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Abstract 

Drug development is a long, expensive and multistage process geared to achieving safe drugs with 
high efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, 
particularly for pediatric and geriatric populations, is achieving taste that does not hinder 
compliance. Currently, the aversive taste of drugs is tested in late stages of clinical trials. This can 
result in the need to reformulate, potentially resulting in the use of more animals for additional 
toxicity trials, increased financial costs and a delay in release to the market. Here we present 
BitterIntense, a machine learning tool that classifies molecules into “very bitter” or “not very bitter”, 
based on their chemical structure. The model, trained on chemically diverse compounds, has above 
80% accuracy on several test sets. BitterIntense suggests that intense bitterness does not correlate 
with toxicity and hepatotoxicity of drugs and that the prevalence of very bitter compounds among 
drugs is lower than among microbial compounds. BitterIntense allows quick and easy prediction of 
strong bitterness of compounds of interest for food and pharma industries. We estimate that 
implementation of BitterIntense or similar tools early in drug discovery and development process 
may lead to reduction in delays, in animal use and in overall financial burden. 

Significance Statement 

 
Drug development integrates increasingly sophisticated technologies, but extreme bitterness of 
drugs remains a poorly addressed cause of medicine regimen incompletion. Reformulating the drug 
can result in delays in the development of a potential medicine, increasing the lead time to the 
patients. It might also require the use of extra animals in toxicity trials and lead to increased costs 
for pharma companies. We have developed a computational predictor for intense bitterness, that 
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has above 80% accuracy. Applying the classifier to annotated datasets suggests that intense 
bitterness does not correlate with toxicity and hepatotoxicity of drugs. BitterIntense can be used in 
the early stages of drug development to identify drug candidates that require bitterness masking, 
and thus reduce animal use, time and monetary loss.  
 
 
Main Text 
 
Introduction 
 

 The use of sophisticated and highly automated processes in drug discovery have 

resulted in expedited pipelines and the approval of more than 4,000 medicines as of April 

2020(1). Yet, a key aspect related to regimen compliance has not been properly 

addressed. The oral route remains the main way for drug administration(2), with aversive 

taste of drugs causing swallowing difficulties and compliance problems. This is especially 

relevant with pediatric medicine, for which encapsulation does not always provide a 

solution(3–5). Even though some bitter-masking agents exist, they are often insufficient 

for masking or preventing a drug’s intensely bitter taste(4–6). Indeed, more than 90% of 

pediatricians report that a drug’s aversive taste and low palatability are the biggest barriers 

to completing the medication regimen, leaving children with limited access to “child-

friendly” drugs and exposing them to possible harm and insufficient treatment(4, 7). 

Because of the potential risks caused by aversive taste of drugs, the Food and Drug 

Administration (FDA) has added taste events to their Adverse Event Reporting System(8) 

and expects that all medicines with the potential to be given to children should be 

assessed for palatability(9, 10). The problem is also acute for the older population, and 

the European Medicines Agency (EMA) reflection paper on the development of medicines 

for geriatrics lists taste as a key consideration for medicine development(11). Sour or 

metallic taste can also elicit aversion, but intense bitterness is particularly abundant 

among drugs, and many of them were shown to activate bitter taste receptors(12, 13). The 

challenge imposed by aversive taste in drug development has led to the establishment of 

several assays for bitterness measurement, including the rat brief access taste aversion 

(BATA) (14), electronic tongues and human sensory panels(15).  

 

The current pipeline for drug development process includes four main stages: drug 

design, preclinical phase (animal testing), clinical phases in human and the final review 

and approval by the medicines regulators including the FDA and the EMA(16, 17). During 

the design and preclinical phases, the taste of the drug is usually disregarded. It is 

evaluated, if at all, only during the clinical phases when the drug is introduced to humans. 

