be 
the vectorized FC (considering only lower triangular matrix) of the -th training subject. Given 
and , the kernel regression model is written as: 

  
 
where is the bias term and is the functional connectivity similarity between 
the -th and -th training subjects. is defined by the correlation between the 
vectorized FC of the two subjects. The choice of correlation is motivated by previous 
fingerprinting and behavioral prediction studies ​(Finn ​et al.​ 2015, Li ​et al.​ 2019, He ​et al. 
2020)​. 
 
To estimate and from the training set, let , 
and  be the  kernel similarity matrix, whose -th element is . 
Note that we can rewrite Eq. (1) as . We can then estimate and by 
minimizing the following  l ​2​-regularized cost function: 
 

 
 
where  controls the importance of the l ​2​-regularization and is estimated within the 
inner-loop cross-validation procedure. We emphasize that the test set was not used to 
estimate . Once  and have been estimated from the training set, the predicted 
behavior of test subject  is given by 
 

 

S3.2. Multi-kernel ridge regression 
Single-kernel ridge regression uses data from a single fMRI brain state for prediction. To 
extend to multiple fMRI brain states, we can construct one kernel similarity matrix for each 
fMRI brain state. Suppose we have  training subjects and  fMRI brain states. Let be 
the behavioral measure of the -th training subject. Let be the vectorized FC of the 
-th training subject for the -th fMRI brain state. The multi-kernel regression model can be 
written as: 
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where is the bias term and is the functional connectivity similarity 
between the -th and -th training subjects for the -th brain state. Like before,  is defined 

by the correlation between the vectorized FC of the two subjects for the 
-th brain state. 
 
Let and . Suppose is the  
kernel similarity matrix for the -th brain state, whose -th element is . 
We can estimate and by minimizing the following l ​2​-regularized cost function: 
 

 
 
where controls the importance of the l ​2​-regularization for the -th kernel. Here, is 
estimated within the inner-loop cross-validation procedure using Gaussian-process 
optimization (​Kawaguchi et al., 2015 ​). We emphasize that the test set was not used to 
estimate . Once and have been estimated from the training set, the predicted 
behavior of test subject  is given by  
 

 

S3.3. Coefficient of determination (COD) 
Suppose  is the number of test subjects, and are the groundtruth and predicted 
behavior measure of the -th test subject respectively, and is the mean of the 
behavioral measure of all training subjects. The coefficient of determination is defined as 
follows: 

 
 
Thus, a larger COD indicates more accurate prediction. A negative value implies that we are 
better off using the mean behavior of the training subjects to predict the behavior of the test 
subject instead of using the FC data.  

S4. Predictive-feature matrices 
To interpret which brain edges were important for the multi-kernel FC model, we utilized an 
elegant approach ​(Haufe ​et al.​ 2014)​ to invert the prediction model. Failure to invert the 
model leads to uninterpretable results ​(Haufe ​et al.​ 2014)​. Let us consider the functional 
connectivity between brain regions  and . We would like to compute the predictive-feature 
value of the functional connection for the multi-kernel FC model. A positive value (or 
negative) predictive-feature value for an edge, indicating that higher FC between brain 
regions  and  was associated with predicting greater (or lower) behavioral values.  
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Let be the normalized functional connectivity strength between brain regions  and  
for all training subjects. Therefore, is an  vector where  is the number of 
training subjects. Normalization was performed so that the FC of each subject has zero 
mean and unit norm. Let be the prediction of the training subjects’ behavioral measure 
based on the estimated kernel regression model. Therefore is an  vector where  
is the number of training subjects. According to Haufe and colleagues ​(2014)​, 

.  
 
However, because we would like to compare across different behavioral measures, the scale 
of is very different across behavioral measures. Thus, we computed 

, which does not change the relative 
predictive-feature values among edges, but allows for comparisons between behavioral 
measures. We note that the above formula is applied to the training set, because we want to 
interpret the trained model. However, recall that we performed leave-3-site-clusters-out 
nested cross-validation for each behavioral measure with 120 replications. Thus we 
computed the predictive-feature values for each replication and averaged across the 120 
replications.  
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Supplementary results 
 
Table S3. ​ Demographic information for included and excluded participants in ABCD 2.0.1 

 Included Excluded 

N 1858 10017 

Age in months (mean 
(s.d.)) 

120.34 (7.43) 118.68 (7.44) 

Female (%) 1025 (55.17) 4656 (46.48) 

Race/ethnicity (%)   

Asian 55 (2.96) 197 (1.97) 

Black 143 (7.70) 1636 (16.33) 

Hispanic 324 (17.44) 2083 (20.79) 

White 1145 (61.63) 5029 (50.20) 

Other 187 (10.06) 1058 (10.56) 

Unknown 4 (0.21) 14 (0.14) 

Household income (%)   

< 50 000 360 (19.38) 2862 (28.57) 

≥ 50 000 & < 100 000 517 (27.82) 2553 (25.49) 

≥ 100 000 873 (46.99) 3692 (36.86) 

Unknown 108 (5.81) 910 (9.08) 
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Table S4. ​ Distribution of the included sample (n=1858) by site and scanner 

ABCD Site Make Model N Site-cluster  

16 Siemens Prisma 292 A 

13 GE Discovery MR750 161 B 

4 GE Discovery MR750 145 C 

22 GE Discovery MR750 12 C 

14 Siemens Prisma/Prisma fit 135 D 

15 Siemens Prisma fit 27 D 

6 Siemens Prisma fit 131 E 

9 Siemens Prisma fit 52 E 

10 GE Discovery MR750 127 F 

11 Siemens Prisma 52 F 

3 Siemens Prisma 120 G 

5 Siemens Prisma fit 56 G 

2 Siemens Prisma fit 110 H 

7 Siemens Prisma fit 55 H 

8 GE Discovery MR750 63 I 

20 Siemens Prisma/Prisma fit 92 I 

12 Siemens Prisma fit 79 J 

18 GE Discovery MR750 73 J 

21 Siemens Prisma fit/Prisma 76 J 
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Figure S1. ​ Cross-validated prediction performance (coefficient of determination; COD) using 
kernel ridge regression for resting-state and task-states (MID, SST, N-Back). Multi-kernel FC 
utilized FC from all 4 brain states for prediction. Higher COD indicates greater variance 
predicted relative to the mean of the training data. 
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Figure S2. ​ Cross-validated prediction performance (coefficient of determination; COD) using 
multi-kernel ridge regression by exploiting resting-FC, MID-FC, SST-FC and N-back-FC 
jointly. (A) Cognitive measures. (B) Personality measures. (C) Mental health measures. * 
denotes above chance prediction after correcting for multiple comparisons (FDR q < 0.05). 
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Figure S3. ​ Resting-FC predictive-feature matrices for each significantly predicted behavior. 
For visualization, the values within each matrix were divided by their standard deviations. 
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Figure S4. ​ MID-FC predictive-feature matrices for each significantly predicted behavior. For 
visualization, the values within each matrix were divided by their standard deviations. 
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Figure S5. ​ SST-FC predictive-feature matrices for each significantly predicted behavior. For 
visualization, the values within each matrix were divided by their standard deviations. 

38 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Figure S6. ​ N-Back-FC predictive-feature matrices for each significantly predicted behavior. 
For visualization, the values within each matrix were divided by their standard deviations. 
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Figure S7. ​ Predictive-feature matrices for each brain state (Rest, MID, SST, N-Back) 
averaged across all behavioral measures within each hypothesis-driven behavioral domain 
(cognition, personality, mental health). For visualization, the values within each matrix were 
divided by their standard deviations. 
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Figure S8. ​ Predictive-feature matrices for each brain state (Rest, MID, SST, N-Back) 
averaged across all behavioral measures within each data-driven behavioral cluster 
(cognition, personality, mental health). For visualization, the values within each matrix were 
divided by their standard deviations. 
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Figure S9. ​Hierarchical clustering of actual behavioral scores. Clustering was performed 
using hierarchical agglomerative average linkage (​UPGMA) ​clustering as implemented in 
scipy 1.2.1 ​(Virtanen ​et al.​ 2020)​. 
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Figure S10. ​ Similarity of predictive-network features for each significantly predicted behavior 
and brain state. The behavioral measures were ordered based on hypothesis-driven 
behavioral domains (cognition, personality and mental health). For each behavior, the brain 
states were ordered by Rest, MID, SST and finally N-Back. Red font indicates cognitive 
measures. Black/grey font indicates personality measures. Blue font indicates mental health 
measures. Predictive-network features were highly correlated within each hypothesis-driven 
behavioral domain and across brain states.  
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Figure S11. ​ Similarity of predictive-network features for each significantly predicted behavior 
and brain state. The behavioral measures were ordered based on data-driven behavioral 
clusters (cognition, personality and mental health). For each behavior, the brain states were 
ordered by Rest, MID, SST and finally N-Back. Red font indicates cognitive measures. 
Black/grey font indicates personality measures. Blue font indicates mental health measures. 
Predictive-network features were highly correlated within each hypothesis-driven behavioral 
domain and across brain states. 
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Figure S12. ​ Predictive-feature matrices showing significant network blocks for each 
hypothesis-driven behavioral domain (cognitive, personality, mental health) for each brain 
state (Rest, MID, SST, N-Back) after permutation testing. For visualization, the values within 
each matrix were divided by their standard deviations. 
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Figure S13. ​ Heatmaps showing network feature predictability of each subcortical region for 
(A) each hypothesis-driven behavioral domain and (B) each data-driven behavioral cluster. 
See Figures 6C and 6D for the cortical maps of the hypothesis-driven behavioral domains 
and Figures S15C and S15D for the cortical maps of the data-driven behavioral clusters.  
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Figure S14. ​ Predictive-feature matrices showing significant network blocks for each 
data-driven behavioral cluster (cognitive, personality, mental health) and for each brain state 
(Rest, MID, SST, N-Back) after permutation testing. For visualization, the values within each 
matrix were divided by their standard deviations. 
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Figure S15. ​ Predictive brain network features for predicting cognition, personality and 
mental health. This figure is the same as Figure 6 but using data-driven behavioral clusters, 
instead of hypothesis-driven behavioral domains. (A) Predictive-feature matrices averaged 
across brain states, considering only within-network and between-network blocks that were 
significant across all four brain states (Rest, MID, SST, N-Back). (B) Predictive network 
connections obtained by averaging the matrices in panel (A) within each between-network 
and within-network block. (C) Positive predictive features obtained by summing positive 
predictive-feature values across the rows of panel (A). A higher value for a brain region 
indicates that stronger connectivity yielded a higher prediction for the behavioral measure. 
(D) Negative predictive features obtained by summing negative predictive-feature values 
across the rows of panel (A). A higher value for a brain region indicates that weaker 
connectivity yielded a greater prediction for the behavioral measure. Conclusions were 
highly similar using hypothesis-driven behavioral domains (Figure 7). 
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Figure S16. ​ Mean cross-validated prediction performance after regressing out age and sex 
from the behaviors, compared to the prediction performance of the original multi-kernel FC 
regression model (as shown in main text) without the regression of age and sex. (A) 
Accuracy as measured by Pearson’s correlation between observed and predicted values. (B) 
Accuracy as measured by the coefficient of determination (COD). 
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Figures S17.​ Mean cross-validated prediction performance obtained by the original 
multi-kernel FC regression model (as shown in main text) and kernel ridge regression using 
FC averaged across all four brain states (mean-FC). (A) Accuracy as measured by 
Pearson's correlations between observed and predicted values. (B) Accuracy as measured 
by the coefficient of determination (COD). 
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Figure S18. ​ Mean cross-validated prediction performance using linear ridge regression 
(LRR) and the original multi-kernel FC regression model (as shown in main text). (A) 
Accuracy as measured by Pearson’s correlations between observed and predicted values. 
(B) Accuracy as measured by the coefficient of determination (COD). 
 
