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Abstract 
 
How have complex brains evolved from simple circuits? Here we investigated brain region evolution at 
cell type resolution in the cerebellar nuclei (CN), the output structures of the cerebellum. Using single-
nucleus RNA sequencing in mice, chickens, and humans, as well as STARmap spatial transcriptomic 
analysis and whole-CNS projection tracing in mice, we identified a conserved cell type set containing two 
classes of region-specific excitatory neurons and three classes of region-invariant inhibitory neurons. This 
set constitutes an archetypal CN that was repeatedly duplicated to form new regions. Interestingly, the 
excitatory cell class that preferentially funnels information to lateral frontal cortices in mice becomes 
predominant in the massively expanded human Lateral CN. Our data provide the first characterization of 
CN transcriptomic cell types in three species and suggest a model of brain region evolution by duplication 
and divergence of entire cell type sets. 
 
Introduction 
 
The brains of extant animals are a product of hundreds of millions of years of evolution. Over time, cell 
types diversified (Arendt 2008; Arendt et al. 2016, 2019) and new brain regions appeared, giving rise to 
complex vertebrate brains today. Various models of brain region evolution have been proposed (Tosches 
2017; Chakraborty and Jarvis 2015; Grillner and Robertson 2016; Frangeul et al. 2016). These include the 
duplication of entire regions followed by either divergence (neofunctionalization, supporting new 
functions) or maintenance (isofunctionalization, supporting more of the same function) of the duplicated 
products. Brain regions could also arise by splitting previously multifunctional regions into more 
specialized ones (subfunctionalization), or might evolve from de novo generation and combination of cell 
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types. To our knowledge, however, none of these processes have been demonstrated in vertebrate brain 
evolution at cell type resolution. Doing so requires a comprehensive comparison of cell types across 
regions (Yao et al. 2020) and species (Hodge et al. 2019; Bakken et al. 2020; Boldog et al. 2018; Hodge 
et al. 2020; Tosches et al. 2018; Krienen et al. 2019; Peng et al. 2019; Hoang et al. 2019; Norimoto et al. 
2020; Khrameeva et al. 2020) in a system that contains different numbers of homologous regions in 
different species.  

The cerebellar nuclei (CN) are ideally suited for investigating brain region evolution. The 
cerebellum, consisting of the cerebellar cortex and CN, is an ancient hindbrain structure present in all 
jawed vertebrates (Montgomery, Bodznick, and Yopak 2012). It is classically involved in balance and fine 
motor control but also contributes to cognitive functions (Buckner 2013; Koziol et al. 2014; Wagner and 
Luo 2020). The cerebellum sends almost its entire output through the CN to a large number of target 
regions (Chan-Palay 1977; Teune et al. 2000) (Fig. 1A). Whereas the cerebellar cortex has expanded 
across evolution while maintaining a constant circuit motif (Yopak, Pakan, and Wylie 2016), the CN have 
been more plastic. Jawless vertebrates have cerebellum-like structures considered to be precursors to the 
cerebellar cortex but lack CN (Bell, Han, and Sawtell 2008). By contrast, a single pair of CN can be 
recognized in cartilaginous fishes and amphibians, two pairs in reptiles and birds, and three pairs in 
mammals (Yopak, Pakan, and Wylie 2016; Arends and Zeigler 1991). These findings suggest that the last 
common ancestor of jawed vertebrates had a single pair of CN, and CN numbers have increased in 
amniotes in the process of expanding the cerebellar output channels (Fig. 1B). Remarkably, the Lateral 
CN in humans expanded to be 17× larger than each of the other two nuclei (Tellmann et al. 2015), 
concomitant with the expansion of the prefrontal cortex that preferentially communicates with the lateral 
cerebellum (Bostan, Dum, and Strick 2013). 

Despite their obvious importance in the cerebellar circuit, the CN are poorly understood. Their 
transcriptomic cell types have not been identified in any species, beyond a basic division into excitatory, 
GABAergic, and glycinergic neurons in rodents (Uusisaari and Knöpfel 2013). There have not been 
quantitative brain-wide comparisons of projection patterns of different cerebellar nuclei in any species 
(but see (Teune et al. 2000; Sugihara and Shinoda 2007; Chan-Palay 1977; Gould 1979; Aumann et al. 
1994)), and few CN injections are available in the Allen Connectivity Atlas (Oh et al. 2014). Here, we 
characterize the transcriptomic cell types, spatial organization and CNS-wide projections of the three 
mouse CN, and compare these data to transcriptomic cell types in the two CN of chickens and the three 
CN of humans. We identify an archetypal CN—comprising a deeply conserved, stereotyped cell type 
set—as the unit of CN organization and evolution. 
 
Results 
 
CNS-wide projection mapping reveals shifting projection targets across mouse CN 
Mouse CN are classically divided into three regions: Medial (Fastigial), Interposed, and Lateral (Dentate) 
CN (Fig. 1C; see Table S1 for nomenclature). The Medial CN is considered to be phylogenetically the 
oldest, and the Lateral CN the youngest (Yopak, Pakan, and Wylie 2016). These three nuclei differ in their 
axonal projection patterns (Chan-Palay 1977; Teune et al. 2000) and potentially gene expression (Chung, 
Marzban, and Hawkes 2009). To comprehensively characterize the differences between the individual 
nuclei, we began by comparing their projection patterns. We performed CNS-wide anterograde tracing of 
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each nucleus using AAV8-CAG-tdTomato followed by brain and spinal cord clearing and light-sheet 
imaging (Chi et al. 2018; Ren et al. 2019; Friedmann et al. 2020) (Figs. 1D–H, S1–S9). We aligned all 
brain volumes to the Allen Common Coordinate Framework reference brain, detected axons using a 
custom classification pipeline (see Methods, Figs. 1D, S1) and quantified axonal innervation into 242 and 
246 brain regions in the ipsi- and contralateral hemispheres, respectively (Figs. S7–S9; Table S2).  

