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Abstract 

 

Single-cell (sc) sequencing performs unbiased profiling of individual cells and enables evaluation 

of less prevalent cellular populations, often missed using bulk sequencing. However, the scale 

and the complexity of the sc datasets poses a great challenge in its utility and this problem is 

further exacerbated when working with larger datasets typically generated by consortium efforts. 

As the scale of single cell datasets continues to increase exponentially, there is an unmet 

technological need to develop database platforms that can evaluate key biological hypothesis by 

querying extensive single-cell datasets. 

 

Large single-cell datasets like human cell atlas and COVID-19 cell atlas (collection of annotated 

sc datasets from various human organs) are excellent resources for profiling target genes 

involved in human diseases and disorders ranging from oncology, auto-immunity, as well as 

infectious diseases like COVID-19 caused by SARS-CoV-2 virus. SARS-CoV-2 infections have 

led to a worldwide pandemic with massive loss of lives, infections exceeding 7 million cases.  The 

virus uses ACE2 and TMPRSS2 as key viral entry associated proteins expressed in human cells 

for infections. Evaluating the expression profile of key genes in large single-cell datasets can 

facilitate testing for diagnostics, therapeutics and vaccine targets; as the world struggles to cope 

with the on-going spread of COVID-19 infections.  

 

In this manuscript we describe, REVEAL: SingleCell which enables storage, retrieval and rapid 

query of single-cell datasets inclusive of millions of cells. The analytical database described here 

enables selecting and analyzing cells across multiple studies. Cells can be selected using 

individual metadata tags, more complex hierarchical ontology filtering, and gene expression 

threshold ranges, including co-expression of multiple genes. The tags on selected cells can be 
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further evaluated for testing biological hypothesis. One such example includes identifying the 

most prevalent cell type annotation tag on returned cells.  

 

We used REVEAL: SingleCell to evaluate expression of key SARS-CoV-2 entry associated 

genes, and queried the current database (2.2 Million cells, 32 projects) to obtain the results in <60 

seconds. We highlighted cells expressing COVID-19 associated genes are expressed on multiple 

tissue types, thus in part explains the multi-organ involvement in infected patients observed 

worldwide during the on-going COVID-19 pandemic.  

 

Background 

Single cell RNA sequencing (scRNAseq) datasets have played a crucial role in identifying specific 

cell types in airway tissues that express the SARS-CoV-2 virus receptor, ACE2, and host 

responses in peripheral blood(1). With more than 7 million cases of SARS-CoV-2 infection 

(COVID-19) and 403,000 fatalities reported world-wide (8 June 2020)(2), SARS-CoV-2 

interventions are an unmet medical need of pandemic proportions(3, 4). Rapid identification of 

cell-type-specific expression and co-expression of the targets can identify novel cellular 

subtypes(5), facilitate decisions about biomarkers for target engagement(6) and response(7), 

potential delivery methods for therapies, and detection methods for diagnosis(8). Additional host 

factors, TMPRSS2 and Cathepsin B/L, play a key role in the virus infection process and may be 

used as biomarkers and/or drug targets alone or in combination with ACE2. Peripheral responses 

may include the appearance of novel immune cellular subtypes and the absence of 

overexpression of traditional cytokine storm peptides(9). COVID interactome map(10) serves as 

a rich resource set of approved medicines for testing once the tissue abundance is confirmed in 

COVID-19 patients. 
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While the field of precision medicine has steadily advanced through the elucidation of bulk tissue 

or fluid biomarkers, there is exciting potential for new discoveries due to scRNAseq. scRNAseq 

is capable of identifying rare cell populations or markers on cellular subsets, associating cellular 

subsets with disease onset and/or treatment response. Single cell data collections like the 

COVID-19 Cell Atlas(11) (CCA) and the Human Cell Atlas(12) (HCA) are resources for expression 

profiling of key targets involved in SARS-CoV-2 infection of the cells and the subsequent immune 

response. However, the full utility of these data collections is limited due to a lack of database 

management strategy that allows facile cross comparison of the distribution and levels of specific 

gene expression between samples and projects without a significant bioinformatics and 

computational effort. For instance, determining the tissue distribution of expressed targets can 

enable rapid decisions for drug delivery methods and potential combination therapies. Without 

new data solutions, simple queries can become lengthy processes due to the scale of the datasets 

as well as the programming and computational resources required. 