 
 
 
 
 
 
 
 
 
 

52 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

 
 
 

References 
 

Achenbach, T. and Rescorla, L., 2013. Achenbach System of Empirically Based 
Assessment. ​In ​: F.R. Volkmar, ed. ​Encyclopedia of Autism Spectrum Disorders​. New 
York, NY: Springer New York, 31–39. 

Acker, W. and Acker, C., 1982. Bexley Maudsley automated processing screening and 
Bexley Maudsley category sorting test manual. ​Windsor, England: NFER-Nelson​. 

Baker, J.T., Dillon, D.G., Patrick, L.M., Roffman, J.L., Brady, R.O., Jr, Pizzagalli, D.A., 
Öngür, D., and Holmes, A.J., 2019. Functional connectomics of affective and psychotic 
pathology. ​Proceedings of the National Academy of Sciences of the United States of 
America​, 116 (18), 9050–9059. 

Baker, J.T., Holmes, A.J., Masters, G.A., Yeo, B.T.T., Krienen, F., Buckner, R.L., and Öngür, 
D., 2014. Disruption of cortical association networks in schizophrenia and psychotic 
bipolar disorder. ​JAMA psychiatry ​, 71 (2), 109–118. 

Balodis, I.M., Kober, H., Worhunsky, P.D., Stevens, M.C., Pearlson, G.D., and Potenza, 
M.N., 2012. Diminished frontostriatal activity during processing of monetary rewards and 
losses in pathological gambling. ​Biological psychiatry​, 71 (8), 749–757. 

Barch, D.M., Albaugh, M.D., Avenevoli, S., Chang, L., Clark, D.B., Glantz, M.D., Hudziak, 
J.J., Jernigan, T.L., Tapert, S.F., Yurgelun-Todd, D., Alia-Klein, N., Potter, A.S., Paulus, 
M.P., Prouty, D., Zucker, R.A., and Sher, K.J., 2018. Demographic, physical and mental 
health assessments in the adolescent brain and cognitive development study: Rationale 
and description. ​Developmental cognitive neuroscience​, 32, 55–66. 

Beck, A., Schlagenhauf, F., Wüstenberg, T., Hein, J., Kienast, T., Kahnt, T., Schmack, K., 
Hägele, C., Knutson, B., Heinz, A., and Wrase, J., 2009. Ventral striatal activation during 
reward anticipation correlates with impulsivity in alcoholics. ​Biological psychiatry​, 66 (8), 
734–742. 

Bertolero, M.A., Yeo, B.T.T., Bassett, D.S., and D’Esposito, M., 2018. A mechanistic model 
of connector hubs, modularity and cognition. ​Nature human behaviour​, 2 (10), 765–777. 

Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., and Prieto, T., 1997. Human 
brain language areas identified by functional magnetic resonance imaging. ​The Journal 
of neuroscience: the official journal of the Society for Neuroscience​, 17 (1), 353–362. 

Bjork, J.M., Knutson, B., Fong, G.W., Caggiano, D.M., Bennett, S.M., and Hommer, D.W., 
2004. Incentive-elicited brain activation in adolescents: similarities and differences from 
young adults. ​The Journal of neuroscience: the official journal of the Society for 
Neuroscience​, 24 (8), 1793–1802. 

Bouckaert, R.R. and Frank, E., 2004. Evaluating the Replicability of Significance Tests for 
Comparing Learning Algorithms. ​In​: ​Advances in Knowledge Discovery and Data 
Mining​. Springer Berlin Heidelberg, 3–12. 

Braga, R.M., Di Nicola, L.M., and Buckner, R.L., 2019. Situating the Left-Lateralized 
Language Network in the Broader Organization of Multiple Specialized Large-Scale 
Distributed Networks. ​bioRxiv​. 

Buckholtz, J.W., Treadway, M.T., Cowan, R.L., Woodward, N.D., Li, R., Ansari, M.S., 
Baldwin, R.M., Schwartzman, A.N., Shelby, E.S., Smith, C.E., Kessler, R.M., and Zald, 
D.H., 2010. Dopaminergic network differences in human impulsivity. ​Science​, 329 
(5991), 532. 

53 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/CD4WK
http://paperpile.com/b/RepFEZ/XhDIu
http://paperpile.com/b/RepFEZ/XhDIu
http://paperpile.com/b/RepFEZ/XhDIu
http://paperpile.com/b/RepFEZ/XhDIu
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/lylv
http://paperpile.com/b/RepFEZ/Rz7c
http://paperpile.com/b/RepFEZ/Rz7c
http://paperpile.com/b/RepFEZ/Rz7c
http://paperpile.com/b/RepFEZ/Rz7c
http://paperpile.com/b/RepFEZ/Rz7c
http://paperpile.com/b/RepFEZ/gUjz
http://paperpile.com/b/RepFEZ/gUjz
http://paperpile.com/b/RepFEZ/gUjz
http://paperpile.com/b/RepFEZ/gUjz
http://paperpile.com/b/RepFEZ/gUjz
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/mGVB
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/ausj
http://paperpile.com/b/RepFEZ/3Feg
http://paperpile.com/b/RepFEZ/3Feg
http://paperpile.com/b/RepFEZ/3Feg
http://paperpile.com/b/RepFEZ/3Feg
http://paperpile.com/b/RepFEZ/JvmJ
http://paperpile.com/b/RepFEZ/JvmJ
http://paperpile.com/b/RepFEZ/JvmJ
http://paperpile.com/b/RepFEZ/JvmJ
http://paperpile.com/b/RepFEZ/JvmJ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/lvjQ
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/bw3v
http://paperpile.com/b/RepFEZ/1txL
http://paperpile.com/b/RepFEZ/1txL
http://paperpile.com/b/RepFEZ/1txL
http://paperpile.com/b/RepFEZ/1txL
http://paperpile.com/b/RepFEZ/1txL
http://paperpile.com/b/RepFEZ/ehKi
http://paperpile.com/b/RepFEZ/ehKi
http://paperpile.com/b/RepFEZ/ehKi
http://paperpile.com/b/RepFEZ/ehKi
http://paperpile.com/b/RepFEZ/ehKi
http://paperpile.com/b/RepFEZ/ehKi
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Bzdok, D., Eickenberg, M., Grisel, O., Thirion, B., and Varoquaux, G., 2015. 
Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging 
Data. ​In ​: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, and R. Garnett, eds. 
Advances in Neural Information Processing Systems 28​. Curran Associates, Inc., 
3348–3356. 

Bzdok, D. and Ioannidis, J.P.A., 2019. Exploration, Inference, and Prediction in 
Neuroscience and Biomedicine. ​Trends in neurosciences​, 42 (4), 251–262. 

Bzdok, D. and Meyer-Lindenberg, A., 2018. Machine Learning for Precision Psychiatry: 
Opportunities and Challenges. ​Biological psychiatry. Cognitive neuroscience and 
neuroimaging​, 3 (3), 223–230. 

Bzdok, D., Varoquaux, G., Grisel, O., Eickenberg, M., Poupon, C., and Thirion, B., 2016. 
Formal Models of the Network Co-occurrence Underlying Mental Operations. ​PLoS 
computational biology​, 12 (6), e1004994. 

Carroll, J.B., 2003. Chapter 1 - The Higher-stratum Structure of Cognitive Abilities: Current 
Evidence Supports g and About Ten Broad Factors. ​In​: H. Nyborg, ed. ​The Scientific 
Study of General Intelligence​. Oxford: Pergamon, 5–21. 

