
IsoMaTrix: a framework to visualize the
isoclines of matrix games and quantify
uncertainty in structured populations
Jeffrey West1,* and Alexander R. A. Anderson1,+

1Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute,
12902 Magnolia Drive, SRB 4 Rm 24000H Tampa, Florida, 33612
*jeffrey.west@moffitt.org
+Alexander.Anderson@moffitt.org

Abstract
Summary: Evolutionary game theory describes frequency-dependent selection for fixed,
heritable strategies in a population of competing individuals using a payoff matrix, typically
described using well-mixed assumptions (replicator dynamics). IsoMaTrix is an open-source
package which computes the isoclines (lines of zero growth) of matrix games, and facili-
tates direct comparison of well-mixed dynamics to structured populations in two or three
dimensions. IsoMaTrix is coupled with a Hybrid Automata Library module to simulate
structured matrix games on-lattice. IsoMaTrix can also compute fixed points, phase flow,
trajectories, velocities (and subvelocities), delineated “region plots” of positive/negative
strategy velocity, and uncertainty quantification for stochastic effects in structured matrix
games. We describe a result obtained via IsoMaTrix’s spatial games functionality, which
shows that the timing of competitive release in a cancer model (under continuous treatment)
critically depends on the initial spatial configuration of the tumor.

Availability and implementation:
The code is available at: https://github.com/mathonco/isomatrix.

Introduction
Interactions between competing individuals which result in some benefit or cost can broadly
be described (and analyzed) using a mathematical framework called game theory. This
framework developed by the mathematicians von Neumann and Morgenstern in the 1940s
aims to mathematically determine the optimal strategy to employ when in competition with
an adversary1. The components of a game are: 1) the strategies, 2) the players, and 3) the
costs and benefits of each strategy. The classical definition of game theory can be extended
to model evolution by natural selection, known as evolutionary game theory (EGT)2, 3. In
EGT, each player adheres to a fixed strategy and the prevalence of competing strategies is
tracked over time.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://github.com/mathonco/isomatrix
https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

EGT describes frequency-dependent selection for fixed, heritable strategies in a popu-
lation of competing individuals. Competition is governed by a “payoff matrix,” defining
the Darwinian fitness of an individual based upon interactions with other individuals within
the population. EGT is increasingly and broadly used to model cancer as an evolutionary
process4, 5. For example, EGT models have shown success in modeling tumor growth6, com-
petitive release in cancer treatment7, 8, optimal cancer treatment9, 10, glioma progression11,
tumor acidity12, tumor-stroma interactions13, growth factor production as a public good14,
and characterization of intercellular competition in vitro15.

Herein, we develop a package to systematically analyze three-player matrix games.
The package allows for easy comparison between analysis of the non-spatial, well-mixed
assumption (i.e. replicator equation) to spatially-explicit formulations of matrix games in
two- or three-dimensions. The package places a special focus on boundaries between the
positive and negative growth regions of each strategy, known as isoclines. Thus, the name
of this package, IsoMaTrix, is a blend of “isocline” and “matrix” games, to describe this key
functionality. The name provides a near-homonym to “isometric,” which is defined as “of
or having equal dimensions.” This fits the definition of linear matrix games displayed on a
triangle with equal side dimensions (hence the capital ‘T’ for Tri).

Distinguishing features of Isomatrix
In recent years, several groups have released similar packages that compute evolutionary
game dynamics of 3- or 4-strategy games (including replicator dynamics). Two packages
were released in Mathematica (Dynamo16, 17, EvoDyn-3s18). A more recent package in
Python (EGTplot) allows for static or animated images of dynamics19. Most recently, an
extension to model multiplayer games with collective interactions (public goods games) was
designed in Mathematica (DeFinetti)20.

The foremost distinguishing feature of the IsoMaTrix package is the extension of matrix
games to consider explicit spatial structure, including functions to quantify and visualize un-
certainty due to stochastic effects. This extension, facilitated by a Hybrid Automata Library
(HAL21; java language) module, allows for easy comparison between non-spatial (replicator
dynamics) and spatial (cellular automata) model configurations. Other distinguishing fea-
tures of non-spatial dynamics include computation of isoclines and their delineation into
“region plots,” and the ability to visualize multiple games’ fixed points on a single IsoMaTrix
plot.

Methods
Replicator dynamics
Frequency-dependent selection dynamics in IsoMaTrix are governed by the replicator
equation. This assumes well-mixed interactions with pair-wise linear payoff functions as

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

time, t

re
si

st
an

t f
ra

ct
io

n

"̇# < %

"̇# > %

Treatment dose

c = 0.00
c = 0.25
c = 0.50
c = 0.75

xN

xS

xR

N

S R

" = "(, "*, "#

x0

xF

+-σ

++σ

+

R within S

S within R

t=0 t=10 t=20 t=30 t=40 t=50 t=60

A. Schematic B. IsoMaTrix C. Region plot D. Isoclines

E. Spatial IsoMaTrix F. Uncertainty G. Resistant Velocity H. Trajectories

I. Effect of initial spatial configuration J. Resistant fraction

Legend

Replicator
R within S
S within R

Legend
Replicator
R within S
S within R

Non-spatial replicator equation: IsoMaTrix

Spatial matrix games: Hybrid Automata Library + IsoMaTrix

Colors: Normal, Sensitive , Resistant

Figure 1. IsoMaTrix Top section: well-mixed dynamics. (A) Schematic of triangular ternary plot describing
competition between Normal (N), Sensitive (S), and Resistant (R) cell types. (B) IsoMaTrix diagram for
payoff matrix in eqn. 3. (C) Region plot, with regions delineated by positive/negative strategy velocity, ẋi.
Example trajectory~x = [0.6,0.3,0.1]. (D) Isoclines for resisant strategy (ẋ3 = 0) for varied dose,
c ∈ [0,0.25,0.5,0.75] (blue to red). Bottom section: spatial dynamics. (E) Schematic of IsoMaTrix diagrams
computation in structured populations. M stochastic realizations are simulated for each initial proportion (i.e.
~x0 = [x1,x2,x3]) within a mesh covering the triangle: four examples shown inset. Phase flow is estimated by
calculating the resultant vector between~x0 and the final proportion,~xF , after user-specified n number of time
steps. (F) Uncertainty: standard deviation, σ , of the magnitude (background-color) and of direction (gray arc
on each phase-flow arrow). (G) Subvelocity resistant cells. (H) The trajectories for configurations shown in I,
compared to well-mixed (black). (I) Two initial spatial configurations over time. Resistant cells trapped within
the core (top) delays the emergence of resistant cells under treatment (shown in J).