 

Ease of accessing and evaluating multiple scRNAseq data sets for the purposes of developing 

better therapeutic targets and biomarkers for clinical studies presents a fundamental challenge 

for their use in precision medicine. Seyhan et al. suggested that an important milestone for 

implementing precision medicine will be creating an "accessible data commons" to streamline 

biomarker discovery and simplify tests for the mechanism of action.(13) For the authors, the term 

accessible means easily searched by non-programmer biomedical scientists for subsets of 

relevant data. The challenge is creating a data management and analysis capability that facilitates 

the comparison of small diseased tissue datasets, collected in the clinic, to other diseased tissue 

datasets in the pubic domain as well as to large healthy tissue datasets, like the Human Cell Atlas 

(HCA)(12). These comparisons may identify the presence or emergence of subpopulations of 

cells that are resistant to therapy, or they could indicate infiltration or other cellular changes that 

would be elusive in either bulk RNAseq experiments or in flow cytometry, which are limited in the 
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number of markers monitored.(14) The need for potentially high numbers of biological replicates 

to identify differential gene expression (DGE) will only accentuate the need for a data 

commons.(15, 16)  

   

This study describes the scalable REVEAL: SingleCell platform developed to address the issue 

of enabling rapid queries of multiple large single cell datasets, like the HCA, on the order of 

millions of cells. This study represents the first phase of a project to develop the framework 

necessary for searching across, analyzing, and in the future, implementing machine-learning in a 

data commons comprised of single cell precision medicine data sets. REVEAL: SingleCell 

addresses the challenge of storing large sparse arrays from various studies in a FAIR (findable, 

accesible, interoperable, reusable) manner. REVEAL: SingleCell is built on top of SciDB, an array 

native computational database that has R, Python, and REST APIs(17).   

 

We loaded normalized scRNAseq data into the REVEAL: SingleCell platform to allow searching 

across reference datasets to find the distribution of transcripts for ACE2, TMPRSS2 and other 

host factors. The same schema and commands can be adapted for use with other single cell 

‘omics data such as CITE-seq, snRNAseq and other data types. We provide timings for retrieving 

data that highlight the time challenges of the repetitive ETL (extract, transform and load) process 

that workflows like the Seurat(18) and HCAData(19) packages present. 
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Construction and Content 

 

Construction 

Single cell data sets are loaded into SciDB, a unified scientific data management and 

computational platform organized around vectors and multi-dimensional arrays as the basic data 

modeling, storage, and computational unit.(20) The data model accommodates rapid and FAIR 

access to heterogeneous, multi-attribute data as well as metadata like ontologies and reference 

data sets. Multiple users can load, read, and write data in a secure, transactionally safe manner 

as data operations are guaranteed to be atomic and consistent (ACID compliant). The REVEAL: 

SingleCell solution is an app built on top of SciDB that provides purpose-built data schema, 

interfaces, and task-focused functionality, using controlled vocabulary. A Shiny GUI supports data 

visualization and exploration by non-programming scientists. R and Python APIs provide direct, 

ad hoc access and analysis, as well as extensibility via the integration of additional library 

packages. A FLASK(17) REST API implements a web interface. Documentation is provided as R 

markdown notebooks along with context-sensitive online help.  Figure 1 provides a detailed view 

of the APIs, security, and storage architecture for SciDB implemented on AWS.  

Figure 1: system configuration 

 

Figure Legend REVEAL: SingleCell implementation in EC2 : SciDB offers multiple paths to 
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retrieve and load data.  There are REST, R and Python APIs for server-side communication, R 

can also communicate via a local machine using HTTPS. The data and transactions are all 

ACID compliant. In this EC2 instance of REVEAL for scRNAseq, a 16-core machine with 64 GB 

of RAM, and 500 GB of SSD is used. 

The software versions used are shown below in Table 1. 

 

Table 1:  Software requirements 

Software Version URL 
Linux CentOS 7.5 / 

Ubuntu 14.04 
 

SciDB 19.11.5  
R 3.6 https://www.r-project.org 
R packages 
- Seurat 3.1.x https://satijalab.org/seurat/ 
- SciDBR 2.0.2 github.com/Paradigm4/scidbr 
- revealgenomics 0.6 private github 
- revealsc 0.1.0 private github 
Python 3.7.6 https://www.python.org 
Python REST API 1.1.2 https://flask.palletsprojects.com/en/1.1.x/ 

 

Table 1 Legend: a list of software versions used for analysis 

 

Content 

The following publicly available datasets were loaded: Human Cell Atlas (HCA) Census of 

Immune Cells data set(21), COVID-19 Cell Atlas (CCA)(11) (excluding the Aldinger, et al. Fetal 

Cerebellum data set).  These datasets were all aligned to the GRCh38 reference genome. Data 

sizes into the hundreds of TBs are feasible. The current system contains 32 projects, totalling less 

than 1 TB. 