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., Soules, 
M.E., Teslovich, T., Dellarco, D.V., Garavan, H., Orr, C.A., Wager, T.D., Banich, M.T., 
Speer, N.K., Sutherland, M.T., Riedel, M.C., Dick, A.S., Bjork, J.M., Thomas, K.M., 
Chaarani, B., Mejia, M.H., Hagler, D.J., Jr, Daniela Cornejo, M., Sicat, C.S., Harms, 
M.P., Dosenbach, N.U.F., Rosenberg, M., Earl, E., Bartsch, H., Watts, R., Polimeni, 
J.R., Kuperman, J.M., Fair, D.A., Dale, A.M., and ABCD Imaging Acquisition Workgroup, 
2018. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition 
across 21 sites. ​Developmental cognitive neuroscience​, 32, 43–54. 

Casey, B.J., Getz, S., and Galvan, A., 2008. The adolescent brain. ​Developmental review: 
DR​, 28 (1), 62–77. 

Caspi, A., Houts, R.M., Belsky, D.W., Goldman-Mellor, S.J., Harrington, H., Israel, S., Meier, 
M.H., Ramrakha, S., Shalev, I., Poulton, R., and Moffitt, T.E., 2014. The p Factor: One 
General Psychopathology Factor in the Structure of Psychiatric Disorders? ​Clinical 
psychological science​, 2 (2), 119–137. 

Cohen, J.R. and D’Esposito, M., 2016. The Segregation and Integration of Distinct Brain 
Networks and Their Relationship to Cognition. ​The Journal of neuroscience: the official 
journal of the Society for Neuroscience​, 36 (48), 12083–12094. 

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., and Petersen, S.E., 2014. Intrinsic and 
task-evoked network architectures of the human brain. ​Neuron​, 83 (1), 238–251. 

Cole, M.W., Repovš, G., and Anticevic, A., 2014. The frontoparietal control system: a central 
role in mental health. ​The Neuroscientist: a review journal bringing neurobiology, 
neurology and psychiatry​, 20 (6), 652–664. 

Cole, M.W., Reynolds, J.R., Power, J.D., Repovs, G., Anticevic, A., and Braver, T.S., 2013. 
Multi-task connectivity reveals flexible hubs for adaptive task control. ​Nature 
neuroscience​, 16 (9), 1348–1355. 

Corkin, S., 2002. What’s new with the amnesic patient H.M.? ​Nature reviews. Neuroscience​, 
3 (2), 153–160. 

Cubillo, A., Halari, R., Smith, A., Taylor, E., and Rubia, K., 2012. A review of fronto-striatal 
and fronto-cortical brain abnormalities in children and adults with Attention Deficit 
Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD 
during motivation and attention. ​Cortex; a journal devoted to the study of the nervous 
system and behavior​, 48 (2), 194–215. 

Cui, Z., Li, H., Xia, C.H., Larsen, B., Adebimpe, A., Baum, G.L., Cieslak, M., Gur, R.E., Gur, 
R.C., Moore, T.M., Oathes, D.J., Alexander-Bloch, A.F., Raznahan, A., Roalf, D.R., 
Shinohara, R.T., Wolf, D.H., Davatzikos, C., Bassett, D.S., Fair, D.A., Fan, Y., and 

54 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/h1vd
http://paperpile.com/b/RepFEZ/kXWh
http://paperpile.com/b/RepFEZ/kXWh
http://paperpile.com/b/RepFEZ/kXWh
http://paperpile.com/b/RepFEZ/kXWh
http://paperpile.com/b/RepFEZ/4Vxg
http://paperpile.com/b/RepFEZ/4Vxg
http://paperpile.com/b/RepFEZ/4Vxg
http://paperpile.com/b/RepFEZ/4Vxg
http://paperpile.com/b/RepFEZ/4Vxg
http://paperpile.com/b/RepFEZ/EsUd
http://paperpile.com/b/RepFEZ/EsUd
http://paperpile.com/b/RepFEZ/EsUd
http://paperpile.com/b/RepFEZ/EsUd
http://paperpile.com/b/RepFEZ/EsUd
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/yhAO
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/NBNk
http://paperpile.com/b/RepFEZ/b15e
http://paperpile.com/b/RepFEZ/b15e
http://paperpile.com/b/RepFEZ/b15e
http://paperpile.com/b/RepFEZ/b15e
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/nLMK
http://paperpile.com/b/RepFEZ/YAso
http://paperpile.com/b/RepFEZ/YAso
http://paperpile.com/b/RepFEZ/YAso
http://paperpile.com/b/RepFEZ/YAso
http://paperpile.com/b/RepFEZ/YAso
http://paperpile.com/b/RepFEZ/sFEQ
http://paperpile.com/b/RepFEZ/sFEQ
http://paperpile.com/b/RepFEZ/sFEQ
http://paperpile.com/b/RepFEZ/sFEQ
http://paperpile.com/b/RepFEZ/T5mP
http://paperpile.com/b/RepFEZ/T5mP
http://paperpile.com/b/RepFEZ/T5mP
http://paperpile.com/b/RepFEZ/T5mP
http://paperpile.com/b/RepFEZ/T5mP
http://paperpile.com/b/RepFEZ/4eYz
http://paperpile.com/b/RepFEZ/4eYz
http://paperpile.com/b/RepFEZ/4eYz
http://paperpile.com/b/RepFEZ/4eYz
http://paperpile.com/b/RepFEZ/4eYz
http://paperpile.com/b/RepFEZ/5vPT
http://paperpile.com/b/RepFEZ/5vPT
http://paperpile.com/b/RepFEZ/5vPT
http://paperpile.com/b/RepFEZ/5vPT
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/IYRY
http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/CIgD
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Satterthwaite, T.D., 2020. Individual Variation in Functional Topography of Association 
Networks in Youth. ​Neuron​. 

Dale, A.M., Fischl, B., and Sereno, M.I., 1999. Cortical surface-based analysis. I. 
Segmentation and surface reconstruction. ​NeuroImage​, 9 (2), 179–194. 

Dalley, J.W., Mar, A.C., Economidou, D., and Robbins, T.W., 2008. Neurobehavioral 
mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. 
Pharmacology, biochemistry, and behavior​, 90 (2), 250–260. 

Dosenbach, N.U.F., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, 
S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., 
Feczko, E., Coalson, R.S., Pruett, J.R., Jr, Barch, D.M., Petersen, S.E., and Schlaggar, 
B.L., 2010. Prediction of individual brain maturity using fMRI. ​Science​, 329 (5997), 
1358–1361. 

Dubois, J., Galdi, P., Han, Y., Paul, L.K., and Adolphs, R., 2018. Resting-state functional 
brain connectivity best predicts the personality dimension of openness to experience. 
Personality neuroscience​, 1. 

Eickhoff, S.B. and Langner, R., 2019. Neuroimaging-based prediction of mental traits: Road 
to utopia or Orwell? ​PLoS biology​, 17 (11), e3000497. 

Elliott, M.L., Knodt, A.R., Cooke, M., Kim, M.J., Melzer, T.R., Keenan, R., Ireland, D., 
Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T.E., and Hariri, A.R., 2019. General 
functional connectivity: Shared features of resting-state and task fMRI drive reliable and 
heritable individual differences in functional brain networks. ​NeuroImage​, 189, 516–532. 

Evans, T.M., Kochalka, J., Ngoon, T.J., Wu, S.S., Qin, S., Battista, C., and Menon, V., 2015. 
Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year 
Longitudinal Growth in Children’s Numerical Abilities. ​The Journal of neuroscience: the 
official journal of the Society for Neuroscience​, 35 (33), 11743–11750. 

Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., 
Schlaggar, B.L., and Petersen, S.E., 2009. Functional brain networks develop from a 
‘local to distributed’ organization. ​PLoS computational biology​, 5 (5), e1000381. 

Farr, O.M., Hu, S., Zhang, S., and Li, C.-S.R., 2012. Decreased saliency processing as a 
neural measure of Barratt impulsivity in healthy adults. ​NeuroImage​, 63 (3), 1070–1077. 

Fedorenko, E., Duncan, J., and Kanwisher, N., 2012. Language-selective and 
domain-general regions lie side by side within Broca’s area. ​Current biology: CB​, 22 
(21), 2059–2062. 

Fineberg, N.A., Potenza, M.N., Chamberlain, S.R., Berlin, H.A., Menzies, L., Bechara, A., 
Sahakian, B.J., Robbins, T.W., Bullmore, E.T., and Hollander, E., 2010. Probing 
compulsive and impulsive behaviors, from animal models to endophenotypes: a 
narrative review. ​Neuropsychopharmacology: official publication of the American 
College of Neuropsychopharmacology​, 35 (3), 591–604. 

Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, 
X., and Constable, R.T., 2015. Functional connectome fingerprinting: identifying 
individuals using patterns of brain connectivity. ​Nature neuroscience​, 18 (11), 
1664–1671. 

Fischl, B., Liu, A., and Dale, A.M., 2001. Automated manifold surgery: constructing 
geometrically accurate and topologically correct models of the human cerebral cortex. 
IEEE transactions on medical imaging​, 20 (1), 70–80. 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., 
Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., and Dale, 
A.M., 2002. Whole brain segmentation: automated labeling of neuroanatomical 
structures in the human brain. ​Neuron​, 33 (3), 341–355. 

Fischl, B., Sereno, M.I., and Dale, A.M., 1999. II: Inflation, Flattening, and a Surface-Based 
Coordinate System. ​NeuroImage​, 9, 195–207. 