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

follows:

ẋi = xi (fi−φ) (1)
fi = ∑

j
ai jx j, (2)

where xi is the fraction of each player (i, j ∈ [1,2,3]) and the average fitness is φ = ∑ j f jx j.
The fraction of each strategy grows or decays with exponential rate proportional to its fitness
difference above/below the average fitness of the population, φ . We consider the class of
three player games with payoff matrix, A, shown in eqn. 3 (s.t. [A]i j = ai j). To illustrate
the utility of IsoMaTrix, figure 1 uses a simplified version of the matrix game from ref.
7. Previously, this game was used to model competitive release: maximum tolerated dose
schedules initially reduce the sensitive cell population, thereby releasing resistant cells from
competition to dominate subsequent tumor growth. This game is described by the following
payoff matrix:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

=

 1.2 1 1
1.4(1− c)+ c (1− c)+ c 1.1(1− c)+ c

1.4 0.7 1.1

 , (3)

where the rows and columns describe competition between Normal (N; first row and column),
Sensitive (S; second row and column), and Resistant (R; third row and column) cells within
the tumor bed. Competition is dependent on drug concentration: c.

The IsoMaTrix package has functions which display 1) fixedpoints, 2) isoclines, 3) phase
flow, 4) velocities, 5) trajectories, and 6) regions of positive/negative strategy velocity. Each
of these functions is independently called by the user, enabling easy chaining to facilitate
the desired visualization of dynamics. The Example section shows a representative example
of visualizations possible in IsoMaTrix.

Importance of spatial structure
While replicator dynamics has proven quite useful, the dynamics of spatially structured
populations can vary dramatically (e.g. on-lattice22 or off-lattice23 dynamics). In some
cases, it is possible to create transforms between replicator dynamics and specific spatial
structures24, 25. The effect of space is then equivalent to modification of the entries in the
payoff matrix26, 27. IsoMaTrix facilitates further analysis and comparison of the departure
of spatial dynamics from the well-mixed replicator assumptions.

IsoMaTrix implements spatial structure using the on-lattice cellular automata framework
in HAL21. Cells compete using the ‘imitation updating’ rule whereby a randomly chosen
cell (the focal cell) updates its strategy to imitate one of its own neighbors in proportion to
fitness28. The user specifies if the update process is deterministic (updating to match the
most fit neighbor strategy) or stochastic (updating weighted by fitness of all neighbors)29, 30.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

Example
The top section of figure 1 shows an example IsoMaTrix output for non-spatial EGT matrix
games using the replicator equation. Three player games can be displayed on a triangular
ternary plot (figure 1A) where each corner represents a tumor with 100% of the given strategy
(see e.g. 31). Figure 1B shows phase flow (black arrows) for the payoff shown in eqn. 3
(c = 0.75), background-colored by the magnitude of the resultant velocity vector (inset).
The fixed points for each pair-wise strategy interaction (N-S, S-R, N-R) are conveniently
offset on each edge with arrows indicating phase flow (black lines; solid circles are stable
while open circles are unstable). In figure 1C, the aforementioned ‘region’ plot delineates the
ternary plot into color-coded regions of positive/negative strategy velocity, ẋi. An example
trajectory is shown in dashed red, where the tumor initially decays (negative sensitive
velocity: ẋN > 0, ẋS < 0, ẋR > 0; pink) but quickly relapses with saturation of the resistant
type (positive resistant velocity: ẋN < 0, ẋS < 0, ẋR > 0; blue). Knowledge of the resistant
isocline facilitates control of the tumor dynamics by allowing treatment to be discontinued
well before resistant regrowth6, 7, 10. Results indicate that this isocline is a function of
treatment dose, c, as seen in figure 1D. Importantly, IsoMaTrix allows for multiple games
(in this case, multiple values of dose) to be easily displayed on the same ternary diagram
(blue to red lines in 1D).

The bottom section of figure 1 shows example IsoMaTrix output for spatial simulations.
Figure 1E shows a schematic detailing how IsoMaTrix diagrams are produced for structured
populations (for identical payoff matrix, A, in eqn. 3). M stochastic realizations are
simulated for each initial proportion (i.e. ~x0 = [x1,x2,x3]) within a mesh covering the
triangle (four examples shown in inset 1E). The phase flow is estimated by calculating the
resultant vector between ~x0 and the final proportion, ~xF , after the user-specified number,
n, of time steps (default value is n = 1). Given the stochastic nature of spatial simulations
(dependent on the randomly assigned initial configuration), uncertainty can be calculated
and displayed (figure 1F). The standard deviation of the magnitude of the resultant vectors
of M realizations is shown by background-color, while uncertainty in direction is shown by
the gray arc attached to each phase-flow arrow (see enlarged inset in 1F). The subvelocity
for the resistant population is also estimated in figure 1G.

IsoMaTrix also facilitates comparison of precise initial spatial configurations. Figure
1H,I,J compare the well-mixed (replicator; black line) dynamics to two spatial configurations
with approximately equal proportions: resistant cells trapped inside sensitive cells (I, top)
and vice versa (I, bottom). The tumor with resistant cells trapped within the core delays the
emergence of resistant cells (figure 1J) under treatment.