We traced 23 brains from 4 injection sites (anterior Medial, posterior Medial, Interposed, and 
Lateral CN). All three nuclei projected extensively to both hemispheres (Teune et al. 2000), innervating 
125±34 and 140±32 (mean ± SD) brain regions in the ipsi- and contralateral hemispheres, respectively. 
Medial and Interposed CN also projected primarily to the contralateral cervical spinal cord (Fig. S6) 
(Asanuma, Thach, and Jones 1983). The brain-wide projection pattern of the Medial CN and in particular 
of the anterior Medial CN (which only has weak thalamic projections; Fig. S2) were most distinct, whereas 
projections of the putatively more recently diverged Interposed and Lateral CN were comparatively more 
similar (Figs. 1F, S7). 

Closer inspection of CN projection patterns revealed cases where the three nuclei innervate 
adjacent brain regions with axons shifted relative to each other (Fig. 1G, H); such shifts were likely an 
underestimate of actual shift due to the spread of anterograde tracers at injection sites. Shifts were apparent 
in the ipsilateral cerebellar cortex (Fig. 1G), where Medial, Interposed and Lateral CN innervated the 
vermis, paravermis, and hemisphere, respectively (Gould 1979), and in the anterior contralateral thalamus 
(Fig. 1G(i)), where Interposed CN innervates regions shifted dorsolaterally relative to Lateral CN 
(matching observations in the rat (Aumann et al. 1994)) and Medial CN innervates regions shifted 
ventromedially (Gao et al. 2018). Other shifts were observed in the ipsilateral brainstem (Fig. 1G(ii)), 
where the three CN innervated adjacent parasagittal stripes, and in the contralateral superior colliculus 
(Fig. 1H), where Interposed CN innervated more posterior regions than the Lateral CN.  

In summary, with the exception that the Lateral CN does not appear to innervate the spinal cord, 
all mouse CN innervate large portions of the CNS in both the ipsi- and contralateral hemisphere. Different 
nuclei innervate grossly similar regions in the thalamus, midbrain, and hindbrain. Their projections, 
however, are often shifted relative to each other such that different nuclei innervate adjacent volumes 
within or across brain region boundaries. Putatively more recently diverged Interposed and Lateral CN 
projections are more similar to each other than to Medial CN projections. 
 
Mouse CN comprise nucleus-specific excitatory neurons and nucleus-invariant inhibitory neurons 
To investigate the molecular basis of the projection differences, we next used single-cell transcriptomics 
to determine the cell type composition of the CN. We separately dissected Medial, Interposed, and Lateral 
CN in each experiment and sorted NeuN+ neuronal nuclei into 384-well plates for high-depth, full-length 
single-nucleus RNA sequencing (snRNAseq; ~1 million aligned reads per cell) using a modified 
SmartSeq2 protocol (Schaum et al. 2018) (Fig. 2A). This strategy ensured relatively unbiased sampling 
of CN neuronal cell types and is directly transferable to frozen brain samples from other species due to 
the conservation of NeuN (Kim, Adelstein, and Kawamoto 2009; Bakken et al. 2018). After quality 
filtering and excluding contaminating cells, we retained high-quality data from 4605 mouse CN neurons.  

Overall, mouse CN neurons separated into 4 broad clusters. Three were Gad1+ (encoding glutamic 
acid decarboxylase) inhibitory neurons. The remaining one was largely Slc17a6+ (encoding vesicular 
glutamate transporter 2, Vglut2) excitatory neurons; however, a small group of neurons within the 
Slc17a6+ cluster was Slc17a6– but Slc6a5+ (encoding glycine transporter 2, Glyt2) and likely glycinergic 
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(Fig. 2B). We speculated that these broad divisions are driven by the developmental origins of excitatory 
and inhibitory CN neurons from the rhombic lip and ventricular zone, respectively (Elsen et al. 2013; Fink 
et al. 2006) (Fig. S10A). To test this, we permanently labeled rhombic lip-derived neurons with tdTomato 
using Atoh1-Cre (Matei et al. 2005) and performed STARmap in situ sequencing (Wang et al. 2018) on 
adult animals to quantify mRNA of various endogenous marker genes and tdTomato (Figs. 2C, S10). We 
found that all excitatory CN neurons were tdTomato+ and therefore derived from the rhombic lip. By 
contrast, all neurons falling into the three Gad1+ clusters were tdTomato– and likely ventricular zone-
derived (Figs. 2C, S10). The exception were the Slc6a5+ neurons within the Slc17a6+ transcriptomic 
cluster (Fig. 2B, asterisk). These putative glycinergic neurons were tdTomato+ and therefore rhombic lip-
derived (Figs. 2C, S10E). Based on their large size and location in the lateral part of the Medial CN (Fig. 
S10B), these cells likely correspond to the previously described large glycinergic projection neurons 
(Bagnall et al. 2009). For simplicity, we hereafter refer to rhombic lip- and ventricular zone-derived cells 
as “excitatory” and “inhibitory”, respectively. 

To understand how neuronal cell types differ across CN, we separately clustered inhibitory and 
excitatory neurons (Figs. 2D, E). Inhibitory neurons showed relatively low diversity and formed 3 classes 
(Table S1). Class 1 and 3 each comprised a single transcriptomic cell type (i1, i3; referred to as cell type 
hereafter), while class 2 comprised one major (i2.1) and two minor (i2.2, i2.3) cell types. All cell types 
were represented across CN without discernible nucleus-specific changes (Figs. 2D, S11A–C). i1 neurons 
were Gad1+Slc6a5–, and likely corresponds to inferior olive-projecting CN inhibitory neurons (Prekop 
et al. 2018). i2.1 and i3 were Slc6a5+ glycinergic neurons. In contrast to the relatively low diversity of 
inhibitory neurons, excitatory neurons formed 15 distinct cell types, each of which was specific to a single 
nucleus (Figs. 2E, S11D, E). Medial CN cell types were most distinct, whereas Interposed and Lateral CN 
cell types were more similar to each other (Fig. 2E), mirroring the projection data (Fig. 1F). While some 
of these cell types can be tentatively matched to previously described morphologically- or 
electrophysiologically-defined cell types (Fig. S12; see also (Fujita, Kodama, and Lac 2020)), the diversity 
uncovered from our study far exceeds previous reports.  

In summary, mouse CN contain 5 nucleus-invariant inhibitory cell types in 3 classes and 15 
nucleus-specific excitatory cell types, all of which can be distinguished by specific marker genes (Figs. 
2F, S13).  
 