55 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/CIgD
http://paperpile.com/b/RepFEZ/lkED
http://paperpile.com/b/RepFEZ/lkED
http://paperpile.com/b/RepFEZ/lkED
http://paperpile.com/b/RepFEZ/lkED
http://paperpile.com/b/RepFEZ/BbAs
http://paperpile.com/b/RepFEZ/BbAs
http://paperpile.com/b/RepFEZ/BbAs
http://paperpile.com/b/RepFEZ/BbAs
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/1ffx
http://paperpile.com/b/RepFEZ/Ih5c
http://paperpile.com/b/RepFEZ/Ih5c
http://paperpile.com/b/RepFEZ/Ih5c
http://paperpile.com/b/RepFEZ/Ih5c
http://paperpile.com/b/RepFEZ/hKFZ
http://paperpile.com/b/RepFEZ/hKFZ
http://paperpile.com/b/RepFEZ/hKFZ
http://paperpile.com/b/RepFEZ/hKFZ
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/4sp3
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/f7EM
http://paperpile.com/b/RepFEZ/4ozv
http://paperpile.com/b/RepFEZ/4ozv
http://paperpile.com/b/RepFEZ/4ozv
http://paperpile.com/b/RepFEZ/4ozv
http://paperpile.com/b/RepFEZ/4ozv
http://paperpile.com/b/RepFEZ/LhPQ
http://paperpile.com/b/RepFEZ/LhPQ
http://paperpile.com/b/RepFEZ/LhPQ
http://paperpile.com/b/RepFEZ/LhPQ
http://paperpile.com/b/RepFEZ/8P4Y
http://paperpile.com/b/RepFEZ/8P4Y
http://paperpile.com/b/RepFEZ/8P4Y
http://paperpile.com/b/RepFEZ/8P4Y
http://paperpile.com/b/RepFEZ/8P4Y
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/ZBQC
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/TwEG
http://paperpile.com/b/RepFEZ/pUuM
http://paperpile.com/b/RepFEZ/pUuM
http://paperpile.com/b/RepFEZ/pUuM
http://paperpile.com/b/RepFEZ/pUuM
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/1Xs9
http://paperpile.com/b/RepFEZ/Eojs
http://paperpile.com/b/RepFEZ/Eojs
http://paperpile.com/b/RepFEZ/Eojs
http://paperpile.com/b/RepFEZ/Eojs
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Fischl, B., Sereno, M.I., Tootell, R.B., and Dale, A.M., 1999. High-resolution intersubject 
averaging and a coordinate system for the cortical surface. ​Human brain mapping​, 8 (4), 
272–284. 

Fong, A.H.C., Yoo, K., Rosenberg, M.D., Zhang, S., Li, C.-S.R., Scheinost, D., Constable, 
R.T., and Chun, M.M., 2019. Dynamic functional connectivity during task performance 
and rest predicts individual differences in attention across studies. ​NeuroImage​, 188, 
14–25. 

Freiwald, W.A. and Tsao, D.Y., 2010. Functional compartmentalization and viewpoint 
generalization within the macaque face-processing system. ​Science​, 330 (6005), 
845–851. 

Galvan, A., Hare, T.A., Parra, C.E., Penn, J., Voss, H., Glover, G., and Casey, B.J., 2006. 
Earlier development of the accumbens relative to orbitofrontal cortex might underlie 
risk-taking behavior in adolescents. ​The Journal of neuroscience: the official journal of 
the Society for Neuroscience​, 26 (25), 6885–6892. 

Gao, S., Greene, A.S., Constable, R.T., and Scheinost, D., 2019. Combining multiple 
connectomes improves predictive modeling of phenotypic measures. ​NeuroImage​, 201, 
116038. 

Gee, D.G., Humphreys, K.L., Flannery, J., Goff, B., Telzer, E.H., Shapiro, M., Hare, T.A., 
Bookheimer, S.Y., and Tottenham, N., 2013. A developmental shift from positive to 
negative connectivity in human amygdala-prefrontal circuitry. ​The Journal of 
neuroscience: the official journal of the Society for Neuroscience​, 33 (10), 4584–4593. 

Golchert, J., Smallwood, J., Jefferies, E., Liem, F., Huntenburg, J.M., Falkiewicz, M., 
Lauckner, M.E., Oligschläger, S., Villringer, A., and Margulies, D.S., 2017. In need of 
constraint: Understanding the role of the cingulate cortex in the impulsive mind. 
NeuroImage​, 146, 804–813. 

Goodkind, M., Eickhoff, S.B., Oathes, D.J., Jiang, Y., Chang, A., Jones-Hagata, L.B., 
Ortega, B.N., Zaiko, Y.V., Roach, E.L., Korgaonkar, M.S., Grieve, S.M., Galatzer-Levy, 
I., Fox, P.T., and Etkin, A., 2015. Identification of a common neurobiological substrate 
for mental illness. ​JAMA psychiatry ​, 72 (4), 305–315. 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., and Petersen, 
S.E., 2016. Generation and Evaluation of a Cortical Area Parcellation from 
Resting-State Correlations. ​Cerebral cortex ​, 26 (1), 288–303. 

Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., 
Nelson, S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., and 
Petersen, S.E., 2018. Functional Brain Networks Are Dominated by Stable Group and 
Individual Factors, Not Cognitive or Daily Variation. ​Neuron​, 98 (2), 439–452.e5. 

Greene, A.S., Gao, S., Scheinost, D., and Constable, R.T., 2018. Task-induced brain state 
manipulation improves prediction of individual traits. ​Nature communications​, 9 (1), 
2807. 

Greve, D.N. and Fischl, B., 2009. Accurate and robust brain image alignment using 
boundary-based registration. ​NeuroImage​, 48 (1), 63–72. 

Hagler, D.J., Jr, Hatton, S., Cornejo, M.D., Makowski, C., Fair, D.A., Dick, A.S., Sutherland, 
M.T., Casey, B.J., Barch, D.M., Harms, M.P., Watts, R., Bjork, J.M., Garavan, H.P., 
Hilmer, L., Pung, C.J., Sicat, C.S., Kuperman, J., Bartsch, H., Xue, F., Heitzeg, M.M., 
Laird, A.R., Trinh, T.T., Gonzalez, R., Tapert, S.F., Riedel, M.C., Squeglia, L.M., Hyde, 
L.W., Rosenberg, M.D., Earl, E.A., Howlett, K.D., Baker, F.C., Soules, M., Diaz, J., de 
Leon, O.R., Thompson, W.K., Neale, M.C., Herting, M., Sowell, E.R., Alvarez, R.P., 
Hawes, S.W., Sanchez, M., Bodurka, J., Breslin, F.J., Morris, A.S., Paulus, M.P., 
Simmons, W.K., Polimeni, J.R., van der Kouwe, A., Nencka, A.S., Gray, K.M., Pierpaoli, 
C., Matochik, J.A., Noronha, A., Aklin, W.M., Conway, K., Glantz, M., Hoffman, E., Little, 
R., Lopez, M., Pariyadath, V., Weiss, S.R., Wolff-Hughes, D.L., DelCarmen-Wiggins, R., 

56 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/OUlP
http://paperpile.com/b/RepFEZ/OUlP
http://paperpile.com/b/RepFEZ/OUlP
http://paperpile.com/b/RepFEZ/OUlP
http://paperpile.com/b/RepFEZ/OUlP
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/oDu1
http://paperpile.com/b/RepFEZ/nqIe
http://paperpile.com/b/RepFEZ/nqIe
http://paperpile.com/b/RepFEZ/nqIe
http://paperpile.com/b/RepFEZ/nqIe
http://paperpile.com/b/RepFEZ/nqIe
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/PKSy
http://paperpile.com/b/RepFEZ/4VFo
http://paperpile.com/b/RepFEZ/4VFo
http://paperpile.com/b/RepFEZ/4VFo
http://paperpile.com/b/RepFEZ/4VFo
http://paperpile.com/b/RepFEZ/4VFo
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/Qhpf
http://paperpile.com/b/RepFEZ/4IrI
http://paperpile.com/b/RepFEZ/4IrI
http://paperpile.com/b/RepFEZ/4IrI
http://paperpile.com/b/RepFEZ/4IrI
http://paperpile.com/b/RepFEZ/4IrI
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/MCnj
http://paperpile.com/b/RepFEZ/5s5h
http://paperpile.com/b/RepFEZ/5s5h
http://paperpile.com/b/RepFEZ/5s5h
http://paperpile.com/b/RepFEZ/5s5h
http://paperpile.com/b/RepFEZ/5s5h
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/cAkS
http://paperpile.com/b/RepFEZ/QfFY
http://paperpile.com/b/RepFEZ/QfFY
http://paperpile.com/b/RepFEZ/QfFY
http://paperpile.com/b/RepFEZ/QfFY
http://paperpile.com/b/RepFEZ/QfFY
http://paperpile.com/b/RepFEZ/DdJH
http://paperpile.com/b/RepFEZ/DdJH
http://paperpile.com/b/RepFEZ/DdJH
http://paperpile.com/b/RepFEZ/DdJH
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Feldstein Ewing, S.W., Miranda-Dominguez, O., Nagel, B.J., Perrone, A.J., Sturgeon, 
D.T., Goldstone, A., Pfefferbaum, A., Pohl, K.M., Prouty, D., Uban, K., Bookheimer, 
S.Y., Dapretto, M., Galvan, A., Bagot, K., Giedd, J., Infante, M.A., Jacobus, J., Patrick, 
K., Shilling, P.D., Desikan, R., Li, Y., Sugrue, L., Banich, M.T., Friedman, N., Hewitt, 
J.K., Hopfer, C., Sakai, J., Tanabe, J., Cottler, L.B., Nixon, S.J., Chang, L., Cloak, C., 
Ernst, T., Reeves, G., Kennedy, D.N., Heeringa, S., Peltier, S., Schulenberg, J., 
Sripada, C., Zucker, R.A., Iacono, W.G., Luciana, M., Calabro, F.J., Clark, D.B., Lewis, 
D.A., Luna, B., Schirda, C., Brima, T., Foxe, J.J., Freedman, E.G., Mruzek, D.W., 
Mason, M.J., Huber, R., McGlade, E., Prescot, A., Renshaw, P.F., Yurgelun-Todd, D.A., 
Allgaier, N.A., Dumas, J.A., Ivanova, M., Potter, A., Florsheim, P., Larson, C., Lisdahl, 
K., Charness, M.E., Fuemmeler, B., Hettema, J.M., Maes, H.H., Steinberg, J., Anokhin, 
A.P., Glaser, P., Heath, A.C., Madden, P.A., Baskin-Sommers, A., Constable, R.T., 
Grant, S.J., Dowling, G.J., Brown, S.A., Jernigan, T.L., and Dale, A.M., 2019. Image 
processing and analysis methods for the Adolescent Brain Cognitive Development 
Study. ​NeuroImage​, 202, 116091. 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., and Bießmann, 
F., 2014. On the interpretation of weight vectors of linear models in multivariate 
neuroimaging. ​NeuroImage​, 87, 96–110. 