In summary, IsoMaTrix allows for quick analysis of well-mixed matrix games in an
accessible language (MATLAB), as well as detailed comparison of the effect of spatial
structure on dynamics. A complete manual detailing full IsoMaTrix functionality is attached
below.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgments
The authors gratefully acknowledge funding from both the Cancer Systems Biology Consor-
tium and the Physical Sciences Oncology Network at the National Cancer Institute, through
grants U01CA232382 and U54CA193489 as well as support from the Moffitt Center of
Excellence for Evolutionary Therapy.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

References
1. Morgenstern, O. & Von Neumann, J. Theory of games and economic behavior (Princeton

university press, 1953).

2. Smith, J. M. Evolutionary game theory. Physica D: Nonlinear Phenomena 22, 43–49
(1986).

3. Weibull, J. W. Evolutionary game theory (MIT press, 1997).

4. Staňková, K., Brown, J. S., Dalton, W. S. & Gatenby, R. A. Optimizing cancer treatment
using game theory: A review. JAMA oncology 5, 96–103 (2019).

5. Archetti, M. & Pienta, K. J. Cooperation among cancer cells: applying game theory to
cancer. Nature Reviews Cancer 19, 110–117 (2019).

6. West, J., Hasnain, Z., Mason, J. & Newton, P. K. The prisoner’s dilemma as a cancer
model. Convergent science physical oncology 2, 035002 (2016).

7. West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: An evolutionary model of
competitive release in metastatic castration resistant prostate cancer treatment. Journal
theoretical biology 455, 249–260 (2018).

8. West, J. et al. Towards multi-drug adaptive therapy. Cancer Research (2020).

9. Gluzman, M., Scott, J. G. & Vladimirsky, A. Optimizing adaptive cancer therapy:
dynamic programming and evolutionary game theory. Proceedings Royal Society B
287, 20192454 (2020).

10. Newton, P. & Ma, Y. Nonlinear adaptive control of competitive release and chemothera-
peutic resistance. Physical Review E 99, 022404 (2019).

11. Basanta, D., Simon, M., Hatzikirou, H. & Deutsch, A. Evolutionary game theory
elucidates the role of glycolysis in glioma progression and invasion. Cell Proliferation
41, 980–987 (2008).

12. Kaznatcheev, A., Vander Velde, R., Scott, J. G. & Basanta, D. Cancer treatment schedul-
ing and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature.
British Journal Cancer 116, 785–792 (2017).

13. Basanta, D. et al. The role of transforming growth factor-β–mediated tumor-stroma
interactions in prostate cancer progression: An integrative approach. Cancer Research
69, 7111–7120 (2009).

14. Archetti, M. Evolutionary game theory of growth factor production: implications
for tumour heterogeneity and resistance to therapies. British Journal Cancer 109,
1056–1062 (2013).

15. Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Fibroblasts and
alectinib switch the evolutionary games played by non-small cell lung cancer. Nature
Ecology & Evolution 3, 450 (2019).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

16. Sandholm, W. H., Dokumaci, E. & Franchetti, F. Dynamo: Diagrams for evolutionary
game dynamics. See http://www. ssc.wisc. edu/w̃hs/dynamo (2012).

17. Franchetti, F. & Sandholm, W. H. An introduction to dynamo: diagrams for evolutionary
game dynamics. Biological Theory 8, 167–178 (2013).

18. Izquierdo, L. R., Izquierdo, S. S. & Sandholm, W. H. Evodyn-3s: A mathematica
computable document to analyze evolutionary dynamics in 3-strategy games. SoftwareX
7, 226–233 (2018).

19. Mirzaev, I., Williamson, D. & Scott, J. egtplot: A python package for three-strategy
evolutionary games. Journal Open Source Software 3, 735 (2018).

20. Archetti, M. Definetti: A mathematica program to analyze the replicator dynamics of
3-strategy collective interactions. SoftwareX 11, 100415 (2020).

21. Bravo, R. R. et al. Hybrid automata library: A flexible platform for hybrid modeling
with real-time visualization. PLOS Computational Biology 16, 1–28 (2020).

22. Gatenbee, C. et al. Macrophage-mediated immunoediting drives ductal carcinoma
evolution: Space is the game changer. bioRxiv 594598 (2019).

23. You, L. et al. Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth
model. Journal Theoretical Biology 435, 78–97 (2017).

24. Ohtsuki, H. & Nowak, M. A. The replicator equation on graphs. Journal Theoretical
Biology 243, 86–97 (2006).

25. Kaznatcheev, A., Scott, J. G. & Basanta, D. Edge effects in game-theoretic dynamics of
spatially structured tumours. Journal The Royal Society Interface 12, 20150154 (2015).

26. Durrett, R. et al. Spatial evolutionary games with small selection coefficients. Electronic
Journal Probability 19 (2014).

27. Nanda, M. & Durrett, R. Spatial evolutionary games with weak selection. Proceedings
National Academy Sciences 114, 6046–6051 (2017).

28. Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution
of cooperation on graphs and social networks. Nature 441, 502–505 (2006).

29. Zukewich, J., Kurella, V., Doebeli, M. & Hauert, C. Consolidating birth-death and
death-birth processes in structured populations. PLoS One 8 (2013).

30. Nowak, M. A. Evolutionary dynamics: exploring the equations of life (Harvard Univer-
sity Press, 2006).

31. Qian, J. J. & Akçay, E. The balance of interaction types determines the assembly and
stability of ecological communities. Nature Ecology & Evolution 4, 356–365 (2020).