 

HCA provided filtered raw counts data in 10x CellRanger version 3.0 format. This data was loaded 

into R as a Seurat object, normalized using the Seurat scTransform algorithm(22) and then 

converted back to 10x CellRanger v3.0 format. The CCA provided normalized data in .h5ad format 
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as used in the Python Scanpy(23) and anndata(24) libraries. CCA .h5ad files were converted into 

the 10x CellRanger format (using standard convertors from the Python anndata, scipy.io(25) 

libraries). In both cases, the cell metadata tags (e.g., CellType, percent.mt) were saved as .tsv 

files from the normalized Seurat object (HCA) and .h5ad files (CCA), and loaded into the database 

using the REST API metadata update endpoints. The REST API checked for consistency in the 

10x format, missing values, among others.  

 

Content schema 

Data are modelled as multi-dimensional arrays. Each element in an array contains one or more 

attributes. Modelling data as arrays enables rapid sub-setting of cells by gene expression levels, 

ontology and QC tags, individually and in combination across samples.  

 

Figure 2 illustrates the various single cell data submodalities that can also be stored in the array 

elements of the n-dimensional SciDB arrays. Though this project stored only scRNAseq data, the 

multi-dimensional array schema can be extended to hold many complimentary data types, 

including snRNAseq, scATAC-seq, CITE-seq, among others. 

 

Figure 2: single cell data types compatible with REVEAL: SingleCell 

 

Figure 2 Legend: single cell data types compatible with REVEAL: SingleCell. 

Elements in the n-dimensional arrays can contain several orthogonal omics data types, as 

mentioned in the figure. 
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Figure 3: data hierarchy 

 

Content data hierarchy 

Figure 3 illustrates the hierarchical relationship of metadata.  The label “projects” was used 

for collections of samples which are often also referred to as studies. For instance, the 

HCA Census of Immune Cells is one project with 16 samples. At the sample level, 

anatomy/tissue type and disease type are selectable with the UBERON and DOID 

identifiers. At the cell level, CL IDs were used to enable selection of specific cell types. It 

is important to note that there was tremendous heterogeneity in how the information was 

presented in these individual projects, and an automated system for unification is being 

developed.  Feature sets(26) include information about the human genome version and 

the sub-category feature, allowing selection by either ENSEMBL ID or gene symbol. Gene 

symbols were used because most public data are not annotated with ENSEMBL IDs. Due 

to the diversity of the metadata (especially when sourced from public studies), we stored 

metadata as key-value pairs in the elements of the sample array shown below in Table 2. 
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Table 2 Arrays and attributes in REVEAL: SingleCell 

Array Dimensions  Attribute data 
types 

Attributes 

RNAQUANTIFICATION sample_id1 
measurementset_id1 
cell_id1 
feature_id1 

value: float  Raw count, 
normalized 
count 

SAMPLE 
 

sample_id2  name: string 
description: 
string 
project_id: int641 
public: bool 

Project ID, 
Sample ID, 
Subject ID, 
DOID, 
UBERONID, 
Enrichment, 
Library type, 
Organism NCBI 
taxonomy ID 

MEASUREMENTSET 
describes how the data 
was collected and 
processed. 
 

measurementset_id2 
sample_id1 
 

experimentset_id: 
int641 
entity: string 
name: string 
description: 
string 
featureset_id: 
int641 

 

CELL 
 

cell_id2 
sample_id1 
 

name: string 
description: 
string 
individual_id: 
int641 

CL ID, Cl 
ontology  

FEATURE (Genes) 
Features can also be 
proteins, other 
biomolecules, and or 
hierarchical names. 

featureset_id1 
gene_symbol_id1 
feature_id2 

name: string 
gene_symbol: 
string 
chromosome: string 
start: string 
end: string 
feature_type: 
string  
source: string 