Excitatory neurons belong to two classes in each nucleus 
If the three mouse CN arose from a single ancestral nucleus, cell types with a common evolutionary origin 
might exist in the different nuclei (Arendt 2008; Arendt et al. 2016). Such “sibling cell types” should share 
gene expression signatures that form an axis of variation independent of nucleus-specific changes. The 
nucleus-invariant inhibitory cell types found in each CN fulfill these requirements.  

To investigate whether sibling cell types for excitatory neurons also exist, we hierarchically 
clustered all excitatory cell types in the space of differentially expressed genes between them (Fig. 2G). 
This analysis revealed a split of excitatory cell types into two classes, hereafter termed ‘Class A’ and 
‘Class B’ (Table S1). On average, more genes were detected in Class B neurons than Class A neurons, 
hinting that Class B neurons might be larger than Class A neurons (Fig. S11F, G). Further, a large number 
of genes were differentially expressed in Class A and B neurons (Figs. S14, S15), including those with 
cell adhesion (Fig. S14B) and ion channel activity (Fig. S14C) that might contribute to different 
physiological properties of neurons in the two classes. Importantly, both Class A and Class B neurons 
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were represented in each nucleus with 1–3 types each. We therefore consider the excitatory cell types 
within each class as putative sibling cell types to each other. 
 
Each CN subnucleus contains a stereotyped cell type set 
The existence of both Class A and Class B sibling cell types in each nucleus indicates that the CN might 
have evolved through duplication. The finding of more than one Class A or Class B cell type within an 
individual nucleus, however, suggested that the CN are evolutionarily organized into units smaller than 
individual nuclei. Indeed, the mouse CN can each be divided into several subnuclei based on their 
cytoarchitecture (Paxinos and Franklin 2011; Sugihara and Shinoda 2007) (Table S1). To identify the 
relationship between these subnuclei and the CN cell types, we applied sequential STARmap in situ 
sequencing (Wang et al. 2018) to the CN. We detected up to 20 marker genes (Methods, Table S3) chosen 
to distinguish all cell types within each nucleus on coronal sections spanning the anterior–posterior axis 
of the CN (Figs. 3A–F, S16–19). We then classified neurons by cell type based on binarized marker gene 
expression (Fig. 3A, B) and inspected their location. Strikingly, we found that individual excitatory cell 
types were largely confined to cytoarchitecturally defined CN subnuclei: Medial CN is split into Med, 
MedL and MedDL, Interposed CN into IntA and IntP, and Lateral CN remains unsplit (Table S1). Within 
each subnucleus, Class A and Class B neurons were intermingled, albeit with local density differences 
(Figs. 3C–F, S16, S17). In addition, most subnuclei only contained a single excitatory cell type per class, 
and if two cell types from the same class were present in a subnucleus, they were often spatially 
segregated.  

As an example, consider the Interposed nucleus (Figs. 3C–F, S16, S17). Among Class B cell types, 
e13 was restricted to IntP, whereas e11 and e12 were both located in IntA only. However, e11 was located 
only in the most anterior part of IntA, and e12 was located in the more posterior part of IntA. Likewise, 
among Class A cell types, e5 and e6 were restricted to IntP—with e6 located more laterally than e5—and 
e4 was only located in IntA. To reflect these findings, we renamed excitatory cell types to indicate both 
their subnuclear location and class (Fig. 3G).  

Both pairwise correlations between excitatory cell types (Fig. 3H) and hierarchical clustering of 
excitatory neurons grouped by subnuclei (Fig. 3I) revealed consistent relations between subnuclei within 
and across classes. Medial CN subnuclei grouped with each other. Whereas IntP grouped with the Medial 
CN in Class B, IntA was more closely related to Lat. Inspection of differentially expressed genes across 
subnuclei revealed both class-specific, subnucleus-independent (Fig. S14), and class-independent, 
subnucleus-specific gene sets (Fig. S19B). 

In contrast to the subnuclear specificity of CN excitatory neurons, inhibitory neurons were broadly 
distributed across subnuclei (Fig. S18). The only exception was reduced numbers of i1 neurons and 
slightly increased numbers of i3 neurons in Medial CN, mirroring our snRNAseq data (Fig. S11E).  

In summary, spatial transcriptomic analysis indicated a simple organizing principle for the CN. 
Subnuclei are the repeating units that form the CN and cerebellar output channels. Each subnucleus 
contains a stereotyped cell type set: 1–2 types each of Class A and Class B excitatory neurons that are 
subnucleus-specific, and 3 inhibitory classes that are subnucleus-invariant (Table S1). 
 
CN subnuclei as units of evolutionary duplication 
Our mouse data suggest a model of CN evolution wherein a stereotyped cell type set is duplicated over 
the course of evolution to form a new CN subnucleus, accompanied by changes of gene expression and 
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shifts of projection targets for the new subnucleus relative to old ones. To test this model, we investigated 
the transcriptomic cell types of chicken CN. 

Chickens are thought to have two pairs of cerebellar nuclei without the equivalent of the 
mammalian Lateral CN (Fig. 1B) (Feirabend and Voogd 1986; Yopak, Pakan, and Wylie 2016). We 
dissected the entire chicken CN together for snRNAseq as done for the mouse (Fig. 4A). After quality 
filtering and removing contaminating cell types, we retained 1238 high-quality CN neurons. These cells 
split into major groups in a pattern comparable to mouse cells, with one broad group of excitatory neurons 
and two major groups of inhibitory neurons (Fig. 4B). Intriguingly, we could detect only very limited 
SLC6A5 expression, indicating few if any glycinergic cells in the chicken CN. 

To understand CN evolution at the level of subnuclei, we first focused on the excitatory chicken 
neurons and coarsely clustered them (Fig. 4C) based on the observation that mouse excitatory cells 
clustered coarsely by subnuclei (Figs. 2E, 3H). We then built a joint phylogenetic tree of these coarse 
chicken clusters and mouse subnuclei in the space of differentially expressed genes shared across species 
(Fig. 4D; Methods) (Tosches et al. 2018). Mouse subnuclei intermingled with chicken clusters, indicating 
that chicken CN contained regions homologous to mouse Med, MedL/MedDL, and IntP, but not IntA and 
Lat. The chicken CN also included an additional region that fell within the same clade as the mouse 
Interposed/Lateral CN. We term this region IntX. The identification of shared as well as new regions in 
the chicken and mouse support the notion that the CN number increased by the duplication and divergence 
of CN subnuclei. 
 