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

IsoMaTrix Manual

1 IsoMaTrix (MATLAB) 10
1.1 isomatrix(A) . 10
1.2 isomatrix_fixedpoint(A,index) . 11
1.3 isomatrix_quiver(A) . 13
1.4 isomatrix_isocline(A,id) . 13
1.5 isomatrix_trajectory(A,x0,tF) . 14
1.6 isomatrix_region(A) . 14
1.7 isomatrix_velocity(A,id) . 14
1.8 isomatrix_surface(A,id) . 16
1.9 isomatrix_pairwise(A) . 16

2 IsoMaTrix Helper Functions (MATLAB) 17
2.1 replicator(t,x,A) . 17
2.2 line_plot(A,x0,tF) . 17
2.3 add_labels(string) . 17
2.4 add_gridlines(gridlines) . 17
2.5 XY_to_UVW(p) . 17
2.6 UVW_to_XY(x) . 17
2.7 A_subset(A,types) . 17

3 HAL integration with IsoMaTrix (Java) 19
3.1 Setting up Integrated Development Environment . 19
3.2 HALMatrixGame2D and HALMatrixGame3D . 20
3.3 Fitness Neighborhood . 20
3.4 Deterministic or Stochastic Updating . 21
3.5 Population Update Fraction . 21
3.6 SingleSimulation(int timesteps) . 21
3.7 MeshGrid(int timesteps, int nSims) . 22

4 Visualizing HALMatrixGames using IsoMaTrix 23
4.1 HAL_isomatrix() . 24
4.2 HAL_isomatrix_trajectory(color) . 24
4.3 HAL_isomatrix_quiver(uncertainty_boolean) . 26
4.4 HAL_isomatrix_velocity(id) . 26
4.5 HAL_isomatrix_region() . 27
4.6 HAL_isomatrix_uncertainty(id) . 27

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 IsoMaTrix (MATLAB)
Each of the following subsections corresponds to a function declaration in the IsoMaTrix
package. Unless otherwise noted, the following payoff matrix is used to describe competition
between strategy 1 (first row/column), 2 (second row/column), and 3 (third row/column):

A =

0.7 0.0 0.7
0.3 0.4 0.8
1.0 0.3 0.2

 (4)

Colors are specified consistent with MATLAB conventions: a 1x3 vector, [R,G,B], where
each vector element is ∈ [0,1]. For example, the following colors are used in subsequent
code:

black=[0,0,0];
red=[1,0,0];
green=[0,1,0];
blue=[0,0,1];

1.1 isomatrix(A)
Isomatrix is the base function in the package:

isomatrix(A);

This function reads in a payoff matrix, A, and automatically generates a series of 5 figures,
corresponding to each panel in figure S1:

A quiver & fixed points & total velocity

B fixed points & “regions” plot

C fixed points & subvelocity for strategy 1

D fixed points & subvelocity for strategy 2

E fixed points & subvelocity for strategy 3

An example output for payoff matrix A (eqn. 4) is shown in figure S1. Each of these
functions (quiver plots, fixed points, velocity, and subvelocity) can be plotted separately,
and are explained in the following sections. If the user desires to label the simplex corners,
‘Labels’ is an optional name-value argument:

isomatrix(A,'Labels',{'1','2','3'});

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

Function output for: isomatrix

A. Quiver & Total Velocity B. Regions

C. Type 1 Velocity D. Type 2 Velocity E. Type 3 Velocity

Figure S1. IsoMaTrix’s base function The function, “isomatrix” produces five diagrams derived from the
input payoff matrix, A. (A) A quiver plot (black arrows) shows the phase flow, where the background color
indicates the magnitude of the velocity vector. (B) A “isomatrix_region” plot divides the diagram into regions
of positive or negative growth of each strategy (delineated by the strategy isoclines in white), with the signs
indicated by colorbar. For example green indicates the region where ẋ1 < 0, ẋ2 < 0, and ẋ3 > 0: (-,-,+).
(C,D,E) Strategy velocity magnitude is color-coded by positive (red) or negative (blue) growth of each
strategy, with nullcline shown in black. Pairwise fixed points are also drawn on each edge.

1.2 isomatrix_fixedpoint(A,index)
The fixed point function draws the pairwise interaction lines on each simplex edge. Solid
circles represent stable fixed points while open circles represent unstable fixed points. If
an internal fixed point exists, it is drawn with a square. The function takes as arguments a
3x3 payoff matrix, A and (optionally) an index (integer; default value of 1) indicating the
distance from the simplex edge.

isomatrix_fixedpoint(A);

Other optional name-value arguments are ‘Color’ and ‘Labels.’ Shown in figure S2A

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. isomatrix_fixedpoint() B. isomatrix_quiver()

C. isomatrix_isocline() D. isomatrix_trajectory()

Figure S2. Additional IsoMaTrix Functions (A) Output for “isomatrix_fixedpoint” function displays
pairwise fixed points on each edge (closed circle for stable; open circle for unstable). Interior fixed points are
indicated by a square. (B) Output for “isomatrix_trajectory” function displays trajectories of matrix games.
(C) Output for “isomatrix_isocline” displays the isocline for each strategy. (D) Output for “isomatrix_quiver”
displays velocity vector field for matrix games.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

are the fixed points calculated for A in eqn. 4 (black), AT (red), and 1−A (blue). This plots
fixed point diagrams on each edge, offset by the index value. This can be accomplished with
the following code:

isomatrix_fixedpoint(A,1,'Color',black,'Labels',{'1','2','3'});
isomatrix_fixedpoint(A',2,'Color',red);
isomatrix_fixedpoint(1-A,3,'Color',blue);

1.3 isomatrix_quiver(A)
The quiver function draws the phase flow, with evenly spaced arrows indicating the instanta-
neous velocity direction at each point (fig. S2B, inset). The function takes as an argument a
3x3 payoff matrix A.

isomatrix_quiver(A);

Other optional name-value arguments are ‘Color’ and ‘Labels.’ A schematic of the
resultant arrow is shown inset in figure S2B.

isomatrix_quiver(A,'Color',black,'Labels',{'1','2','3'});
isomatrix_quiver(A','Color',red);
isomatrix_quiver(1-A,'Color',blue);

1.4 isomatrix_isocline(A,id)
The isocline function draws the lines of zero growth (sometimes referred to as nullclines)
for each strategy. Isoclines indicate the bounding line between positive and negative growth:
ẋi = 0. The function takes as arguments a 3x3 payoff matrix A , and a strategy id (between 1
and 3, inclusive). The id indicates the row/column of the strategy for which the isocline is
calculated. If no id is specified, all three isoclines are shown in red, green, and blue.

isomatrix_isocline(A);