Feature ID, 
Featureset ID, 
ENSG ID, Hugo 
gene symbol 

FEATURE SET featureset_id2 
 

  GRCh version, 
Reference 
model, 
Feature‐set ID 

PROJECT FEATURE 
describes the project, or 
datasource like HCA 

project_id2  name: string 
description: 
string 
project_id: int641 

Project name, 
Project ID 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.169730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.24.169730
http://creativecommons.org/licenses/by-nd/4.0/


Table 2 Legend:  

Table 2 shows the schema. Data of interest can be accessed and filtered by their dimensions and 

attributes. The superscript 1 indicates primary dimensions for selection, and the superscript 2 

inidcates secondary dimensions for selection.  The general categories for attributes include but 

are not limited to: 

 scRNAseq expression values, both normalized and raw counts 

 categorical and continuous tags which can contain metadata on any entities from the 

pipeline used to generate the tags. 

- projects, e.g. data generation source (public, institutional -internal) 

- samples, e.g. UBERONID; DOID; organ (lung, rectum, illium) 

- cells, e.g. CL ID; cell type (CD8+, enterocytes); percent.mt (percent mitochondria) 

- features, e.g. strand (+, -); biotype (protein-coding, frameshift) 

 

Note that the tags, UBERONID, DOID, and CL ID, hold controlled vocabulary from publicly 

curated ontologies like Ontobee. These tags enable hierarchical searches, e.g. search for all cells 

matching CLID CL:0000584 (enterocyte) and its children. 

 

Content data curation 

Cell type is one of the most important selection criteria. However public datasets in CCA used 

multiple disparate naming conventions, e.g. cell_type, CellType, celltypes, celltype1.  These 

names were retained as is in the database, but an extra tag, CellType.select, was added for 

harmonization across all projects. The CellType.select tag was manually curated. 

 

Subject-level and sample-level metadata were often missing in the CCA.  We provide a manually 

curated supplementary table with the exact numbers of subjects and samples, where it was 

possible to obtain the information (S1). 
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Queries and REST API 

Table 3 lists the queries and functions built into the REVEAL: SingleCell app.  

Table 3: Queries and functions built into the database 

HCA whitepaper requirements Functionality Reveal:scRNAseq 
At least one developer-oriented 
portal providing a platform (e.g. 
FireCloud or Toil) in which 
developers can bring 
containerized environments to 
perform analyses on the data   R & Python API  
At least one user-oriented portal 
providing interactive interfaces to 
the data; for example:   R & Python API  

  

Quantifying the expression of a given 
gene (e.g., marker genes specified by 
user) across cell types, shown in 
several popular modalities (e.g., low-d 
plots, heatmaps, violin plots); R & Python API  

  

Showing clustering of individual cells 
from an experiment based on 
expression profiles; R & Python API  

  

Painting cell clusters (ordinations) by 
metadata (technical and experimental) 
to identify batch effects and visualize 
biological groupings (depending on the 
type of metadata); R & Python API  

  

Visualizing gene signatures by several 
modalities, including heatmaps and 
dot plots of average expression by cell 
group; and R & Python API  

  
Cross-correlating gene expression 
with epigenetic markers. R & Python API  

Multiple query-oriented portals 
with APIs targeting custom 
access patterns, for example: 
Tag based queries     

  
Querying all gene expression tables 
generated with a particular analysis Rest API & R notebook 

  

Querying all cells for those that match 
the expression pattern of a target cell 
and return the metadata for the 
matching cells Rest API & R notebook 

  

Querying all raw data for a specific 
tissue type, ranked based on a custom 
combination of quality-control metrics. Rest API & R notebook 

Housekeeping requirements   Rest API & R notebook 

  Loading data Rest API & R notebook 

  Adding tags after data load Rest API & R notebook 
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  Deleting data Rest API & R notebook 
 

Table 3 legend: 

The requirements listed in the HCA whitepaper take two forms: actual queries and visualization 

capabilities. The R and Python APIs support the visualization requirements. The REST API and 

R notebook support the queries. We included the housekeeping requirements in the list 

because those are essential capabilities for a database.  These are accessible through an R 

API and REST API.  

Figure 4 

 

Figure 4 lists the REST API commands.  

Utility and Discussion 

We approached the challenges of creating a data commons by deploying a scientific 

computational database, SciDB. There are distinct benefits to having scRNAseq data organized 

as arrays in a database, such as allowing cross-study selection of cells by gene expression 
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thresholds or metadata tags and analysis by multiple users, while ensuring the consistency from 

a shared version of QA’d data and workflows. SciDB endows REVEAL: SingleCell with future-

readiness, the capability of integrating genomic, proteomic, image and metabolomic data types 

into the same database, enabling a data commons.  