Excitatory and inhibitory neuron classes conserved across amniotes 
Next, we sought to determine if the above model held at the resolution of cell types; specifically, is the 
distinction between Class A and Class B excitatory neurons in the mouse conserved in the chicken? We 
clustered the chicken excitatory neurons at a higher resolution, aiming to match clustering resolution 
between mouse and chicken data (Methods), and compared them to the mouse excitatory cell types (Fig. 
4E, F). Correlational analysis between mouse and chicken cell types in the space of shared differentially 
expressed genes revealed both Class A and Class B excitatory cells in the chicken, with good 
correspondence to the mouse cell types (Fig. 4F). Importantly, each of the putative chicken CN regions 
identified above (Fig. 4D) contained representatives of both Class A and Class B neurons. We named the 
chicken cell types according to the mouse convention to reflect their inferred subnuclei (Fig. 4D) and class 
membership (Fig. 4F). Chicken Class B cells also had on average more genes detected than Class A cells 
(Fig. S20D, E), suggesting that Class B cells are larger than Class A cells in chickens as in mice. All 
chicken excitatory cell types could be robustly distinguished by differentially expressed genes (Fig. S20F, 
Fig. S21). 

Analysis of chicken inhibitory neurons revealed 5 cell types which, like mouse inhibitory neurons, 
fell into three classes (i1–3, Figs. 4G, S20C). Correlation analysis to the mouse data showed a perfect 
match between the species at the class level (Fig. 4H). At a finer resolution, our data indicate independent 
cell type diversification or loss of ancestral diversity in chickens and mice in classes i1 and i2, respectively. 
Whereas the putatively inferior olive-projecting i1 class comprises three cell types in chickens, only a 
single cell type is found in mice. Conversely, while class i2 contains three cell types in mice, it contains 
only a single type in chickens.  

Taken together, our chicken data indicate the conservation of the previously identified archetypal 
CN subnuclei in both excitatory and inhibitory cell classes. Our findings thus support the proposal that 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.170118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170118
http://creativecommons.org/licenses/by-nc/4.0/


Kebschull et al. 

 7 

amniote CN evolved by repeatedly duplicating an archetypal CN subnucleus composed of a deeply 
conserved cell type set (Fig. 5I, left). 
 
Class B expanded at the expense of Class A in human Lateral CN 
Cerebellar nuclei not only differ in number across vertebrates, but also the size of individual nuclei. The 
dramatic expansion of the human Lateral nucleus is a prime example. This expansion could be the result 
of an even increase in neuron numbers across all cell types, the formation of new subnuclei within the 
Lateral CN by duplication-and-divergence, or the formation of many de novo subnuclei within the Lateral 
CN. To test which model applies, we set out to determine the transcriptomic cell types of the human 
Medial, Interposed, and Lateral CN. We separately dissected the three nuclei from postmortem human 
cerebella and processed them for snRNAseq as done for mice and chickens (Fig. 5A). Importantly, in one 
donor (H1) we dissected and dissociated the entire Lateral CN to evenly sample its neuronal diversity to 
rule out biased cell recovery due to spatial heterogeneity. We obtained 3050 high-quality CN neurons, 
which clustered into 4 major groups, as in the mouse (Figs. 5B, S22, S23).  

Human CN excitatory neurons readily separated by dissection labels (Fig. S22A), mirroring the 
nucleus-specificity observed in the mouse. Due to dissection difficulties of the small Medial CN, we 
collected only a small number of excitatory neurons from this nucleus. We therefore focused our analysis 
on Interposed and Lateral CN (Fig. 5C). We detected five distinct cell types in the Interposed CN. 
Surprisingly, Lateral CN neurons, although by far the largest population collected (206–535 cells per 
donor), formed only a single cluster. We then compared Interposed and Lateral CN excitatory cell types 
from mice and humans using correlation analysis (Tosches et al. 2018) (Fig. 5D) and Seurat data 
integration (Stuart et al. 2019) (Fig. 5E). Both analyses showed that while the human Interposed CN 
contained Class A and Class B neurons, all human Lateral CN excitatory neurons were of Class B, with 
few if any Class A neurons. Importantly, Lateral CN neurons from all donors gave the same result (Fig. 
5E). 

Clustering the inhibitory neurons revealed 5 CN-invariant cell types in 3 classes (Figs. 5F, S22B) 
with perfect correspondence to the mouse inhibitory classes (Fig. 5G). Intriguingly, the Slc6a5– i2.3 cell 
type, which is rare in mice, is much more abundant in humans, reducing the overall abundance of Slc6a5+ 
cells in human CN. Taken together with the absence of Slc6a5+ neurons in the chicken, this suggests that 
glycinergic neurons became abundant in the clade leading to the mouse after the divergence of rodents 
and primates. Hierarchical clustering of all inhibitory cell types in chickens, mice, and humans confirms 
the results of the pairwise comparisons (Figs. 4H, 5G), and supports the classification of CN inhibitory 
neurons into 3 conserved classes (Fig. 5H). 

In summary, the human Interposed CN follows the cell type composition of the archetypal CN. 
However, in the human Lateral CN, Class B neurons are expanded at the expense of Class A neurons, 
suggesting that evolution tuned relative abundance of cell types within the framework of duplicating a 
stereotyped cell type set (Fig. 5I, right). 
 
Lateral nucleus Class A and Class B excitatory neurons preferentially connect via thalamus to 
medial and lateral frontal cortex, respectively. 
To investigate the relevance of the selective expansion of Class B neurons in human Lateral CN, we sought 
to determine how Class A and Class B neurons differ in their brain-wide projection patterns. As cell type-
specific tracing is currently impossible in humans, we performed this analysis in mice, where both Class 
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A and B neurons are abundant in the Lateral CN and high-resolution tracing is possible.  Even in mice, 
however, no Cre lines faithfully distinguishing between the classes are available. We therefore used double 
retrograde tracing combined with STARmap in situ sequencing to identify projection targets of either class 
(Fig. 6A). We found that most target regions labeled both Class A and B neurons roughly equally (data 
not shown), which agrees with collateralization mapping experiments that indicate extremely broad 
projection patterns of CN neurons (Fig. S24). However, contralateral zona incerta (ZI) injections 
preferentially labeled Class A neurons in the Lateral CN, whereas contralateral brainstem reticular nucleus 
(Ret) injections primarily labeled Class B neurons (Fig. 6B). 