Other optional name-value arguments are ‘Color,’ ‘Labels,’ ’LineWidth,’ and ’LineStyle.’
The default setting is a red solid line of thickness 2. An example is shown in figure S2C for
the following output:

isomatrix_isocline(A,1,'Color', red, 'Labels',{'1','2','3'} ...
'LineStyle','-','LineWidth',2);

isomatrix_isocline(A,2,'Color', green);
isomatrix_isocline(A,3,'Color', blue);

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.5 isomatrix_trajectory(A,x0,tF)
The trajectory functions plot one trajectory (or multiple trajectories) of a matrix game from
a specified initial condition,~x0. The initial condition is a n-by-3 array, where each row is a
given initial condition. Replicator dynamics are simulated for tF time-steps, and plotted on
the IsoMaTrix diagram in user-specified color. If no initial condition is specified, trajectories
are shown for initial conditions seeded uniformly across the domain (figure S2D, black
lines) for 50 time-steps. An example single trajectory with user-specified initial condition
is shown in red. Similar to isoclines, other optional name-value arguments are ‘Color,’
‘Labels,’ ‘LineWidth,’ and ‘LineStyle.’

% evenly-distribution initial conditions (black):
isomatrix_trajectory(A);

% specified single initial condition (red):
tF=100;
x0=[0.3,0.3,0.4];
isomatrix_trajectory(A,x0,tF,'Color',red, ...

'Labels',{'1','2','3'});

1.6 isomatrix_region(A)
The region function divides the IsoMaTrix diagram into regions of positive or negative
growth of each strategy (delineated by the strategy isoclines in white). The signs indicated
by colorbar. For example, the blue region in figure S1B indicates the region where ẋ1 < 0,
ẋ2 < 0, and ẋ3 > 0: (-, -, +). This diagram is also generated automatically using the
“isomatrix” function.

isomatrix_region(A);

Other optional name-value arguments are ‘Labels,’ as well as ‘Color,’ ‘LineWidth,’ and
‘LineStyle’ used to specify the isoclines which bound the delineated regions.

1.7 isomatrix_velocity(A,id)
The purpose of this function is to color-code the background of the IsoMaTrix diagram
according to the magnitude of velocity for the replicator dynamics. The function takes as
arguments a 3x3 payoff matrix A , and a strategy id. The id should be an integer (i.e. 1, 2, or
3) to specify which strategy velocity to compute. Velocities are calculated directly from eqn.
1 with blue indicated negative velocities and red indicating positive. If no id is specified, the
magnitude of the resultant velocity, ||v||, of all types is computed:

||v||=
√
(ẋ1)2 +(ẋ2)2 +(ẋ3)2 (5)

An example is shown in figure S3A. Examples of each strategy velocity is shown in figures
S3C,D,E. Here, ‘Labels’ is the lone optional name-value argument.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Total Velocity B. Total Velocity Surface

C. Type 1 Velocity D. Type 2 Velocity E. Type 3 Velocity

F. Type 1 Surface G. Type 2 Surface H. Type 3 Surface

Figure S3. IsoMaTrix Velocity and Surface plot functions (A) The output of “isomatrix_velocity” is
shown for total velocity, which can also be displayed as a 3-dimensional surface plot, (B). (C,D,E) The
velocity plots for each subtype can also be displayed as surface plots, shown in (F,G,H).

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

isomatrix_velocity(A);
isomatrix_velocity(A,1);
isomatrix_velocity(A,2);
isomatrix_velocity(A,3);

1.8 isomatrix_surface(A,id)
This function extends “isomatrix_velocity” diagrams to a 3-dimensional surface plot. The
arguments are identical, taking as arguments a 3x3 payoff matrix A , and a strategy “id” to
specify which subtype velocity to compute. Examples for the following code are shown in
figure S3.

isomatrix_surface(A);
isomatrix_surface(A,1);
isomatrix_surface(A,2);
isomatrix_surface(A,3);

1.9 isomatrix_pairwise(A)
In the case that a user desires to visualize the pairwise fixed points for a payoff matrix of
arbitrary size, this function iterates and displays each pairwise interaction diagram. An
example is shown in figure S4A. Optional name-value arguments are ‘Labels’, and ‘Color.’

isomatrix_pairwise(A);

A. isomatrix_pairwise() B. line_plot()

Figure S4. IsoMaTrix pairwise and line plot functions (A) isomatrix_pairwise iterates through each
pairwise two-strategy interaction and plots fixed points. (B) line_plot plots a trajectory over time.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 IsoMaTrix Helper Functions (MATLAB)
2.1 replicator(t,x,A)
The purpose of this function is to describe the coupled ordinary differential equations (eq. 1
- 2). This function is used for solving trajectories using MATLAB’s ode45 function.

2.2 line_plot(A,x0,tF)
The purpose of this function is plot the matrix game’s trajectory over time on a line plot
(x-axis is time, and y-axis is each strategy’s fraction over time). Here, ‘Labels’ is an optional
argument used for legend entries. The following code was used to produce figure S4B:

tF=100;
x0=[0.3,0.3,0.4];
isomatrix_trajectory(A,x0,tF,Labels',{'1','2','3'});

2.3 add_labels(string)
The purpose of this function is to add labels to the corners of the IsoMaTrix diagram,
indicating the name of each type. It is best practice that these names are a single character
or number. Alternatively labels can be specified as a name-value argument to most of the
other isomatrix functions. This function takes as an argument a cellarray of 3 elements:

labels={'1','2','3'};
add_labels(labels)

2.4 add_gridlines(gridlines)
This function add gridlines to IsoMaTrix diagrams (step size of 1/gridlines), of a specified
color. An example is shown in figure S6B.

add_gridlines(20);

2.5 XY_to_UVW(p)
This function takes in a vector or array of Cartesian coordinates (dimension: 2 by n) and
converts to ternary coordinates.

2.6 UVW_to_XY(x)
This function takes in a vector or array of ternary coordinates (dimension: 3 by n) and
converts to Cartesian coordinates for plotting.