 

Many researchers use Seurat objects or HDF5 files for storage of both scRNAseq data and 

calculated results. This approach contradicts the basic concept of FAIR data because each object 

is a silo of data. Cross-study analysis with Seurat requires loading the studies of interest into a 

single Seurat object and repeating a Seurat object merge step for each desired set of studies and 

is often limited by RAM.  Thus, analysis is limited by the size of the compute hardware, i.e. RAM, 

to fewer than 1 million cells. Yet, the outlook is for dataset sizes to grow especially when coupled 

with flow cytometry, microscopy and new methods. For example, single cell and single nucleus 

data sets range in complexity from analysis of total mRNAs, to capped RNAs to transcriptional 

velocity to transient physiologic responses(27), many of which may be inter-compared to test 

hypotheses.(28) Emerging higher throughput and lower cost methods of single cell transcriptional 

profiles like Sci-Plex, will create much larger data sets to search across and analyze.(29) 

 

REVEAL: SingleCell was designed as a data commons with the goal of removing silos, supporting 

cross-study analysis, and enabling scaling of computation beyond a single instance. We 

populated the REVEAL: SingleCell platform with scRNAseq data from the HCA and CCA (content 

and construction). The same schema and commands can be used with other single cell ‘omics 

data such as CITE-seq(30) and snRNAseq data(31).  

 

As a design guide, we implemented the requirements for querying data outlined in the HCA 

whitepaper.  The HCA whitepaper didn’t include provisions for an actual database; storage was 
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based on file retrieval. The requirements for precision medicine put a premium on being able to 

inter-compare datasets without needing increasingly larger amounts of RAM.  

 Querying all gene expression data generated with a particular analysis, 

 Querying all cells for those that match the expression pattern of a target cell and return 

the metadata for the matching cells; and 

 Querying all raw data for a specific tissue type, ranked based on a custom combination of 

quality-control metrics. 

 

Table 2 shows the schema, a collection of 7 arrays. This schema fulfills the requirements for 

queries laid out in Table 3, allowing sub-setting of cells by gene expression levels, ontology and 

QC tags, individually and in combination across samples. Using the REVEAL: SingleCell platform, 

more complex queries relating to ontologies as well as to gene expression levels (or other 

continuous variables like x, y coordinates or time), or patterns can be combined.  This is enabled 

because each element in an n-dimensional SciDB array can have unlimited numbers of tags that 

can be used for selection (Table 2, Figure 3). Thus, users can: 

 Query for gene expression in cells matching a cell type, and then expand the search to 

include cell types that are parents or children in a cell type ontology.  

 Query for gene expression to return cells with gene expression above, below, or within 

thresholds (e.g., ACE2 >3, <7, 4-6). 

 Query raw and/or normalized counts for each cell.   

 

Applying REVEAL: SingleCell to evaluate key regulators involved in SARS-CoV-2 infection  

In this early phase of SARS-CoV-2 research, hypotheses regarding tissue/cell type distribution of 

host cofactors for viral infection (receptors, processing enzymes) and pathogenesis (changes in 

normal cell gene expression profiles) need to be tested quickly. As an illustration of the capabilities 

of REVEAL: SingleCell, we queried for all cells in the database (datasets from CCA, HCA) that 
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either express the receptor for SARS-CoV-2, ACE2, the cell surface receptor for SARS-CoV-

2(32),  and entry facilitating enzyme, transmemembrane serine protease, TMPRSS2(33), or co-

express both mRNAs with DPP4, the receptor for MERS-CoV(34) (Table 4, 5, and Figure 5). An 

example of a more complex query is shown (Table 4, query 6): sequentially applying a metadata 

filter and then a gene expression filter on the results. These findings highlight that REVEAL: 

SingleCell returned results that can support interactive hypothesis generation and testing by 

searching across more than 30 datasets in a timespan of seconds.  

 

 

 

Table 4 lists the times to return an R data frame in RStudio from querying REVEAL: SingleCell 

for the listed queries across many or all of the samples from CCA and HCA.  