As a result, in clinical trials with nauseous drugs (usually due to intense bitterness), 

reduced compliance to the treatment and increased dropout rates have been documented 

in several cases(18, 19). In addition, knowledge of the aversive taste of drug candidates 

enables the selection of a similarly aversive placebo in order to avoid unblinding of the 

trials(20, 21). Often, it is only once intense bitter taste is suspected to affect the clinical 

trial and cause compliance problems, the palatability of the drug is tested, usually in  
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human taste panels(15). This may lead to reformulation of the drug and repeat the 

preclinical and clinical phases. Such detours may delay a potential medicine from getting 

to the patient for an additional 6 to 24 months, potentially using additional animals, and 

increasing financial costs . For a moderately successful medicine, this could be a reduction 

in income estimated at hundreds of millions of dollars. 

 

Bitter taste can be elicited by structurally diverse compounds. Over 1000 bitter-tasting 

compounds are currently documented in BitterDB. Salts, peptides, fatty acids, 

polyphenols, alkaloids, terpenoids and compounds from additional chemical families 

contribute to the wide chemical space of bitter tastants(22, 23). Bitter compounds vary 

also in their perceived intensity: quinine and amarogentin were reported as extremely 

bitter to humans, recognizable at micromolar concentrations. Other molecules, such as 

caffeine and naringin elicit slightly bitter taste and are typically recognizable at millimolar 

concentrations(23). Notably, we showed that bitter compounds are not more toxic than 

non-bitter compounds(24), questioning the common paradigm that posited the 

evolutionary role of bitter taste as a marker for toxicity(25, 26).  

 

Bitter compounds are recognized by G-protein coupled receptors subfamily of bitter 

taste receptors, called T2Rs (27, 28), that harbor 25 functional T2R subtypes in 

human(29). While some receptors are broadly tuned with hundreds of diverse ligands, 

others are very selective with 0-3 known agonists(30, 31). T2Rs are not only expressed in 

the oral cavity but also in many extraoral tissues, possessing different physiological roles 

besides chemosensation of bitter tastants(32, 33). For example, activation of T2Rs 

expressed in human airway smooth muscle with inhaled bitter tastants was shown to 

mediate relaxation of the muscles and decreased airway obstruction in mouse models of 

asthma(34). T2Rs expressed in thyrocytes were shown to regulate the production of 

thyroid hormones and influence the function of the thyroid gland(35). Surprisingly, a 

human cohort suggested that polymorphism in T2R42 gene, an orphan bitter taste 

receptor, is associated with lower thyroid hormone levels(35). The fact that T2Rs can be 

expressed in extraoral tissues and that orphan T2Rs can be associated with physiological 

phenomena may suggest the involvement of T2Rs in health and disease(32) as well as a 

potential off-target for drugs(36).  

 

We have previously developed BitterPredict(37), which classifies molecules into bitter 

or non-bitter with over 80% accuracy. Several other machine learning predictors followed 

suit(38, 39). In addition, structure-based methods were developed for identification of new 

agonists for specific bitter taste receptors(12, 40, 41). Here we are interested specifically 

in finding intensely or extremely bitter molecules, since these are the ones that are likely 

to cause compliance problems. This will allow project teams to address very bitter 

compounds in the early stages of development and focus on bitterness masking for the 

flagged molecules or deprioritizing them for oral route.  
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To establish a machine learning algorithm for intense bitterness, data had to be 

gathered: we curated data from BitterDB and from the literature, and have measured 

bitterness intensity of several new compounds using the BATA assay. Next, we 

successfully trained a new machine learning classifier “BitterIntense” with the ability to 

assign compounds as “very bitter” (VB) or “not very bitter” (NVB) based on descriptors 

calculated from their chemical structure. BitterIntense was then used to assess prevalence 

of very bitter compounds in datasets of interest in order to elucidate additional attributes 

of VB drugs. 