He, T., Kong, R., Holmes, A.J., Nguyen, M., Sabuncu, M.R., Eickhoff, S.B., Bzdok, D., Feng, 
J., and Yeo, B.T.T., 2020. Deep neural networks and kernel regression achieve 
comparable accuracies for functional connectivity prediction of behavior and 
demographics. ​NeuroImage​, 206, 116276. 

van den Heuvel, M.P. and Sporns, O., 2011. Rich-club organization of the human 
connectome. ​The Journal of neuroscience: the official journal of the Society for 
Neuroscience​, 31 (44), 15775–15786. 

Hodes, R.J., Insel, T.R., Landis, S.C., and NIH Blueprint for Neuroscience Research, 2013. 
The NIH toolbox: setting a standard for biomedical research. ​Neurology​, 80 (11 Suppl 
3), S1. 

Holmes, A.J. and Patrick, L.M., 2018. The Myth of Optimality in Clinical Neuroscience. 
Trends in cognitive sciences​, 22 (3), 241–257. 

Hsu, W.-T., Rosenberg, M.D., Scheinost, D., Constable, R.T., and Chun, M.M., 2018. 
Resting-state functional connectivity predicts neuroticism and extraversion in novel 
individuals. ​Social cognitive and affective neuroscience​, 13 (2), 224–232. 

Inuggi, A., Sanz-Arigita, E., González-Salinas, C., Valero-García, A.V., García-Santos, J.M., 
and Fuentes, L.J., 2014. Brain functional connectivity changes in children that differ in 
impulsivity temperamental trait. ​Frontiers in behavioral neuroscience​, 8, 156. 

Jalbrzikowski, M., Larsen, B., Hallquist, M.N., Foran, W., Calabro, F., and Luna, B., 2017. 
Development of White Matter Microstructure and Intrinsic Functional Connectivity 
Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety 
and Depression. ​Biological psychiatry​, 82 (7), 511–521. 

Jenkinson, M., Bannister, P., Brady, M., and Smith, S., 2002. Improved optimization for the 
robust and accurate linear registration and motion correction of brain images. 
NeuroImage​, 17 (2), 825–841. 

Jentsch, J.D. and Taylor, J.R., 1999. Impulsivity resulting from frontostriatal dysfunction in 
drug abuse: implications for the control of behavior by reward-related stimuli. 
Psychopharmacology​, 146 (4), 373–390. 

Jiang, R., Zuo, N., Ford, J.M., Qi, S., Zhi, D., Zhuo, C., Xu, Y., Fu, Z., Bustillo, J., Turner, 
J.A., Calhoun, V.D., and Sui, J., 2019. Task-induced brain connectivity promotes the 
detection of individual differences in brain-behavior relationships. ​NeuroImage​, 116370. 

Karcher, N.R., O’Brien, K.J., Kandala, S., and Barch, D.M., 2019. Resting-State Functional 
Connectivity and Psychotic-like Experiences in Childhood: Results From the Adolescent 

57 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/4bAL
http://paperpile.com/b/RepFEZ/rzYl
http://paperpile.com/b/RepFEZ/rzYl
http://paperpile.com/b/RepFEZ/rzYl
http://paperpile.com/b/RepFEZ/rzYl
http://paperpile.com/b/RepFEZ/rzYl
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/r8nt
http://paperpile.com/b/RepFEZ/wb7C
http://paperpile.com/b/RepFEZ/wb7C
http://paperpile.com/b/RepFEZ/wb7C
http://paperpile.com/b/RepFEZ/wb7C
http://paperpile.com/b/RepFEZ/wb7C
http://paperpile.com/b/RepFEZ/D21L3
http://paperpile.com/b/RepFEZ/D21L3
http://paperpile.com/b/RepFEZ/D21L3
http://paperpile.com/b/RepFEZ/D21L3
http://paperpile.com/b/RepFEZ/D21L3
http://paperpile.com/b/RepFEZ/M7Ow
http://paperpile.com/b/RepFEZ/M7Ow
http://paperpile.com/b/RepFEZ/M7Ow
http://paperpile.com/b/RepFEZ/S4yz
http://paperpile.com/b/RepFEZ/S4yz
http://paperpile.com/b/RepFEZ/S4yz
http://paperpile.com/b/RepFEZ/S4yz
http://paperpile.com/b/RepFEZ/S4yz
http://paperpile.com/b/RepFEZ/sSBF
http://paperpile.com/b/RepFEZ/sSBF
http://paperpile.com/b/RepFEZ/sSBF
http://paperpile.com/b/RepFEZ/sSBF
http://paperpile.com/b/RepFEZ/sSBF
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/E6XL
http://paperpile.com/b/RepFEZ/LWw0
http://paperpile.com/b/RepFEZ/LWw0
http://paperpile.com/b/RepFEZ/LWw0
http://paperpile.com/b/RepFEZ/LWw0
http://paperpile.com/b/RepFEZ/c1rL
http://paperpile.com/b/RepFEZ/c1rL
http://paperpile.com/b/RepFEZ/c1rL
http://paperpile.com/b/RepFEZ/c1rL
http://paperpile.com/b/RepFEZ/HZ68
http://paperpile.com/b/RepFEZ/HZ68
http://paperpile.com/b/RepFEZ/HZ68
http://paperpile.com/b/RepFEZ/HZ68
http://paperpile.com/b/RepFEZ/HZ68
http://paperpile.com/b/RepFEZ/Ycck
http://paperpile.com/b/RepFEZ/Ycck
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Brain Cognitive Development Study. ​Biological psychiatry​. 
Kebets, V., Holmes, A.J., Orban, C., Tang, S., Li, J., Sun, N., Kong, R., Poldrack, R.A., and 

Yeo, B.T.T., 2019. Somatosensory-Motor Dysconnectivity Spans Multiple 
Transdiagnostic Dimensions of Psychopathology. ​Biological psychiatry​, 86 (10), 
779–791. 

Kessler, R.C., Ormel, J., Petukhova, M., McLaughlin, K.A., Green, J.G., Russo, L.J., Stein, 
D.J., Zaslavsky, A.M., Aguilar-Gaxiola, S., Alonso, J., Andrade, L., Benjet, C., de 
Girolamo, G., de Graaf, R., Demyttenaere, K., Fayyad, J., Haro, J.M., Hu, C. yi, Karam, 
A., Lee, S., Lepine, J.-P., Matchsinger, H., Mihaescu-Pintia, C., Posada-Villa, J., Sagar, 
R., and Ustün, T.B., 2011. Development of lifetime comorbidity in the World Health 
Organization world mental health surveys. ​Archives of general psychiatry​, 68 (1), 
90–100. 

Kong, R., Li, J., Orban, C., Sabuncu, M.R., Liu, H., Schaefer, A., Sun, N., Zuo, X.-N., 
Holmes, A.J., Eickhoff, S.B., and Yeo, B.T.T., 2019. Spatial Topography of 
Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and 
Emotion. ​Cerebral cortex ​, 29 (6), 2533–2551. 

Kotov, R., Krueger, R.F., Watson, D., Achenbach, T.M., Althoff, R.R., Bagby, R.M., Brown, 
T.A., Carpenter, W.T., Caspi, A., Clark, L.A., Eaton, N.R., Forbes, M.K., Forbush, K.T., 
Goldberg, D., Hasin, D., Hyman, S.E., Ivanova, M.Y., Lynam, D.R., Markon, K., Miller, 
J.D., Moffitt, T.E., Morey, L.C., Mullins-Sweatt, S.N., Ormel, J., Patrick, C.J., Regier, 
D.A., Rescorla, L., Ruggero, C.J., Samuel, D.B., Sellbom, M., Simms, L.J., Skodol, A.E., 
Slade, T., South, S.C., Tackett, J.L., Waldman, I.D., Waszczuk, M.A., Widiger, T.A., 
Wright, A.G.C., and Zimmerman, M., 2017. The Hierarchical Taxonomy of 
Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. ​Journal of 
abnormal psychology​, 126 (4), 454–477. 

Kozak, M.J. and Cuthbert, B.N., 2016. The NIMH Research Domain Criteria Initiative: 
Background, Issues, and Pragmatics. ​Psychophysiology​, 53 (3), 286–297. 

Krienen, F.M., Yeo, B.T.T., and Buckner, R.L., 2014. Reconfigurable task-dependent 
functional coupling modes cluster around a core functional architecture. ​Philosophical 
transactions of the Royal Society of London. Series B, Biological sciences​, 369 (1653), 
20130526–20130526. 

Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., Glahn, D.C., 
Beckmann, C.F., Smith, S.M., and Fox, P.T., 2011. Behavioral interpretations of intrinsic 
connectivity networks. ​Journal of cognitive neuroscience​, 23 (12), 4022–4037. 