To investigate which other brain regions are differentially innervated by Class A and Class B 
neurons, we performed whole-brain collateralization mapping initiated at ZI and Ret (Schwarz et al. 2015). 
We injected AAVretro-Ef1a-Cre into either contralateral ZI or Ret and AAV8-CAG-FLEX-tdTomato into 
the ipsilateral Lateral CN (Fig. 6C), which would specifically label the brain-wide projections of Lateral 
CN neurons projecting to ZI and Ret, respectively. Ret injections labeled a smaller set of Lateral CN 
neurons, with a more restricted projection pattern than ZI-projecting neurons. In many brain regions, 
projections of the Ret-projecting neurons overlapped with those of ZI-projecting neurons (Figs. S25–S27, 
Table S4). However, several regions of the contralateral intralaminar nuclei of the thalamus—including 
paracentral nucleus and central medial nucleus—were more innervated by Ret-projecting neurons than 
ZI-projecting neurons (Figs. 6D, S25C, D).  

As apparent from our retrograde tracing data (Fig. 6B), ZI- and Ret-projecting neurons do not 
perfectly correspond to Class A and B, respectively. Having obtained brain-wide projection probability 
maps for these two populations and knowing the ratio of Class A : Class B labeling from retrograde 
tracing, we could estimate the underlying projection probability maps for Class A and Class B neurons 
(Methods). The resulting computed maps reinforced the previous results of Class B projections to the 
intralaminar thalamus (Fig. 6E), but also highlighted intralaminar regions innervated by non-overlapping 
projections of both Class A and Class B neurons (Fig. 6E(ii)). 

To investigate the relevance of these finer differences in Class A and B projections patterns, we 
first identified the thalamic voxels much more likely to be innervated by Class A than Class B Lateral CN 
neurons, and vice versa. We then used these voxels as starting points for in silico anterograde tracing using 
the recently published Allen Atlas voxel scale connectivity model (Knox et al. 2019), which is essentially 
a brain-wide connectivity matrix at 100 µm voxel resolution inferred from thousands of individual Allen 
Connectivity Atlas injections (Fig. 6F). The resulting projection probability maps revealed specific 
projections from primarily Class B innervated thalamic voxels to a lateral network of frontal association, 
ventral orbital, and insular cortices (Paxinos and Franklin 2011), as well as ventrolateral striatum (Fig. 
6G, S28C, D). Conversely, in silico tracing from primarily Class A neuron innervated thalamic voxels 
revealed relatively broader projections to frontal cortical regions, but with a strong bias towards a medial 
network, including medial prefrontal cortex and anterior cingulate cortex, as well as dorsomedial striatum 
(Figs. 6G, S28A, B). We obtained similar results when we performed the same analysis based directly on 
ZI- and Ret-initiated collateralization maps rather than computed Class A/B projection maps (Fig. S28E–
H), indicating that our results are not an artifact of our inferred Class level projection maps. Class A and 
B CN neurons, therefore, funnel information through the thalamus to different prefrontal networks in the 
mouse. Taken together with the expansion of Class B in the human Lateral CN, and assuming conservation 
of the discovered projection networks, these results suggest that cerebellar connectivity to the lateral 
prefrontal network is preferentially expanded in humans. 
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Discussion 
 
Here we present the first comprehensive dataset describing CN transcriptomic cell types and brain-wide 
projections in mice, as well as transcriptomic CN cell types in chickens and humans. These data reveal a 
conserved cell type set that makes up an archetypal CN unit, which we propose is effectively duplicated 
during evolution to increase the number of CN units—which in mice correspond to cytoarchitecturally 
defined subnuclei—and thus the number of cerebellar output channels. In addition, the predominance of 
Class B excitatory neurons in human Lateral CN indicates that the archetypal CN composition can be 
modified by varying the relative abundance of constituent cell types (Fig. 5I). By addressing how brain 
regions evolve at cell type resolution, our data extend previous studies of the evolution of brain regions 
and cell types. 
 
Subnuclei are the repeating units of the CN 
At the outset of this study, we took advantage of the variations of the number of cerebellar nuclei in 
different species to investigate brain region evolution (Fig. 1B). We discovered instead that the 
fundamental repeating units in the mouse cerebellar nuclei are the subnuclei, each of which is formed by 
the same stereotyped cell type set (Fig. 3). This set contains 1–2 subnucleus-specific excitatory cell types 
each of Class A and Class B neurons, and the 3 classes of subnucleus-invariant inhibitory cell types.  

Interestingly, comparisons of excitatory and inhibitory neurons across neocortical regions also 
suggest a region-specific set of excitatory cell types accompanied by a region-invariant set of inhibitory 
cell types (Yao et al. 2020; Tasic et al. 2018). Developmentally, neocortical excitatory neurons derive 
from the ventricular zone through local radial migration, whereas inhibitory neurons originate from the 
ventral forebrain through long-distance tangential migration (Marín and Rubenstein 2003). Thus, despite 
the opposite migratory paths giving rise to excitatory and inhibitory neurons, the CN and neocortex share 
a similar feature: region-specific excitatory cell types and region-invariant inhibitory cell types.      
 
Brain region evolution by duplication and divergence 
Comparison between mice and chickens revealed that the stereotyped cell type set in subnuclei is deeply 
conserved across amniotes (Fig. 4), and thus likely describes an archetypic cell type composition of the 
CN in the last common ancestor of birds and mammals 320 million years ago. Our data suggest a model 
wherein CN subnuclei increased in number by repeatedly duplicating the entire cell type set—likely 
achieved by a coordinated expansion of cell numbers within all cell types followed by anatomical 
regionalization. Such duplication events were accompanied by divergence in gene expression in the 
excitatory but not inhibitory neurons (Figs. 2–5), and in projection patterns (Fig. 1). On the whole, CN 
evolution is therefore best described as region level duplication and divergence (Fig. 5I, left). At finer 
resolution, however, duplication-and-divergence or neofunctionalization is restricted to rhombic-lip 
derived excitatory neurons, and duplication-and-maintenance or isofunctionalization appears to govern 
the evolution of ventricular zone-derived inhibitory neurons.  