2.7 A_subset(A,types)
The purpose of this function is to plot a three-player subset of a larger payoff matrix. Given
an n by n payoff matrix (n > 3), A_subset will output a 3 by 3 payoff matrix representing

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

the competition values between the types specified in ‘types’ vector. Consider the following
payoff matrix:

A =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 . (6)

For example, consider the following lines of code:

B=A_subset(A,[1,2,4]);

This will produce the following output:

B =

 1 2 4
5 6 8
13 14 16

 . (7)

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 HAL integration with IsoMaTrix (Java)
The spatial games in this software package are simulated using the “Hybrid Automata
Library” (HAL), a Java library developed for use in mathematical oncology modeling21.
IsoMaTrix is bundled with version 1.1.0 of HAL. For installation instructions (and helpful
hints on setting up an IDE for ease of computation) please visit HAL’s website for more
information: http://halloworld.org/.

3.1 Setting up Integrated Development Environment
Brief instructions are enclosed below for setting up a recommended Integrated Development
Environment (IDE) for installing and running HALMatrixGames.

1. Download IsoMaTrix

2. Open Intellij Idea (a) click “Import Project” from the welcome window. (If the
main editor window opens, Navigate to the File menu and click New -> “Project
from Existing Sources”) (b) Navigate to the directory with the unzipped source code
(“IsoMaTrix”). Click “Open.”

3. Intellij will now ask a series of questions/prompts. The first prompt will be “Import
Project,” and you will select the bubble that indicates “Create project from existing
sources” and then click “Next.”

4. The next prompt is to indicate which directory contains the existing sources. Navigate
to the IsoMaTrix folder and leave the project name as “IsoMaTrix.” Click Next.

5. Intellij may alert you that it has found several source files automatically. Leave the
box checked and click Next.

6. Intellij should have imported two Libraries: 1) lib and 2) HalColorSchemes. If these
are not found, you’ll need complete the optional step 10 after setup is complete.

7. Intellij will prompt you to review the suggested module structure. This should state
the path to the “IsoMaTrix” directory. Click next.

8. Intellij will ask you to select the Java JDK. Click the “+” and add the following files:
(a) Mac: navigate to “/Library/ Java/ JavaVirtualMachines/” (b) Windows: navigate to
“C: Program Files Java” (c) Choose a JDK version 1.8 or later

9. Intellij will state “No frameworks detected.” Click Finish.

10. If step 6 failed, you will need to do one more step and add libraries for 2D and
3D OpenGL visualization. Navigate to the File menu and click “Project Structure.”
Click the “Libraries” tab. Use the minus button (-) to remove any pre-existing library
entries. Click the “+” button, then click “Java” and direct the file browser to the
“IsoMaTrix/HAL/lib” folder. Click apply or OK.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.2 HALMatrixGame2D and HALMatrixGame3D
Two nearly identical classes are supplied in the HALMatrixGame java code. HALMa-
trixGame2D simulates matrix games on two-dimensional lattice grids, and HALMatrixGame3D
extends the domain to three-dimensions. To simulate a matrix game, run the main function
of either class.

These two classes on are built in Hybrid Automata Library (HAL)21, as extensions of
AgentGrid2D and AgentGrid3D, respectively. Each lattice point within the grid contains ex-
actly one agent, called Cell2D or Cell3D (extension of HAL’s AgentSQ2D and AgentSQ3D
classes, respectively).

Both of the HALMatrixGame classes utilize the “imitation updating” rule28. At each
time step a randomly chosen cell (the focal cell) updates its strategy to imitate one of
its own neighbors in proportion to fitness. This update rule include the focal cell within
the calculation, so it may ‘imitate’ its own strategy if it is the most fit. The following
specifications are available to the user:

3.3 Fitness Neighborhood
The neighborhood of cells used to calculate the fitness of the focal cell may also be specified.
For example, HAL includes von Neumann neighborhood (nearest 4 neighbors up, left, down,
right) or Moore neighborhood (nearest 8 neighbors which include the von Neumann cells
with diagonals included). These are specified in the following way:

int[]neighborhood=VonNeumannHood(true);

or,

int[]neighborhood=MooreHood(true);

Note: the boolean argument for each is set to true, indicating consideration of the focal cell
in the neighorhood. This is required for imitation updating. Examples are shown in figure
S5.

Von Neumann Moore

Figure S5. HalMatrixGames neighborhoods Fitness is calculated by interactions within the neighborhood
(blue) of the focal cell (red). Two options are a Von Neuman (4 neighbors) and a Moore (8 neighbors).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.4 Deterministic or Stochastic Updating
Deterministic updating selects the most fit individual within the neighborhood and updates
the strategy of the focal cell to match the strategy of the most fit individual. In case of tie, a
randomly selected individual is chosen between those that tie. Stochastic updating updates
according to a probability density function weighted by the fitness of each neighbor. This
option is chosen by specifying the “PROCESS” parameter in java:

public int PROCESS = DETERMINISTIC;

or,

public int PROCESS = STOCHASTIC;

3.5 Population Update Fraction
Each time step, a fraction of the population is selected to undergo the imitation update
replacement process. This parameter is called ‘UPDATE_FRACTION’ and is bounded
between 0 and 1 (inclusive).

public double UPDATE_FRACTION = 1.0;

3.6 SingleSimulation(int timesteps)
The purpose of this function is to simulate the dynamics of a single matrix game on a two- or
three-dimension grid with a specified initial fraction of each substrategy,~x0. The dynamics
are simulated for specified number of timesteps, and can be easily visualized on an IsoMatrix
diagram using the “HAL_isomatrix_trajectory” function (MATLAB).