Lake, E.M.R., Finn, E.S., Noble, S.M., Vanderwal, T., Shen, X., Rosenberg, M.D., Spann, 
M.N., Chun, M.M., Scheinost, D., and Constable, R.T., 2019. The functional brain 
organization of an individual allows prediction of measures of social abilities 
trans-diagnostically in autism and attention/deficit and hyperactivity disorder. ​Biological 
psychiatry​. 

Larsen, B. and Luna, B., 2018. Adolescence as a neurobiological critical period for the 
development of higher-order cognition. ​Neuroscience and biobehavioral reviews​, 94, 
179–195. 

Leshem, R. and Glicksohn, J., 2007. The construct of impulsivity revisited. ​Personality and 
individual differences​, 43 (4), 681–691. 

Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M.R., and Yeo, 
B.T.T., 2019. Resting brain dynamics at different timescales capture distinct aspects of 
human behavior. ​Nature communications​, 10 (1), 2317. 

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A.J., Sabuncu, M.R., Ge, 
T., and Yeo, B.T.T., 2019. Global signal regression strengthens association between 
resting-state functional connectivity and behavior. ​NeuroImage​, 196, 126–141. 

Loewy, R.L., Therman, S., Manninen, M., Huttunen, M.O., and Cannon, T.D., 2012. 

58 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/Ycck
http://paperpile.com/b/RepFEZ/Ycck
http://paperpile.com/b/RepFEZ/Ycck
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/3daS
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/6I5S
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/TeR3
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/Fkqi
http://paperpile.com/b/RepFEZ/skNP
http://paperpile.com/b/RepFEZ/skNP
http://paperpile.com/b/RepFEZ/skNP
http://paperpile.com/b/RepFEZ/skNP
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/Tb0B
http://paperpile.com/b/RepFEZ/gbVA
http://paperpile.com/b/RepFEZ/gbVA
http://paperpile.com/b/RepFEZ/gbVA
http://paperpile.com/b/RepFEZ/gbVA
http://paperpile.com/b/RepFEZ/gbVA
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/vckN
http://paperpile.com/b/RepFEZ/LZcX
http://paperpile.com/b/RepFEZ/LZcX
http://paperpile.com/b/RepFEZ/LZcX
http://paperpile.com/b/RepFEZ/LZcX
http://paperpile.com/b/RepFEZ/LZcX
http://paperpile.com/b/RepFEZ/rTs8
http://paperpile.com/b/RepFEZ/rTs8
http://paperpile.com/b/RepFEZ/rTs8
http://paperpile.com/b/RepFEZ/rTs8
http://paperpile.com/b/RepFEZ/TgCA
http://paperpile.com/b/RepFEZ/TgCA
http://paperpile.com/b/RepFEZ/TgCA
http://paperpile.com/b/RepFEZ/TgCA
http://paperpile.com/b/RepFEZ/TgCA
http://paperpile.com/b/RepFEZ/HEcg
http://paperpile.com/b/RepFEZ/HEcg
http://paperpile.com/b/RepFEZ/HEcg
http://paperpile.com/b/RepFEZ/HEcg
http://paperpile.com/b/RepFEZ/HEcg
http://paperpile.com/b/RepFEZ/y6y8Y
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Prodromal psychosis screening in adolescent psychiatry clinics. ​Early intervention in 
psychiatry​, 6 (1), 69–75. 

Luciana, M., Bjork, J.M., Nagel, B.J., Barch, D.M., Gonzalez, R., Nixon, S.J., and Banich, 
M.T., 2018. Adolescent neurocognitive development and impacts of substance use: 
Overview of the adolescent brain cognitive development (ABCD) baseline 
neurocognition battery. ​Developmental cognitive neuroscience​, 32, 67–79. 

Lynam, D.R., 2013. Development of a short form of the UPPS-P Impulsive Behavior Scale. 
Unpublished Technical Report​. 

Maglanoc, L.A., Kaufmann, T., van der Meer, D., Marquand, A.F., Wolfers, T., Jonassen, R., 
Hilland, E., Andreassen, O.A., Landrø, N.I., and Westlye, L.T., 2019. Brain connectome 
mapping of complex human traits and their polygenic architecture using machine 
learning. ​Biological psychiatry​, 0 (0). 

Marek, S., Tervo-Clemmens, B., Nielsen, A.N., Wheelock, M.D., Miller, R.L., Laumann, T.O., 
Earl, E., Foran, W.W., Cordova, M., Doyle, O., Perrone, A., Miranda-Dominguez, O., 
Feczko, E., Sturgeon, D., Graham, A., Hermosillo, R., Snider, K., Galassi, A., Nagel, 
B.J., Ewing, S.W.F., Eggebrecht, A.T., Garavan, H., Dale, A.M., Greene, D.J., Barch, 
D.M., Fair, D.A., Luna, B., and Dosenbach, N.U.F., 2019. Identifying Reproducible 
Individual Differences in Childhood Functional Brain Networks: An ABCD Study. 
Developmental cognitive neuroscience​, 100706. 

Menon, V., 2011. Large-scale brain networks and psychopathology: a unifying triple network 
model. ​Trends in cognitive sciences​, 15 (10), 483–506. 

Menon, V. and Uddin, L.Q., 2010. Saliency, switching, attention and control: a network 
model of insula function. ​Brain structure & function​, 214 (5-6), 655–667. 

Milham, M.P., Craddock, R.C., and Klein, A., 2017. Clinically useful brain imaging for 
neuropsychiatry: How can we get there? ​Depression and anxiety​, 34 (7), 578–587. 

Nadeau, C. and Bengio, Y., 2003. Inference for the Generalization Error. ​Machine learning​, 
52 (3), 239–281. 

Nomura, E.M., Gratton, C., Visser, R.M., Kayser, A., Perez, F., and D’Esposito, M., 2010. 
Double dissociation of two cognitive control networks in patients with focal brain lesions. 
Proceedings of the National Academy of Sciences of the United States of America​, 107 
(26), 12017–12022. 

Nostro, A.D., Müller, V.I., Varikuti, D.P., Pläschke, R.N., Hoffstaedter, F., Langner, R., Patil, 
K.R., and Eickhoff, S.B., 2018. Predicting personality from network-based resting-state 
functional connectivity. ​Brain structure & function​, 223 (6), 2699–2719. 

Orban, C., Kong, R., Li, J., Chee, M.W.L., and Yeo, B.T.T., 2020. Time of day is associated 
with paradoxical reductions in global signal fluctuation and functional connectivity. ​PLoS 
biology​, 18 (2), e3000602. 

Pagliaccio, D., Luking, K.R., Anokhin, A.P., Gotlib, I.H., Hayden, E.P., Olino, T.M., Peng, 
C.-Z., Hajcak, G., and Barch, D.M., 2016. Revising the BIS/BAS Scale to study 
development: Measurement invariance and normative effects of age and sex from 
childhood through adulthood. ​Psychological assessment​, 28 (4), 429–442. 

Paus, T., Keshavan, M., and Giedd, J.N., 2008. Why do many psychiatric disorders emerge 
during adolescence? ​Nature reviews. Neuroscience​, 9 (12), 947–957. 

Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., and Raichle, M.E., 1988. Positron 
emission tomographic studies of the cortical anatomy of single-word processing. ​Nature​, 
331 (6157), 585–589. 

Pornpattananangkul, N., Leibenluft, E., Pine, D.S., and Stringaris, A., 2019. Association of 
Brain Functions in Children With Anhedonia Mapped Onto Brain Imaging Measures. 
JAMA psychiatry ​. 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., and Petersen, S.E., 2012. 
Spurious but systematic correlations in functional connectivity MRI networks arise from 

59 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/y6y8Y
http://paperpile.com/b/RepFEZ/y6y8Y
http://paperpile.com/b/RepFEZ/y6y8Y
http://paperpile.com/b/RepFEZ/y6y8Y
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/U6mC
http://paperpile.com/b/RepFEZ/Wvk75
http://paperpile.com/b/RepFEZ/Wvk75
http://paperpile.com/b/RepFEZ/Wvk75
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/oV3B
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/VmKg
http://paperpile.com/b/RepFEZ/ibz2
http://paperpile.com/b/RepFEZ/ibz2
http://paperpile.com/b/RepFEZ/ibz2
http://paperpile.com/b/RepFEZ/ibz2
http://paperpile.com/b/RepFEZ/uMeh
http://paperpile.com/b/RepFEZ/uMeh
http://paperpile.com/b/RepFEZ/uMeh
http://paperpile.com/b/RepFEZ/uMeh
http://paperpile.com/b/RepFEZ/fFl8
http://paperpile.com/b/RepFEZ/fFl8
http://paperpile.com/b/RepFEZ/fFl8
http://paperpile.com/b/RepFEZ/fFl8
http://paperpile.com/b/RepFEZ/pVWK
http://paperpile.com/b/RepFEZ/pVWK
http://paperpile.com/b/RepFEZ/pVWK
http://paperpile.com/b/RepFEZ/pVWK
http://paperpile.com/b/RepFEZ/LTnG
http://paperpile.com/b/RepFEZ/LTnG
http://paperpile.com/b/RepFEZ/LTnG
http://paperpile.com/b/RepFEZ/LTnG
http://paperpile.com/b/RepFEZ/LTnG
http://paperpile.com/b/RepFEZ/eMRg
http://paperpile.com/b/RepFEZ/eMRg
http://paperpile.com/b/RepFEZ/eMRg
http://paperpile.com/b/RepFEZ/eMRg
http://paperpile.com/b/RepFEZ/eMRg
http://paperpile.com/b/RepFEZ/C3Ps
http://paperpile.com/b/RepFEZ/C3Ps
http://paperpile.com/b/RepFEZ/C3Ps
http://paperpile.com/b/RepFEZ/C3Ps
http://paperpile.com/b/RepFEZ/C3Ps
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/3NeZO
http://paperpile.com/b/RepFEZ/f8nF
http://paperpile.com/b/RepFEZ/f8nF
http://paperpile.com/b/RepFEZ/f8nF
http://paperpile.com/b/RepFEZ/f8nF
http://paperpile.com/b/RepFEZ/XGk4
http://paperpile.com/b/RepFEZ/XGk4
http://paperpile.com/b/RepFEZ/XGk4
http://paperpile.com/b/RepFEZ/XGk4
http://paperpile.com/b/RepFEZ/XGk4
http://paperpile.com/b/RepFEZ/LnKx
http://paperpile.com/b/RepFEZ/LnKx
http://paperpile.com/b/RepFEZ/LnKx
http://paperpile.com/b/RepFEZ/LnKx
http://paperpile.com/b/RepFEZ/KzR8
http://paperpile.com/b/RepFEZ/KzR8
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

subject motion. ​NeuroImage​, 59 (3), 2142–2154. 
Power, J.D., Fair, D.A., Schlaggar, B.L., and Petersen, S.E., 2010. The development of 

human functional brain networks. ​Neuron​, 67 (5), 735–748. 
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., and Petersen, S.E., 