 
 
Results and Discussion  

Establishment of positive and negative sets. 34 compounds were obtained from 

behavioral studies using the rat brief access taste aversion (BATA - see Experimental 

section). Additional compounds were pulled from the BitterDB(23), and the Analyticon 

repository of natural compounds on kaggle(42). The compounds were classified into 2 

classes: “Very bitter” (VB) and “Not very bitter” (NVB) using the following criteria: 

Compounds with sensory bitter recognition threshold below 0.1mM; or molecules with 

taste description that states “extremely bitter” or “intensely bitter” etc., were included in the 

VB class (246 compounds). Compounds with bitter recognition threshold above 0.1 mM 

or molecules with taste description that includes “slightly bitter” or “weak bitter taste” etc., 

were included in the NVB class (323 compounds). The BATA test measures aversion, 

which is assumed to be driven mainly by bitterness. The IC50 achieved for each compound 

in the BATA test was used to classify compounds using the following criteria: molecules 

with IC50 below or equal to 3mM were classified as VB. Molecules with IC50 above 3mM 

were classified as NVB. In addition, 152 non-bitter compounds were added to the NVB 

class from the negative set used previously in BitterPredict(37) since for practical 

purposes pursued here, non-bitter and not very bitter fall under the same category. The 

non-bitter compounds that were included in the negative set were randomly selected and 

had MW>250 g/mol to match the MW of very bitter compounds. 

  

Chemical families analysis. The chemical families for VB and NVB compounds in 

the training set are represented in Figure 1. The VB class is enriched with triterpene 

saponins and triterpenes in general, while NVB class is broadly represented by different 

chemical families.  
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Figure 1. Representation of chemical families in the training set (A) – Top chemical families 

represented in the dataset of very bitter compounds. (B) - Top chemical families represented in the 

dataset of not very bitter compounds. The compound on the lower left side (Asperosaponin VI) is 

a representative of very bitter triterprene saponins, the compound on the lower right 

(Nitrosaccharin) is a representative of not very bitter benzothiazoles. Deriv. = derivatives 

 

Training the classifier. Physicochemical, Ligfilter and Qikprop descriptors were 

calculated for the compounds in the dataset (see Experimental Section). 15% (105) of the 

compounds were chosen randomly and left out of the training set, as a hold-out test set 

for final evaluation of the model. The other 616 compounds were randomly divided into: 

80% training set (493 compounds) and 20% internal test set (123 compounds). Extreme 

Gradient Boosting (XGBoost) algorithm was chosen for this classification task. XGBoost 

is a popular and powerful decision-tree-based ensemble method that uses optimized 

gradient boosting techniques and is known to perform well with small to medium size 

datasets(43).  

Since the training set is rather small, we extracted the highest contributing features (see 

Experimental Section) in order to avoid overfitting. 55 features were selected out of 235 

for the model training. Further details are described in the Methods section. 
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BitterIntense Performance. Evaluation of the model’s performance (Table 1) was 

carried out on three sets: Training set (with cross-validation, k-fold = 10), Test set, and 

Hold-out set. BitterIntense was able to achieve over 80% accuracy across the different 

datasets. In general, we observed higher recall values than precision values. This result 

is in line with our goal to maximize identification of very bitter compounds.  

 Training set 
(493 

compounds) 
 

Test set 
(123 

compounds) 

Hold-out set 
(105 

compounds) 

Accuracy 
(%) 

87±5 83 80 

Precision 
(%) 

80±8 71 63 

Recall (%) 85±4 86 77 

Specificity 
(%) 

 81 81 

 

Table 1. BitterIntense performance on the training, test and hold-out sets. Training set evaluation 
was done using k-fold cross validation with k =10. The results in the training set column represent 
the mean metric with its standard deviation across 10 iteration of cross validation.  

 

Important features. The feature importance was measured in XGBoost by the “gain” 

method which is the average gain of splits which use the feature in the prediction process. 