We note that the developmental implementation of such regional “duplications” of a cell type set 
could take a multitude of paths. These include duplication of an early multipotent progenitor (Arendt et 
al. 2016) or establishment of a new region-defining morphogen gradient (O’Leary, Chou, and Sahara 
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2007; Green and Wingate 2014). Analysis of the CN in more species and detailed developmental 
investigations are needed to distinguish these possibilities. We expect that differences in the two 
developmental sources of CN neurons will explain the divergence vs. maintenance of transcriptomic state 
observed for excitatory and inhibitory neurons, respectively. 

At a functional level, the duplication-and-divergence model of CN evolution implies that each CN 
subnucleus should be considered as a modular output node of the cerebellum. Taken together with 
evidence of topographic projections from Purkinje cells to the CN (Buisseret-Delmas and Angaut 1993; 
Sugihara and Shinoda 2007), and the extensively analyzed crystalline cerebellar motif (Ito 2006), this 
finding supports a model wherein specific regions of the cerebellar cortex and their connected CN 
subnuclei act as a functional module in parallel with other such modules (Herzfeld et al. 2017; Ekerot, 
Jörntell, and Garwicz 1995). Increased functionality of the cerebellum across evolution might then be 
implemented by the addition of such cerebellar cortex–CN modules to brain-wide circuits. The recently 
reported control of cerebellar cortex size by excitatory CN neurons (Willett et al. 2019; Fleming and 
Chiang 2015) and control of cerebellar cortex folding by mechanical constraints (Lawton et al. 2019) 
provide a simple mechanism for coordinated evolutionary expansion of CN and cerebellar cortex.  
 
Variations within the duplication-and-divergence framework 
There is considerable variation in the brain region duplication-and-divergence framework proposed above. 
The existence of several representatives of Class A or B cell types in individual CN subnuclei suggests 
within-subnucleus cell type diversification (Fig. 3G). Conversely, varying numbers of cell types per 
inhibitory cell class i1 and i2 in mammals and chickens (Figs. 4, 5H) highlight the possibility of gain of 
new diversity or loss of ancestral diversity that uniformly affects all regions. Individuation of cell types 
after region-level duplication, moreover, can be dramatic, as illustrated by the apparent neurotransmitter 
switch in the rhombic-lip derived, Slc17a6–/Slc6a5+ MedL.Bgly cell type of mouse Medial CN (Fig. 2C).  

Finally, the biased expansion of human Lateral CN illustrates the possibility of drastic changes in 
relative cell type abundance within the archetypal set. In the mouse, Class B neurons of the Lateral CN 
preferentially funnel information into frontal association cortex and lateral orbital and insular regions via 
the thalamus, whereas Class A neurons selectively access a medial network including medial prefrontal 
and anterior cingulate cortex (Fig. 6). The human lateral CN is greatly expanded relative to the other CN 
but it seems to have largely lost the Class A type neurons (Fig. 5). It is tempting to speculate that the 
expansion of human Lateral nucleus in general, and Class B type neurons within it, occurred in concert 
with the expansion of the human frontal cortical regions. We would therefore predict that the homolog to 
mouse lateral frontal cortex is expanded in the human. The precise evolutionary relationships between 
mouse frontal cortical regions and the human frontal cortex, however, are currently unclear (Carlén 2017; 
Laubach et al. 2018). Future comparative transcriptomic and connectomic work on mammalian frontal 
cortex evolution will shed more light on this important question. 
 In conclusion, our studies of the cerebellar nuclei evolution provide strong support for a 
duplication-and-divergence framework for brain region evolution at cell type resolution. Investigations of 
other brain regions using approaches similar to what is outlined here may provide insight into how 
generalizable this framework is, and will deepen our understanding of how brains changed over the course 
of evolution. 
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Materials and Methods 
 
Animal procedures were approved by the Stanford University or the University of California Davis 
Animal Care and Use Committee and were carried out in accordance with NIH standards. We used 8–12 
week old male C57BL/6J mice (Jackson Labs, #000664) for all mouse experiments, except for STARmap 
sequencing of rhombic lip-derived cells (Figs. 2C, S10). For this experiment, we used 8–12 week old male 
Atoh1-cre (Jackson Labs, #011104) × Ai14 (Jackson Labs, #007914) animals. Chicken snRNAseq was 
performed on adult (~20-week-old) male chickens that were the F1 progeny of a Line 6 × Line 7 cross 
from the Avian Disease and Oncology Laboratory (ADOL). Human samples were obtained from Donor 
Network West and were deemed exempt from IRB regulations by Stanford University. Both donor H1 
and donor H2 were 65-year-old white males, and donor H3 was a 39-year-old black female. All died of 
cancer, with no brain involvement.  
 
Sample processing and CN dissection 

Mouse. To dissect mouse CN for snRNAseq, we cut acute coronal slices of the cerebellum 
according to previously described methods (Ren et al. 2011). Briefly, we deeply anesthetized the animals 
with intraperitoneal injection of avertin (300 mg/kg) and transcardially perfused them with 12 mL of ice-
cold oxygenated perfusion solution (225 mM sucrose, 119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 4.9 
mM MgCl2, 0.1 mM CaCl2, 26.2 mM NaHCO3, 1.25 mM glucose, 3 mM kynurenic acid, 1 mM Na-
ascorbate; all from Sigma). We then rapidly decapitated the mice and dissected the brains into ice-cold 
oxygenated slicing solution (110 mM choline chloride, 2.5 mM KCl, 0.5 mM CaCl2, 7 mM MgCl2, 1.3 
mM NaH2PO4, 1.3 mM Na-ascorbate, 0.6 mM Na-pyruvate, 20 mM glucose, 25 mM NaHCO3 saturated 
with 95% O2 and 5% CO2; all from Sigma). We cut 300 µm thick coronal slices of the cerebellum on a 
vibratome (VT1000s, Leica), and collected them in ice-cold slicing solution or room temperature 
oxygenated artificial cerebrospinal fluid (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1.3 mM MgCl2, 1.3 
mM NaH2PO4, 1.3 mM Na-ascorbate, 0.6 mM Na pyruvate, 20 mM glucose, 25 mM NaHCO3, 50 µM 
APV, 20 µM DNQX, 100 nM TTX) (Hempel, Sugino, and Nelson 2007). We then rapidly dissected the 
individual nuclei from all sections containing the CN under a dissection microscope and flash froze 
dissected tissue in a dry ice/ethanol slurry, before storing it at –80 °C. 