Note: the data from the simulation in SingleSimulation is saved in the “HALMatrix-
output” folder, in a file called ”HAL_trajectory.csv,” which is automatically utilized when
the HAL_isomatrix_trajectory function is called in MATLAB. If this file is renamed by the
user, it must be re-specified in HAL_isomatrix_trajectory. An example of this function is
shown in “StartHere.java”:

int sideLength = 20;
HALMatrixGame2D matrixGame = new HALMatrixGame2D(sideLength);

// fraction of population
matrixGame.UPDATE_FRACTION = 0.5;
matrixGame.PROCESS = DETERMINISTIC;
matrixGame.payoffs = new double[]{

0.7,0.0,0.7,
0.3,0.4,0.8,
1.0,0.3,0.2};

int timesteps = 100;
matrixGame.SingleSimulation(timesteps);

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.7 MeshGrid(int timesteps, int nSims)
The purpose of this function is to simulate a “meshgrid” of single matrix game simulations
which can later be combined to produce quiver, velocity, uncertainty, and region plots in
IsoMaTrix, in MATLAB. The function takes as arguments a side length (integer), number of
time steps (integer), and number of stochastic simulations per grid point.

The side length is an integer specifying the domain size in 2- or 3-dimensions. Dynamics
are simulated for an evenly distribution of initial conditions (figure S6B). The average
velocity will calculated by subtracting the final state vector,~xF from the initial state vector,
~x0, shown in figure S6C, and described in more detail in the “HAL_isomatrix_quiver”
section.

Note: the data from the simulations in MeshGrid is saved in the “HALMatrix-output”
folder, in a file called ”IsoMaTrixGrid.csv,” which is automatically read into the relevant iso-
matrix functions described in the next section (HAL_isomatrix_quiver, HAL_isomatrix_region,
HAL_isomatrix_trajectory, HAL_isomatrix_velocity, and HAL_isomatrix_uncertainty). If
this file is renamed by the user, it must be re-specified in each of these functions. An example
of this function is shown in “StartHere.java”:

int side_length = 20;
int time_steps = 1;
int nSims = 50;
HALMatrixGame2D model = new HALMatrixGame2D(side_length);
model.MeshGrid(time_steps,nSims);

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

2 3

A. IsoMatrix Diagram from HALMatrixGames

x0

xF

!-σ

!+σ

!

B. MeshGrid Setup C. Directional Uncertainty

Figure S6. HalMatrixGames in IsoMaTrix (A) Schematic of HALMatrixGames visualized on an
IsoMaTrix diagram. (B) MeshGrid Setup. (C) Directional uncertainty of resultant (~xF −~x0) vector, R. The
gray arc shows one standard deviation in each direction: ±σ (see eqn. 9.)

4 Visualizing HALMatrixGames using IsoMaTrix
As mentioned in the previous section, HALMatrixGames generate CSV files interpretable
by IsoMaTrix functions (in MATLAB) to generate corresponding IsoMaTrix diagrams.
The following sections describe the functions used to display quiver, region, velocity, or
uncertainty plots after simulations are performed in HALMatrixGames. A schematic of the
setup is shown in figure S6. HALMatrixGames are initialized for each initial proportion
(S6A, inset two-dimensional lattices), across a meshgrid of initial conditions (S6B). Velocity
can be estimated by the resultant vector which subtracts the initial condition,~x0, from the
final proportion,~xF , after user-specified number of time steps (S6C).

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.1 HAL_isomatrix()
HAL_isomatrix is the canonical function to display results of spatial evolutionary dynamics
on IsoMaTrix diagrams. Example output is shown in figure S7 (with deterministic updating,
update fraction of 1).

HAL_isomatrix();

This automatically generates a series of figures, corresponding to figure S7A-F:

A quiver & total velocity

B quiver & total velocity uncertainty

C “regions” plot

D subvelocity for strategy 1

E subvelocity for strategy 2

F subvelocity for strategy 3

This makes for easy comparison between spatial evolutionary dynamics (figure S7)
and well-mixed, replicator dynamics (figure S1). Optionally, the user may also specify the
isomatrix ‘Labels’ and ‘Filename’ (filename is required if “MESH_GRID_FILENAME” is
changed in StartHere.java).

HAL_isomatrix('Filename','IsomatrixGrid.csv', ...
'Labels',{'1','2','3'});

4.2 HAL_isomatrix_trajectory(color)
This MATLAB function is used to plot the “SingleSimulation” function output onto an Iso-
MaTrix diagram. Optionally, a filepath can be specified to if the “SINGLE_SIMULATION_FILENAME”
is altered from the default (HAL_trajectory.csv).

HAL_isomatrix_trajectory();

or, specifying the optional name-value arguments as follows:

HAL_isomatrix_trajectory('Color',red,'Labels',{'1','2','3'}, ...
'LineWidth', 2,'LineStyle', ':', ...
'Filename', 'HAL_trajectory.csv');

If the file was previously renamed by the user, a new filepath must be specified. If no
color is specified, the trajectory will be black, solid, with linewidth of 2.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

HAL_isomatrix
(Deterministic Update)

A. Total Velocity C. RegionsB. Uncertainty

D. Type 1 Velocity E. Type 2 Velocity F. Type 3 Velocity

Figure S7. HalMatrixGames in IsoMaTrix with the deterministic update rule (A) A quiver plot (black
arrows) shows the phase flow, where the background color indicates the magnitude of the velocity vector. (B)
The same quiver plot, with uncertainty in velocity direction shown by arcs shown by transparent arcs on each
arrow, and uncertainty in velocity magnitude shown by background color. (C) A “region” plot divides the
diagram into regions of positive or negative growth of each strategy, with the signs indicated by colorbar. For
example green indicates the region where ẋ1 < 0, ẋ2 < 0, and ẋ3 > 0: (-,-,+). (C,D,E) Strategy velocity
magnitude is color-coded by positive (red) or negative (blue) growth of each strategy, with nullcline shown in
black.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.3 HAL_isomatrix_quiver(uncertainty_boolean)
This MATLAB function is used to plot the “MeshGrid” function output onto an IsoMaTrix
diagram. As described in the MeshGrid section, simulations are initialized from an evenly
distributed grid (figure S6B). The velocity is estimated by subtracting the initial fraction
from the final fraction,~xF−~x0 for each stochastic simulation in HALMatrixGame (see figure
S6C). The function takes an optional argument of “uncertainty_boolean” which indicates if
the uncertainty cone should be drawn about each quiver arrow, shown in figure S6C (default
value of false).