Higher gain value implies greater importance of the feature. The top 15% of features are 

represented in Figure 2 and suggest that molecule’s size and polarizability are the most 

influential factors for bitterness level. Fitting the model using the heavy atom count feature 

only, results in 70% accuracy on the training set, with recall and precision of 70% and 58% 

respectively. This means that VB molecules are often larger than NVB molecules, but 

additional features greatly improve the predictions, reaching average accuracy of 87%, 

recall of 85% and precision of 80% on training set. An important contributing feature is 

molar refractivity, which is a measure of a compound’s polarizability. 
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Figure 2.  Top 15% important features in the model. The importance is calculated by the average 
gain of splits which use the feature in the prediction process in each tree in the XGBoost model. 
The heavy atom count, molar refractivity, number of likely metabolic reactions (metab), number of 
tertiary amines and amide groups, π (carbon and attached hydrogen) component of the solvent 
accessible surface area (PISA), hydrophobicity (AlogP), hydrophobic component of the solvent 
accessible surface area (FOSA) and Predicted IC50 value for blockage of HERG K+ channels 
(QPlogHERG).  

 

Relationship between bitterness intensity and toxicity. Though bitter taste is often 

regarded as a marker for toxicity that guards against consuming poisons(44), our previous 

analysis showed that bitter compounds are not necessarily toxic and vice versa(45). Here 

we apply BitterIntense to the FocTox and CombiTox datasets (45). The FocTox dataset 

consists of FAO/WHO food contaminants and extremely hazardous substances. 

Out of 289 compounds, only 25 were predicted to be very bitter (pVB, 8.6%). CombiTox, 

a manually curated dataset of toxic compounds, was also analyzed for very bitter 

substances. Out of 134,057 compounds, 12% were pVB, suggesting that toxic substances 

are not necessarily very bitter and in fact, most of the toxicants are predicted to be NVB.   

We further checked the possible connection between the level of bitterness and liver 

toxicity (hepatotoxicity). Hepatotoxicity is the most common cause for the discontinuation 

of clinical trials on a drug, and the most common reason for an approved drug’s withdrawal 

from the marketplace(46, 47). Drug-induced liver injury (DILI) has been listed as the 

leading cause of acute liver failure in the USA in 2002(48), and DILI has become an 

important concern in the drug discovery process. A possible connection between the level 

of bitterness and hepatotoxicity could suggest that the level of bitterness is a potential 

marker for such toxicity. We predicted the level of bitterness of drugs with known 

hepatotoxicity descriptors, taken from DILIrank dataset(46).  

Most of the drugs in the dataset (729 compounds) were predicted as NVB (pNVB), and 

only 258 were predicted as VB. The pVB drugs do not appear to be more hepatotoxic than 
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the pNVB drugs: the most hepatotoxic class (class number 8, Figure 3A) as well as the 

“Most DILI concern” category (Figure 3B) are actually enriched with pNVB drugs There 

are several possible explanations for this trend: some bitter compounds that activate T2Rs 

were also shown to interact with Cytochrome P450 (CYP)(49), promiscuous 

monooxygenase enzymes involved in phase 1 metabolism of drugs and xenobiotics in the 

human body(50). Perhaps VB and pVB drugs interact differently or even with stronger 

affinity with CYP enzymes, possibly explaining the differences in the hepatotoxic effect. 

Furthermore, activation of extraoral T2Rs might contribute to the decreased risk for 

hepatotoxic effect of the very bitter drugs. It was previously shown that activation of gut 

T2Rs had let to detoxification effect by upregulating the transcription of xenobiotic efflux 

pumps(51). Such effects might also take place in the liver in addition to the gut.  From 

these results we can conclude that the preference for pNVB drug candidates over pVB 

drugs are not related toxicity considerations. In fact, our analysis shows that in many cases 

the VB and pVB drugs tend to be less harmful and should not be automatically 

discontinued in the drug discovery process. 