2014. Methods to detect, characterize, and remove motion artifact in resting state fMRI. 
NeuroImage​, 84, 320–341. 

Rosenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X., Constable, R.T., 
and Chun, M.M., 2016. A neuromarker of sustained attention from whole-brain 
functional connectivity. ​Nature neuroscience​, 19 (1), 165–171. 

Russo, M., Levine, S.Z., Demjaha, A., Di Forti, M., Bonaccorso, S., Fearon, P., Dazzan, P., 
Pariante, C.M., David, A.S., Morgan, C., Murray, R.M., and Reichenberg, A., 2014. 
Association between symptom dimensions and categorical diagnoses of psychosis: a 
cross-sectional and longitudinal investigation. ​Schizophrenia bulletin​, 40 (1), 111–119. 

Salehi, M., Karbasi, A., Barron, D.S., Scheinost, D., and Constable, R.T., 2019. 
Individualized functional networks reconfigure with cognitive state. ​NeuroImage​, 
116233. 

Satterthwaite, T.D., Ruparel, K., Loughead, J., Elliott, M.A., Gerraty, R.T., Calkins, M.E., 
Hakonarson, H., Gur, R.C., Gur, R.E., and Wolf, D.H., 2012. Being right is its own 
reward: load and performance related ventral striatum activation to correct responses 
during a working memory task in youth. ​NeuroImage​, 61 (3), 723–729. 

Satterthwaite, T.D., Vandekar, S.N., Wolf, D.H., Bassett, D.S., Ruparel, K., Shehzad, Z., 
Craddock, R.C., Shinohara, R.T., Moore, T.M., Gennatas, E.D., Jackson, C., Roalf, 
D.R., Milham, M.P., Calkins, M.E., Hakonarson, H., Gur, R.C., and Gur, R.E., 2015. 
Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. 
Molecular psychiatry​, 20 (12), 1508–1515. 

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., Eickhoff, 
S.B., and Yeo, B.T.T., 2018. Local-Global Parcellation of the Human Cerebral Cortex 
from Intrinsic Functional Connectivity MRI. ​Cerebral cortex ​, 28 (9), 3095–3114. 

Schultz, D.H. and Cole, M.W., 2016. Higher Intelligence Is Associated with Less 
Task-Related Brain Network Reconfiguration. ​The Journal of neuroscience: the official 
journal of the Society for Neuroscience​, 36 (33), 8551–8561. 

Scoville, W.B. and Milner, B., 1957. Loss of recent memory after bilateral hippocampal 
lesions. ​Journal of neurology, neurosurgery, and psychiatry​, 20 (1), 11–21. 

Ségonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., and Fischl, B., 2004. 
A hybrid approach to the skull stripping problem in MRI. ​NeuroImage​, 22 (3), 
1060–1075. 

Ségonne, F., Pacheco, J., and Fischl, B., 2007. Geometrically accurate topology-correction 
of cortical surfaces using nonseparating loops. ​IEEE transactions on medical imaging​, 
26 (4), 518–529. 

Shannon, B.J., Raichle, M.E., Snyder, A.Z., Fair, D.A., Mills, K.L., Zhang, D., Bache, K., 
Calhoun, V.D., Nigg, J.T., Nagel, B.J., Stevens, A.A., and Kiehl, K.A., 2011. Premotor 
functional connectivity predicts impulsivity in juvenile offenders. ​Proceedings of the 
National Academy of Sciences of the United States of America​, 108 (27), 11241–11245. 

Sha, Z., Wager, T.D., Mechelli, A., and He, Y., 2019. Common Dysfunction of Large-Scale 
Neurocognitive Networks Across Psychiatric Disorders. ​Biological psychiatry​, 85 (5), 
379–388. 

Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., Moodie, 
C.A., and Poldrack, R.A., 2016. The Dynamics of Functional Brain Networks: Integrated 
Network States during Cognitive Task Performance. ​Neuron​, 92 (2), 544–554. 

Silvers, J.A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R.E., Weber, J., Mischel, 
W., Casey, B.J., and Ochsner, K.N., 2017. vlPFC-vmPFC-Amygdala Interactions 

60 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/KzR8
http://paperpile.com/b/RepFEZ/KzR8
http://paperpile.com/b/RepFEZ/KzR8
http://paperpile.com/b/RepFEZ/yttB
http://paperpile.com/b/RepFEZ/yttB
http://paperpile.com/b/RepFEZ/yttB
http://paperpile.com/b/RepFEZ/yttB
http://paperpile.com/b/RepFEZ/bKqv
http://paperpile.com/b/RepFEZ/bKqv
http://paperpile.com/b/RepFEZ/bKqv
http://paperpile.com/b/RepFEZ/bKqv
http://paperpile.com/b/RepFEZ/BI9W
http://paperpile.com/b/RepFEZ/BI9W
http://paperpile.com/b/RepFEZ/BI9W
http://paperpile.com/b/RepFEZ/BI9W
http://paperpile.com/b/RepFEZ/BI9W
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/lvwX
http://paperpile.com/b/RepFEZ/bkyZ
http://paperpile.com/b/RepFEZ/bkyZ
http://paperpile.com/b/RepFEZ/bkyZ
http://paperpile.com/b/RepFEZ/bkyZ
http://paperpile.com/b/RepFEZ/bkyZ
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/J94l
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/M20E
http://paperpile.com/b/RepFEZ/UDNu
http://paperpile.com/b/RepFEZ/UDNu
http://paperpile.com/b/RepFEZ/UDNu
http://paperpile.com/b/RepFEZ/UDNu
http://paperpile.com/b/RepFEZ/UDNu
http://paperpile.com/b/RepFEZ/qLIr
http://paperpile.com/b/RepFEZ/qLIr
http://paperpile.com/b/RepFEZ/qLIr
http://paperpile.com/b/RepFEZ/qLIr
http://paperpile.com/b/RepFEZ/qLIr
http://paperpile.com/b/RepFEZ/Gq30
http://paperpile.com/b/RepFEZ/Gq30
http://paperpile.com/b/RepFEZ/Gq30
http://paperpile.com/b/RepFEZ/Gq30
http://paperpile.com/b/RepFEZ/13RK
http://paperpile.com/b/RepFEZ/13RK
http://paperpile.com/b/RepFEZ/13RK
http://paperpile.com/b/RepFEZ/13RK
http://paperpile.com/b/RepFEZ/13RK
http://paperpile.com/b/RepFEZ/CKqa
http://paperpile.com/b/RepFEZ/CKqa
http://paperpile.com/b/RepFEZ/CKqa
http://paperpile.com/b/RepFEZ/CKqa
http://paperpile.com/b/RepFEZ/CKqa
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/upId
http://paperpile.com/b/RepFEZ/D4h1
http://paperpile.com/b/RepFEZ/D4h1
http://paperpile.com/b/RepFEZ/D4h1
http://paperpile.com/b/RepFEZ/D4h1
http://paperpile.com/b/RepFEZ/D4h1
http://paperpile.com/b/RepFEZ/JcPb
http://paperpile.com/b/RepFEZ/JcPb
http://paperpile.com/b/RepFEZ/JcPb
http://paperpile.com/b/RepFEZ/JcPb
http://paperpile.com/b/RepFEZ/JcPb
http://paperpile.com/b/RepFEZ/Q14p
http://paperpile.com/b/RepFEZ/Q14p
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

Underlie Age-Related Differences in Cognitive Regulation of Emotion. ​Cerebral cortex ​, 
27 (7), 3502–3514. 

Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., 
Watkins, K.E., Toro, R., Laird, A.R., and Beckmann, C.F., 2009. Correspondence of the 
brain’s functional architecture during activation and rest. ​Proceedings of the National 
Academy of Sciences of the United States of America​, 106 (31), 13040–13045. 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., 
Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., 
Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., and Matthews, P.M., 
2004. Advances in functional and structural MR image analysis and implementation as 
FSL. ​NeuroImage​, 23 Suppl 1, S208–19. 

Spear, L.P., 2013. Adolescent neurodevelopment. ​The Journal of adolescent health: official 
publication of the Society for Adolescent Medicine​, 52 (2 Suppl 2), S7–13. 

Sripada, C., Rutherford, S., Angstadt, M., Thompson, W.K., Luciana, M., Weigard, A., Hyde, 
L.H., and Heitzeg, M., 2019. Prediction of neurocognition in youth from resting state 
fMRI. ​Molecular psychiatry​. 

Steinberg, L., 2005. Cognitive and affective development in adolescence. ​Trends in cognitive 
sciences​, 9 (2), 69–74. 