HAL_isomatrix_quiver(false);

Note: this MATLAB function reads in the “MESH_GRID_FILENAME” (default name
is “IsoMaTrixGrid.csv”) file from the “MeshGrid” of simulations in HALMatrixGames, and
the filepath must be specified if this file is renamed or moved. If no color is specified, the
quiver arrows will be black.

HAL_isomatrix_quiver(false,'Color',black, ...
'Filename', 'IsoMaTrixGrid.csv' , ...
'Labels',{'1','2','3'});

4.4 HAL_isomatrix_velocity(id)
The purpose of this function is to color-code the background of the IsoMaTrix diagram
according to the average velocity of the HALMatrixGames simulations. The function takes
an argument a strategy id (i.e. 1, 2, or 3) to specify which strategy velocity to compute. The
resultant velocity vector is estimated by subtracting the initial fraction from the final fraction,
~xF −~x0 for each stochastic simulation in HALMatrixGame (figure S6C). If no strategy id
is specified, the magnitude of the resultant velocity, ||v||, of all strategies is computed. Let
~R =~xF −~x0 = [R1,R2,R3].

||v||=
√

(R1)2 +(R2)2 +(R3)2 (8)

The following lines of code can be used to produce the background color of figure
S7A,C,D, and E for total velocity, strategy 1, 2, and 3 respectively:

HAL_isomatrix_velocity();
HAL_isomatrix_velocity(1);
HAL_isomatrix_velocity(2);
HAL_isomatrix_velocity(3);

Note: this MATLAB function reads in the “MESH_GRID_FILENAME” (default name
is “IsoMaTrixGrid.csv”) file from the “MeshGrid” of simulations in HALMatrixGames, and
the filepath must be specified if this file is renamed or moved.

HAL_isomatrix_velocity('Filename', 'IsoMaTrixGrid.csv' , ...
'Labels',{'1','2','3'});

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.5 HAL_isomatrix_region()
The purpose of this function is to divide the IsoMaTrix diagram into regions of positive
or negative growth of each substrategy. The signs indicated by colorbar. For example, the
green region in figure S7C indicates the region where ẋ1 < 0, ẋ2 < 0, and ẋ3 > 0: (-,-,+).
The velocity is estimated by subtracting the initial fraction from the final fraction,~xF −~x0
for each stochastic simulation in HALMatrixGame (see figure S6C).

HAL_isomatrix_region();

Note: this MATLAB function reads in the “MESH_GRID_FILENAME” (default name
is “IsoMaTrixGrid.csv”) file from the “MeshGrid” of simulations in HALMatrixGames, and
the filepath must be specified if this file is renamed or moved.

HAL_isomatrix_region('Filename', 'IsoMaTrixGrid.csv' , ...
'Labels',{'1','2','3'});

4.6 HAL_isomatrix_uncertainty(id)
The purpose of this function is to color-code the background of an IsoMaTrix diagram
corresponding to the standard deviation of the magnitude of the estimated velocity vector.
The velocity is estimated by subtracting the initial fraction from the final fraction,~xF −~x0
for each stochastic simulation in HALMatrixGame (see figure S6C. The function takes as an
argument a strategy id. The id should be an integer (i.e. 1, 2, or 3) to specify which strategy
velocity uncertainty to compute. If no strategy id is specified, the magnitude of the resultant
velocity, ||v||, of all strategies is computed (eqn. 8).

HAL_isomatrix_uncertainty();

The uncertainty is the standard deviation of the magnitude of the velocity vector, cal-
culated using MATLAB’s “std” function. This defines the standard deviation of vector,~v,
consisting of i = 1, ...,M stochastic realizations as:

σ =

√
1

N−1

N

∑
i=1
|vi−µ|2, (9)

where µ is the mean:

µ =
1
N

N

∑
i=1

vi. (10)

Note: “HAL_isomatrix_uncertainty” displays the uncertainty of the magnitude of the
velocity vector (i.e. eqn. 8), while the uncertainty in the direction of the resultant vector is
displayed in ”HAL_isomatrix_quiver,” shown in figure S6C.

Note: this MATLAB function reads in the “MESH_GRID_FILENAME” (default name
is “IsoMaTrixGrid.csv”) file from the “MeshGrid” of simulations in HALMatrixGames, and
the filepath must be specified if this file is renamed or moved.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

HAL_isomatrix_uncertainty('Filename', 'IsoMaTrixGrid.csv' , ...
'Labels',{'1','2','3'});

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.170183doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.24.170183
http://creativecommons.org/licenses/by-nc-nd/4.0/

	IsoMaTrix (MATLAB)
	isomatrix(A)
	isomatrix_fixedpoint(A,index)
	isomatrix_quiver(A)
	isomatrix_isocline(A,id)
	isomatrix_trajectory(A,x0,tF)
	isomatrix_region(A)
	isomatrix_velocity(A,id)
	isomatrix_surface(A,id)
	isomatrix_pairwise(A)

	IsoMaTrix Helper Functions (MATLAB)
	replicator(t,x,A)
	line_plot(A,x0,tF)
	add_labels(string)
	add_gridlines(gridlines)
	XY_to_UVW(p)
	UVW_to_XY(x)
	A_subset(A,types)

	HAL integration with IsoMaTrix (Java)
	Setting up Integrated Development Environment
	HALMatrixGame2D and HALMatrixGame3D
	Fitness Neighborhood
	Deterministic or Stochastic Updating
	Population Update Fraction
	SingleSimulation(int timesteps)
	MeshGrid(int timesteps, int nSims)

	Visualizing HALMatrixGames using IsoMaTrix
	HAL_isomatrix()
	HAL_isomatrix_trajectory(color)
	HAL_isomatrix_quiver(uncertainty_boolean)
	HAL_isomatrix_velocity(id)
	HAL_isomatrix_region()
	HAL_isomatrix_uncertainty(id)