 

Figure 3.  Bitterness levels of drugs and their hepatotoxicity descriptors. (A) Distribution of pVB 
(silver) and pNVB (black) drugs across severity classes of hepatotoxicity. (B) Distribution of pVB 
and pNVB drugs across DILI concern categories. The severity of hepatotoxicity increases from 
left to right in all figures. 
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Very bitter drugs and their potential therapeutic effects. Since VB drugs are more 

likely to cause compliance problems, we applied BitterIntense on all compounds 

(approved and experimental drugs) from Drugbank (5.1.5)(1) to evaluate the abundance 

of VB drugs (figure 4). Out of 10,170 compounds that were able to pass through our 

predictor, 23.6% were pVB. Specifically, 18% of experimental drugs and 26% of approved 

drugs are pVB. For comparison, in microbial natural products (NPatlas, version 2019_08, 

n=24,805) (52),  47.7% were pVB. Thus only ¼ of drug candidates, but about half of the 

microbial natural compounds are likely to be VB.  

 

Are there specific therapeutic indications or targets  that are enriched with pVB drugs? 

We focused here on a highly relevant disease, the COVID19. The COVID19 pandemic is 

spreading throughout the world, with millions of confirmed cases and hundreds of 

thousands of deaths, according to reports by the World Health Organization that were 

published in June 2020(53). Some drugs have been suggested for treating COVID-19 

patients, but no drug has yet been approved fully and officially by the FDA. Several drugs 

are currently under study and clinical trial, for example: Remdesivir, an adenosine analog 

that was previously tested as a potential drug for Ebola and as anti-viral drug(54), showed 

promising result in COVID19 patients and thus was granted an FDA Emergency Use 

Authorization on 1 May 2020(55). Interestingly, taste and smell loss,(56) including 

impairment of the bitter taste, are reported by many COVID19 patients(57). We applied 

BitterIntense to possible COVID19 drug candidates and compared it to the general 

abundance of pVB drugs in DrugBank. A list of ligands related to COVID19 in “Coronavirus 

Information - IUPHAR/BPS Guide to Pharmacology”(58) was retrieved. After excluding 

antibodies and compounds without chemical structure (Figure 4), among 34 drug 

candidates, 41.2% were pVB. The proportion of pVB drugs among COVID19 potential 

drugs, is thus significantly higher than in DrugBank (23.6%)(P-value = 0.016), suggesting 

that VB drugs may be more abundant in the COVID19-related list than in general drugs. 

No evident difference was found between the main targets of pVB and NVB COVID19-

related drug candidates. While the potential involvement or mediation of bitter taste 

receptors in COVID19 is unclear, the results further highlight the importance of flagging - 

but not excluding from the pipeline – of pVB drugs and drug candidates. 
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Figure 4.  Prevalence of pVB compounds (silver) and pNVB compounds (white) across 3 datasets: 

NPatlas, DrugBank and COVID19 drugs. Statistical significant difference in the proportions of pVB 

compounds was observed using Two Proportion Z-Test.  

 

In conclusion, BitterIntense was developed to easily classify compounds as Very bitter 

or Not very bitter and has achieved above 80% accuracy on test set. This quick and easy 

method enables the identification of intensely bitter compounds during early stages of drug 

development, potentially reducing financial costs, animal testing and the lead time to the 

patients The ability to detect pVB drugs in early stages not only will accelerate the drug 

development process but will also promote the development of more palatable drugs 

suitable for children and geriatric patients. However, intensely bitter molecules should not 

be eliminated completely from the development process. Our analysis revealed that such 

compounds are not necessarily more toxic than pNVB compounds, and not more 

hepatotoxic. Furthermore, we found that potential COVID19 drugs were enriched in 

intensely bitter molecules, particularly interesting in view of possible involvement of taste 

impairment in COVID19 disease(59, 60).  

 

 
Materials and Methods 
 

BATA assay. 