Strauss, E., Sherman, E.M.S., and Spreen, O., 2006. ​A Compendium of Neuropsychological 
Tests: Administration, Norms, and Commentary​. Oxford University Press. 

Supekar, K., Musen, M., and Menon, V., 2009. Development of large-scale functional brain 
networks in children. ​PLoS biology​, 7 (7), e1000157. 

Swartz, J.R., Carrasco, M., Wiggins, J.L., Thomason, M.E., and Monk, C.S., 2014. 
Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry 
in children and adolescents: a multi-modal imaging approach. ​NeuroImage​, 86, 
212–220. 

Tamminga, C.A., Ivleva, E.I., Keshavan, M.S., Pearlson, G.D., Clementz, B.A., Witte, B., 
Morris, D.W., Bishop, J., Thaker, G.K., and Sweeney, J.A., 2013. Clinical phenotypes of 
psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). 
The American journal of psychiatry​, 170 (11), 1263–1274. 

Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., and 
Menon, V., 2013. Salience network-based classification and prediction of symptom 
severity in children with autism. ​JAMA psychiatry ​, 70 (8), 869–879. 

Van Leijenhorst, L., Gunther Moor, B., Op de Macks, Z.A., Rombouts, S.A.R.B., 
Westenberg, P.M., and Crone, E.A., 2010. Adolescent risky decision-making: 
neurocognitive development of reward and control regions. ​NeuroImage​, 51 (1), 
345–355. 

Varoquaux, G., Raamana, P.R., Engemann, D.A., Hoyos-Idrobo, A., Schwartz, Y., and 
Thirion, B., 2017. Assessing and tuning brain decoders: Cross-validation, caveats, and 
guidelines. ​NeuroImage​, 145 (Pt B), 166–179. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., 
Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., 
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., 
Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors, 2020. SciPy 1.0: 
fundamental algorithms for scientific computing in Python. ​Nature methods​. 

Volkow, N.D., Koob, G.F., Croyle, R.T., Bianchi, D.W., Gordon, J.A., Koroshetz, W.J., 
Pérez-Stable, E.J., Riley, W.T., Bloch, M.H., Conway, K., Deeds, B.G., Dowling, G.J., 
Grant, S., Howlett, K.D., Matochik, J.A., Morgan, G.D., Murray, M.M., Noronha, A., 
Spong, C.Y., Wargo, E.M., Warren, K.R., and Weiss, S.R.B., 2018. The conception of 

61 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/Q14p
http://paperpile.com/b/RepFEZ/Q14p
http://paperpile.com/b/RepFEZ/Q14p
http://paperpile.com/b/RepFEZ/Q14p
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/ntOo
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/cLMw
http://paperpile.com/b/RepFEZ/z6qw
http://paperpile.com/b/RepFEZ/z6qw
http://paperpile.com/b/RepFEZ/z6qw
http://paperpile.com/b/RepFEZ/z6qw
http://paperpile.com/b/RepFEZ/cnNi
http://paperpile.com/b/RepFEZ/cnNi
http://paperpile.com/b/RepFEZ/cnNi
http://paperpile.com/b/RepFEZ/cnNi
http://paperpile.com/b/RepFEZ/cnNi
http://paperpile.com/b/RepFEZ/MK0h
http://paperpile.com/b/RepFEZ/MK0h
http://paperpile.com/b/RepFEZ/MK0h
http://paperpile.com/b/RepFEZ/MK0h
http://paperpile.com/b/RepFEZ/HEJfs
http://paperpile.com/b/RepFEZ/HEJfs
http://paperpile.com/b/RepFEZ/HEJfs
http://paperpile.com/b/RepFEZ/HEJfs
http://paperpile.com/b/RepFEZ/AfiK
http://paperpile.com/b/RepFEZ/AfiK
http://paperpile.com/b/RepFEZ/AfiK
http://paperpile.com/b/RepFEZ/AfiK
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/DQVt
http://paperpile.com/b/RepFEZ/L6ke
http://paperpile.com/b/RepFEZ/L6ke
http://paperpile.com/b/RepFEZ/L6ke
http://paperpile.com/b/RepFEZ/L6ke
http://paperpile.com/b/RepFEZ/L6ke
http://paperpile.com/b/RepFEZ/VbOP
http://paperpile.com/b/RepFEZ/VbOP
http://paperpile.com/b/RepFEZ/VbOP
http://paperpile.com/b/RepFEZ/VbOP
http://paperpile.com/b/RepFEZ/VbOP
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/329X
http://paperpile.com/b/RepFEZ/mq64
http://paperpile.com/b/RepFEZ/mq64
http://paperpile.com/b/RepFEZ/mq64
http://paperpile.com/b/RepFEZ/mq64
http://paperpile.com/b/RepFEZ/mq64
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/oWDz
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/


 

the ABCD study: From substance use to a broad NIH collaboration. ​Developmental 
cognitive neuroscience​, 32, 4–7. 

Wang, D., Li, M., Wang, M., Schoeppe, F., Ren, J., Chen, H., Öngür, D., Baker, J.T., and 
Liu, H., 2018. Individual-specific functional connectivity markers track dimensional and 
categorical features of psychotic illness. ​Molecular psychiatry​. 

Warren, D.E., Power, J.D., Bruss, J., Denburg, N.L., Waldron, E.J., Sun, H., Petersen, S.E., 
and Tranel, D., 2014. Network measures predict neuropsychological outcome after brain 
injury. ​Proceedings of the National Academy of Sciences of the United States of 
America​, 111 (39), 14247–14252. 

Wechsler, D., 2014. Wechsler intelligence scale for children--Fifth Edition (WISC-V). 
Bloomington, MN: Pearson​. 

Whitfield-Gabrieli, S. and Ford, J.M., 2012. Default mode network activity and connectivity in 
psychopathology. ​Annual review of clinical psychology​, 8, 49–76. 

Xia, C.H., Ma, Z., Ciric, R., Gu, S., Betzel, R.F., Kaczkurkin, A.N., Calkins, M.E., Cook, P.A., 
García de la Garza, A., Vandekar, S.N., Cui, Z., Moore, T.M., Roalf, D.R., Ruparel, K., 
Wolf, D.H., Davatzikos, C., Gur, R.C., Gur, R.E., Shinohara, R.T., Bassett, D.S., and 
Satterthwaite, T.D., 2018. Linked dimensions of psychopathology and connectivity in 
functional brain networks. ​Nature communications​, 9 (1), 3003. 

Yeo, B.T.T., Krienen, F.M., Eickhoff, S.B., Yaakub, S.N., Fox, P.T., Buckner, R.L., Asplund, 
C.L., and Chee, M.W.L., 2015. Functional Specialization and Flexibility in Human 
Association Cortex. ​Cerebral cortex ​, 25 (10), 3654–3672. 

Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 
Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., and Buckner, 
R.L., 2011. The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. ​Journal of neurophysiology​, 106 (3), 1125–1165. 

Yoo, K., Rosenberg, M.D., Hsu, W.-T., Zhang, S., Li, C.-S.R., Scheinost, D., Constable, R.T., 
and Chun, M.M., 2018. Connectome-based predictive modeling of attention: Comparing 
different functional connectivity features and prediction methods across datasets. 
NeuroImage​, 167, 11–22. 

Youngstrom, E.A., Murray, G., Johnson, S.L., and Findling, R.L., 2013. The 7 up 7 down 
inventory: a 14-item measure of manic and depressive tendencies carved from the 
General Behavior Inventory. ​Psychological assessment​, 25 (4), 1377–1383. 

Zuo, N., Yang, Z., Liu, Y., Li, J., and Jiang, T., 2018. Core networks and their reconfiguration 
patterns across cognitive loads. ​Human brain mapping​, 39 (9), 3546–3557. 

 
 
 
 

 

62 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.24.168724doi: bioRxiv preprint 

http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/RNfp
http://paperpile.com/b/RepFEZ/QW27
http://paperpile.com/b/RepFEZ/QW27
http://paperpile.com/b/RepFEZ/QW27
http://paperpile.com/b/RepFEZ/QW27
http://paperpile.com/b/RepFEZ/QW27
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/j8Ck
http://paperpile.com/b/RepFEZ/zbDu8
http://paperpile.com/b/RepFEZ/zbDu8
http://paperpile.com/b/RepFEZ/zbDu8
http://paperpile.com/b/RepFEZ/uD9B
http://paperpile.com/b/RepFEZ/uD9B
http://paperpile.com/b/RepFEZ/uD9B
http://paperpile.com/b/RepFEZ/uD9B
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/cmcq
http://paperpile.com/b/RepFEZ/xosA
http://paperpile.com/b/RepFEZ/xosA
http://paperpile.com/b/RepFEZ/xosA
http://paperpile.com/b/RepFEZ/xosA
http://paperpile.com/b/RepFEZ/xosA
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/ZmbV
http://paperpile.com/b/RepFEZ/0pKK
http://paperpile.com/b/RepFEZ/0pKK
http://paperpile.com/b/RepFEZ/0pKK
http://paperpile.com/b/RepFEZ/0pKK
http://paperpile.com/b/RepFEZ/0pKK
http://paperpile.com/b/RepFEZ/AbnQE
http://paperpile.com/b/RepFEZ/AbnQE
http://paperpile.com/b/RepFEZ/AbnQE
http://paperpile.com/b/RepFEZ/AbnQE
http://paperpile.com/b/RepFEZ/AbnQE
http://paperpile.com/b/RepFEZ/37q9
http://paperpile.com/b/RepFEZ/37q9
http://paperpile.com/b/RepFEZ/37q9
http://paperpile.com/b/RepFEZ/37q9
https://doi.org/10.1101/2020.06.24.168724
http://creativecommons.org/licenses/by/4.0/