TABLE 4: Benchmarking queries 

Capabilities Search  
criteria 

Query 
# 

Search result 
# of cells returned 

(# of projects with data) 

 Total 
time 
(sec) 

Selecting a subset of cells (searching across 2.2M cells and 33 projects) 
By tags 1 tag 

CellType.select is any of: 
 [‘Enterocyte’, ‘Enterocytes’,  

‘Best4+ Enterocytes’, ‘Enterocyte 
Progenitors’, ‘Immature Enterocytes 

1’, ‘Immature Enterocytes 2’] 

1 19K cells  
(5 projects) 

14 

 
2 tags 

  Above criteria on CellType.select  
& Location is any of: 

 [‘Rectum’, ‘Decidua’, ‘Ileum’] 

2 4827 cells  
(2 projects) 

9 

Selecting cells across projects 
Checking for co 
expression in more 
than 1 gene, when 
expression value lies in 
a range 

• Threshold: 
value >= 1 

• Restricting 
search to 
normalized 
data 

'ACE2', 'TMPRSS2' 3 2282 cells  
(21 projects) 

26 

'ACE2', 'TMPRSS2', 'DPP4' 4 561 cells  
(11 projects) 

32 

Search expression 
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By gene list across all 
projects 
 

'ACE2', 'TMPRSS2', 'DPP4' 5 225K rows  
(32 projects;  

download size:  
8 MB) 

15 

By cells across multiple 
projects  

Using the result of Query 1 to 
search expression on those cells  
i.e. searching by ~19,000 cells  

(in the projects with data) 

6 26.7M rows  
(5 projects; 

download size: 1019 
MB) 

27 

 By selected project 
 

Project: ‘wang20_rectum’;  
matrix_count: ‘normalized’ 

7 11.6M rows  
(1 project; 

download size:  
621 MB) 

17 

Table 4 legend 

Queries were organized as: searching by metadata tags (1 & 2), searching by co-expression (3, 

4), searching by gene list (5), searching the results of query 1 by expression levels (6), and 

returning the results of a project. 

 

We evaluated multiple samples from CCA and HCA to identify cell type tag of cells expressing 

ACE2, TMPRSS2, and co-expression of both the markers. All cells matching the above criteria 

were grouped together by their cell type tags and reported as percentage of total cells matching 

criteria. Cell type tags with <1 % of total cells matching criteria were grouped together and labelled 

as ‘Others’ and the sum of their percentanges was also reported.  

 

Our analysis, based on all cells currently loaded in the database (Figure 5), highlights that the 

majority of cells expressing ACE2 have a cell type tag of PC_vent1 (Heart tissue); the majority of 

cells expressing TMPRSS2 have a cell type tag of AT2 (alveolar epithelial type II cells found in 

the lung parenchyma); and most cells co-expressing both ACE2 and TMPRSS2 are tagged as 

Gall bladder cells. These results are consistent with previous studies.(1, 35-37). 
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Figure 5 legend 

Cells matching search criteria are grouped by their cell type annotation. Cell types tags with < 1 

% of total cells matching search criteria, were grouped together as ‘Others’. For co-expression, 

the same cell is required to express both the genes above the set thresholds. 

 

These results in part, explain the the multi-organ involvement in infected patients observed 

worldwide during the on-going COVID-19 pandemic, as multiple cell types in the human body 

express genes utilized by SARS-CoV-2 for infection. REVEAL: SingleCell enables quick profiling 

of key genes involved in the current pandemic and supports additional use cases that require 

evaluation across a large database of single cell expression datasets such as vaccine candidates 

for infectious diseases, biomarkers for oncology patient stratification, and immunology-related 

disorders. 
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Conclusion 

In this paper, we introduce the REVEAL: SingleCell database that addresses immediate needs 

for SARS-CoV-2 research and has the potential to be used more broadly for many precision 

medicine applications. We used the REVEAL: SingleCell database as a reference to ask 

questions relevant to drug development and precision medicine regarding cell type and co-

expression for genes that encode proteins necessary for SARS-CoV-2 to enter and reproduce in 

cells. 

 

Significance 

The COVID-19 atlas used in this project is an example of an extensive reference dataset that can 

be used for understanding individual patient responses to novel therapies relative to untreated 

and un-infected patient data.  Implementation of REVEAL: SingleCell harnesses the power of 

working with large and complex single cell datasets and unlocks their potential by significantly 

speeding up the process of selecting and analyzing data for understanding and treating individual 

patients using precision medicine. The next phase of development will be to extend the REVEAL: 

SingleCell architecture to include additional relevant datasets, as well as include other omics data 

types from single cell experiments. 
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