The rat brief access taste aversion (BATA) model has been demonstrated as a highly translatable 

tool for screening bitter compounds(14, 61). Comparison of BATA and human gustatory trials at 

GlaxoSmithKline (GSK) suggest an average offset of 0.5 log concentration, with rats typically 

slightly more tolerant of bitter taste than humans(61). Studies at GSK were performed using Davis 

Rig MS-160 lickometers (DiLog Instruments, Tallahassee, USA) and as described by Soto et al(14) 

with the following exceptions. 12 male Sprague Dawley Crl:CD (SD) rats (number determined 

following power analysis of historic GSK data), 6 to 7 weeks of age on arrival, supplied by Charles 

River UK (Marston, UK) were used per study. Rats were housed in groups of either two or four, 

kept on a 12 hour light: dark cycle, 19-21oC, 45-55% humidity. 5LF2 rodent diet (LabDiet, Missouri, 

USA) was fed ad libitum. Animal grade drinking water (AGW) was reverse osmosis filtered, UV 

treated and provided ad libitum between water restriction periods. All testing occurred during the 

light period. Rats were water restricted for 21 hours prior to each test session to ensure sufficient 

thirst for the rats to attempt to lick all solutions presented. Each test session was limited to a 

maximum of 30 minutes, following which rats were returned to their home cages and given free 

access to AGW for a minimum of 2.5 hours before commencement of the next water restriction 

period. Following completion of each study, rats were health assessed by a named veterinary 

surgeon and returned to non-naïve stock. A minimum one-week washout period was provided prior 

to use of rats on subsequent BATA studies. 

All compounds presented during BATA studies were fully solubilised across a range of 

concentrations with 0.5 log dose separation to generate concentration response curves. Lick counts 

of zero and one were excluded from data sets due to being deemed an insufficient attempt to lick 

a solution and therefore not related to palatability. Lick responses were modelled using a three 

parameter logistic function with the minimum constrained to zero (R v.3.5.1, Foundation for 
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Statistical Computing, Vienna, Austria). Lick response was expressed as a percentage of the 

median AGW response within each study, 95% confidence interval. The concentration of API that 

elicited lick rates equivalent to 50% of the median AGW was then calculated and deemed the IC50. 

 All animal work conforms to the UK Animals (Scientific Procedures) Act, European Directive 

2010/63/EU and the GSK Policy on the Care, Welfare and Treatment of Animals. All protocols were 

approved as part of the GSK Scientific and Ethical Review Forum and carried out in accordance 

with the appropriate project licence issued by the UK Home Office. 

For all studies performed at GSK, commercially available compounds were sourced from Sigma 

Aldrich (Gillingham, UK). GSK compounds were supplied by the internal dispensary. 

BitterDB and Analyticon data 

Data on bitterness intensity and chemical structures  for the training and testing of the model were 

also obtained from BitterDB(23) and Analyticon’s repository on Kaggle website(42)  .  

The addition of the non-bitter subset had shown to be beneficial in preliminary testing of the 

classifier (not shown), increasing the ability to distinguish between very bitter compounds and not 

very bitter compounds. 

Chemical families analysis. The chemical families of the compounds in the training set were 

extracted using ClassyFire webserver(62).  

Datasets preparation. After obtaining the SMILES strings of the compounds, we uploaded the 

compounds to Maestro (Schrödinger Release 2017–2: MS Jaguar, Schrödinger, LLC, New York, 

NY, 2017). We generated 3D structures using ligprep and Epik (Schrödinger Release 2017-2: 

LigPrep, Epik, LLC, New York, NY, 2018) in physiological pH 7.0 ± 0.5. All compounds were 

desalted when available and we retained the original chirality of compounds when specified, 

otherwise all stereoisomers were generated. For each compound, the conformer with the lowest 

energy was extracted and used. When 2 protomers where generated for one compound, we kept 

both structures. Compounds that could not be neutralized were excluded from the sets due to the 

limitations of calculating QikProp descriptors. All the datasets in this current study were prepared 

in the same protocol as mentioned above.  

Descriptors calculation. Three sets of descriptors were calculated for the prepared 3D structures 

using Canvas (Schrödinger Release 2017-4: Canvas, Schrödinger, LLC, New York, NY, 2017): 

Physicochemical descriptors, Ligfilter descriptors (moieties, atoms and functional groups) and 

QikProp descriptors (ADME descriptors). For the QikProp descriptors, additional PM3 properties 

were calculated as well (Schrödinger Release 2017-4: QikProp, Schrödinger, LLC, New York, NY, 

2017). Compounds that failed to calculate one of the descriptors were excluded from the analysis. 