Chicken. We killed the adult male chickens by CO2 asphyxiation. We then rapidly dissected the 
cerebellum and flash froze the tissue in liquid nitrogen and stored it at –80 °C. For sectioning, we mounted 
each cerebellum in Optimal Cutting Temperature (OCT, Tissue Tek), and cut roughly coronal sections of 
100 µm thickness on a cryostat (Leica). We then melted these sections onto clean microscope slides and 
rapidly froze the sections again on a metal plate resting on dry ice. We dissected the CN from the frozen 
sections using cold scalpel blades. To achieve dissection without shattering of the tissue, we rested the 
sections on a metal block cooled to approximated –20 °C by freezing 2.25 M CaCl2 (Bryan and Byrne 
1970). Dissected tissue was stored at –80 °C before further processing. 

Human. We obtained intact frozen human cerebella from tissue donors through Donor Network 
West on dry ice. After warming the tissue to –20 °C, we sectioned each cerebellum into 1–2 mm thick 
coronal sections using a manual frozen meat slicer (Garne-T), melted the sections onto large glass slides 
(Ted Pella), and rapidly froze them again on dry ice. We then separately dissected the individual nuclei 
using cold scalpel blades while resting the glass slide on a metal block cooled to –20 °C by freezing 2.25M 
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CaCl2 (Bryan and Byrne 1970). Dissected samples were stored at –80 °C before further processing. For 
all donors, we dissected as much as possible of the Medial and Interposed CN. For Donor H1 we dissected 
the entire Lateral CN, separating dorsal and ventral Lateral CN of one hemisphere, and separately 
dissected small regions of dorsal and ventral Lateral CN from the second hemisphere to test for region-
level differences in cell type composition. For Donors H2 and H3, we dissected the Lateral CN contained 
in one coronal section from the center of the CN. 
 
Tissue processing, FACS, and snRNAseq 
CN samples from the three species were processed largely identically during the production of single 
nucleus suspensions, anti-NeuN staining, fluorescence-activated cell sorting (FACS), and subsequent 
sequencing library generation. We produced single nucleus suspensions and stained them for NeuN 
largely as previously described (Tasic et al. 2018). Briefly, we homogenized the dissected samples using 
an appropriately sized Dounce homogenizer on ice in >1 mL ice-cold homogenization solution [10 mM 
Tris pH 8.0 (Thermo Fisher), 250 mM sucrose (Sigma), 25 mM KCl (Sigma), 5 mM MgCl2 (Sigma), 0.1 
% Triton-X 100 (Sigma), 0.5 % RNasin Plus RNase Inhibitor (Promega), 0.5 % SUPERase-In (Thermo 
Fisher), 1× Protease inhibitor (Promega), 0.1 mM DTT (Thermo Fisher)] per 100 mg of tissue with 15 
strokes of the loose and 15–20 strokes of the tight pestle. The entire dissected sample was homogenized 
together, to avoid biased cell recovery from different regions of the sample. We then gravity filtered the 
suspension through either 30 µm (mouse) or 70 µm (chicken and human) filters and spun it down at 900×g, 
4 °C for 10 minutes. Aliquots of the resulting pellet were flash-frozen in liquid nitrogen and store at –80 
°C for future processing or used directly for staining. We resuspended pellets in staining solution [1× PBS 
(Gibco, pH 7.4), 0.8 % BSA, 0.5% RNasin Plus RNase Inhibitor (Promega), 0.5% SUPERase-In (Thermo 
Fisher)] and nutated them at 4 °C for 15 minutes. We then added mouse anti-NeuN primary antibody 
(Millipore MAB377) to each sample at 1:1000 (mouse) or 1:500 (chicken, human) and incubated the 
samples with agitation at 4 °C for 30 minutes. We pelleted the samples at 900×g, 4 °C for 10 minutes, 
resuspended them in staining solution containing 1:200 PE goat anti-mouse IgG secondary antibody 
(#405307, BioLegend) and 1:1000 Hoechst 33342 (Thermo Fisher) and incubated with agitation at 4 °C 
for 30 minutes. We then pelleted the sample again (900×g, 4 °C, 10 minutes) and resuspended in an 
appropriate volume of staining solution for FACS.  

We used a Sony SH800S FACS machine to select for Hoechst+ NeuN+ neuronal nuclei and sorted 
them into 384-well lysis plates at the “ultrapurity” sort setting. Using index sorting information, we later 
refined the sorting gates to limit the selection to high backscatter events which selectively enriched for 
CN neuronal nuclei of all excitatory and inhibitory classes while removing the much smaller, but 
abundant, contaminating granule cell nuclei in all species. We either sorted positive events directly into 
wells or performed an enriching pre-sort at lower purity settings before resorting these events into wells. 
To avoid batch effects between different cerebellar nuclei of the same species, every mouse and chicken 
plate contained neuronal nuclei from every cerebellar nucleus. Most human H1 plates contained neuronal 
nuclei from every analyzed cerebellar nucleus, except for some plates that contained nuclei only from 
Interposed or Lateral CN. Donor H1 and H2 plates contained largely only Lateral CN neuronal nuclei. 