Model construction and fitting. The XGBoost model was constructed and fitted using Python 

3.7.5, in Spyder 3.7 environment. Relevant packages: Scikit-learn (version 0.21.3), XGBoost 

(version 0.9), Numpy (version 1.17.4), pandas (version 0.25.3), matplotlib (version 3.1.1) and 

seaborn (version 0.9.0).  

An early stopping approach was used in the training process, in which the performance of a model 

is monitored during the training process which is stopped once the performance ceased improving, 

see Figures S1 and S2. The evaluation metrics for the early stopping were: logarithmic loss(63) 

and Binary classification error rate (defined as =  #(wrong cases)/#(all cases)). 
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Feature selection. The most contributing features were selected according to their feature 

importance gain score, calculated using XGBoost library in python(43). We constructed a loop that 

tested the changes in the accuracy of the model by setting different thresholds of the gain scores 

in order to select the best features. When setting the threshold on 0.004, we maintained 55 features 

(out of 235 original features) that had the most contribution to model, obtaining 83% accuracy.  

Parameter tuning. The parameters of the XGBoost algorithm were tuned using sklearn’s 

GridSearchCV from sklearn.model selection module(64). The number of cross validation folds was 

set to 10 and the scoring method was set for ‘f1 score’ in order to improve the precision and the 

recall. Parameter tuning was performed on the training set using the initial fitted model, suggesting 

that the optima parameters are: colsample_bytree=0.6, gamma=0.5, max_depth=5. In brief, 

colsample_bytree is the fraction of features that will be randomly sampled to construct each 

decision tree, gamma represents the minimum loss reduction required to make a further partition 

on a leaf node of the decision tree and max depth represents the maximum depth of a tree. In 

addition, the parameter (scale_pos_weight) that helps with unbalanced data was tuned by the ratio 

between positive and negative observations in the training set to 1.9. 

 

Evaluation of the performance of the model. After calculating the number of true positives (TP), 

true negatives (TN), false positives (FP) and false negatives (FN), we evaluated the model using 

four metrics:  

 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
                              𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  

𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

𝑹𝒆𝒄𝒂𝒍𝒍/𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                                  𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  

𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

 

 

Toxicity data. FocTox dataset consists of FAO/WHO food contaminants list and a list of extremely 

hazardous substances defined in section 302 of the U.S. Emergency Planning and Community 

Right-to-Know Act. CombiTox dataset is a combination of two datasets (The Toxin and Toxin‐Target 

Database version 2.0 (T3DB) and  DSSTox—the Distributed Structure‐Searchable Toxicity 

Database). The datasets were taken from the paper of Nissim I. et al(45).  

Hepatotoxicity data. All hepatotoxicity descriptors were extracted from FDA’s DILIrank(46) 

dataset which is an updated version of the LTKB (Liver Toxicity Knowledge Base) Benchmark 

dataset(65). DILIrank consists of 1,036 FDA-approved drugs with known hepatotoxicity descriptors 

and liver toxicity risk assessments. The compounds in the dataset were prepared as explained in 

“Datasets preparation” section.  

External datasets. DrugBank (version 5.1.5) consist of experimental and approved drugs(1), and 

Natural products atlas (NPatlas, version 2019_08)(52) were downloaded from their official 

websites. Compounds were prepared according to the protocol of “Datasets preparation” section. 
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COVID 19 drugs and their targets were retrieved from “IUPHAR/BPS Guide to Pharmacology”(58). 

After excluding the antibodies and compounds without chemical structure we prepared the 

remaining 34 compounds according to the “Datasets preparation” section. 

Analysis and visualization of the data. All the data in this current study was analyzed using 

Pandas library(66) and visualized with Matplotlib(67) library in Python.  
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