Lysis plates and library preparation were performed as previously described (Schaum et al. 2018). 
Briefly, each well of the lysis plates contained 0.4 µL lysis buffer [0.5 U Recombinant RNase Inhibitor 
(Takara Bio, 2313B), 0.0625% Triton X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix (Thermo 
Fisher, R0193), 3.125 µM Oligo-dT30VN (Integrated DNA Technologies, 
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5′AAGCAGTGGTATCAACGCAGAGTACT30VN-3′), 1:600,000 ERCC RNA spike-in mix (Thermo 
Fisher, 4456740)]. After sorting, plates were spun down and frozen on dry ice before further processing. 
We performed cDNA synthesis using the Smart-seq2 protocol (Picelli, Faridani, et al. 2014). Plates were 
heated to 70 °C for 3 minutes and cooled to 10 °C to anneal the primers to the mRNA. We then added 0.6 
µL RT-mix [16.7 U µL−1 SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 1.67 U µl−1 
Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67× First-Strand Buffer (Takara Bio, 639538), 1.67 
µM TSO (Exiqon, 5′-AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG-3′), 8.33 mM DTT (Thermo 
Fisher), 1.67 M Betaine (Sigma, B0300-5VL) and 10 mM MgCl2 (Sigma, M1028-10X1ML)] to each well 
using a Mantis liquid handler (Formulatrix). Reverse transcription was carried out at 42 °C for 90 minutes 
and stopped by heating to 70 °C for 5 minutes. We then added 1.5 µL PCR mix [1.67× KAPA HiFi 
HotStart ReadyMix (Kapa Biosystems, KK2602), 0.17 µM IS PCR primer (IDT, 5′-AAGCAGTGGTAT 
CAACGCAGAGT-3′), and 0.038 U µL−1 Lambda Exonuclease (NEB, M0262L)] to each well using the 
Mantis liquid handler and preamplified the cDNA using the following protocol; 1) 37 °C for 30 minutes, 
2) 95 °C for 3 minutes, 3) N cycles of 98 °C for 20 seconds, 67 °C for 15 seconds and 72 °C for 4 minutes, 
and 4) 72 °C for 5 minutes. Mouse nuclei where subjected to N = 25 cycles, and human and chicken nuclei 
to N = 26 or N = 27 cycles.  

We diluted the preamplified cDNA with 10 µL EB buffer (Qiagen) per well and quantified cDNA 
concentration using the Quant-iT PicoGreen dsDNA Assay (Thermo Fisher) on a fluorescent microplate 
reader according to the manufactures instructions in a 25 or 50 µL volume per well. We then diluted the 
amplified cDNA with EB buffer into a new 384-well plate at a concentration of 0.32 ng/µL and a volume 
of 0.4 µL using a Mantis fluid handler and a Mosquito HTS pipetting robot (TTP Labtech).  

We produced Illumina sequencing libraries as previously described (Picelli, Björklund, et al. 
2014). Briefly, we added 1.2 µL of tagmentation buffer (1.33× TAPS buffer (pH 8.5, 5 mM final MgCl2 
concentration, Sigma), 10.67 % m/v PEG8000 (Promega), titrated amount of home-made Tn5 enzyme), 
and incubated at 55 °C for 5 minutes. We neutralized the reaction by adding 0.4 µL of 0.1 % SDS (Sigma) 
to each well. We then amplified and indexed the tagmented samples using Kapa HiFi (not hot start) 
polymerase (KK2102, Kapa Biosystems) and i5 and i7 indexing primers according to the manufacturer’s 
instructions using the following protocol; 1) 72 °C for 3 minutes, 2) 95 °C for 30 seconds, 3) 10 cycles of 
95 °C for 10 seconds, 55 °C for 30 seconds, 72 °C for 1 minute, 4) 72 °C for 5 minutes. After PCR, we 
evenly pooled all wells of any given plate and cleaned up the library using SPRI beads (Beckman Coulter) 
using a dual purification of 0.8× beads followed by 0.8× or 0.7× beads. We quantified the libraries on a 
BioAnalyser (Agilent) and sequenced them using PE100 reads and 2 × 8 bp index reads on a Novaseq 
6000 Sequencing System (Illumina) aiming for 1 million reads per cell. 
 
snRNAseq data processing and clustering 
We aligned demultiplexed sequencing reads to both exons and introns of the relevant genome using STAR 
version 2.5.4 (Dobin et al. 2013) to maximize information per cell (Bakken et al. 2018). Specifically, for 
mice we used the Ensembl 92 annotation of mouse genome GRCm38 to produce a “pre-mRNA” 
annotation file, in which we reannotated ‘introns’ as ‘exons’ and used the STAR --quantMode geneCounts 
flag to count up reads per gene. For chickens, we used the Ensembl 99 annotation of chicken genome 
GRCg6a to produce a separate annotation file containing only introns following the procedures previously 
used in CRIES (https://github.com/csglab/CRIES). We aligned all reads using STAR to the chicken 
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genome, using the exonic gtf file as guidance, and then counted reads in intronic and exonic regions using 
HTseq 0.10.0 using the --union and --intersection-strict flags with the intronic and exonic gtf files, 
respectively. For analysis, we combined the two read matrices. For human data we followed the same 
procedure as for chickens, using the Ensembl 94 annotation of GRCh38. The different alignment strategies 
gave comparable results with slightly increased numbers of genes detected in the separate alignment case. 

For snRNAseq data analysis, we largely followed standard procedures for filtering, variable gene 
selection, dimensionality reduction and clustering using Seurat v3 (v3.0.0 for mouse snRNAseq 
clustering; v3.1.5 for chicken and human, and all comparisons) (Stuart et al. 2019). Briefly, we read in the 
read ´ cell matrices obtained from HTseq into Seurat v3, filtered out cells with <500 genes (mice) or 
<2000 genes (human) detected, selected the 2000 most variable genes using the ‘vst’ method, calculated 
principal components and performed graph-based clustering. At this stage, we removed clusters of bad 
quality cells (low reads), non-neuronal clusters (low Snap25/SNAP25 expression), and doublet clusters. 
We removed clusters of contaminating neuronal cell types by known marker expression (e.g. Etv1/ETV1 
expression in granule cells) and via Seurat v3 alignment to the recently published cell type atlas of mouse 
cerebellar cortex (Kozareva et al. 2020). We also removed very small, very distinct clusters (< 20 cells). 
In the chicken inhibitory cells, we removed two outlier clusters based on their lack of GRM1 expression, 
which is universal to all CN inhibitory clusters in the mouse, and all other chicken inhibitory clusters. 

We then separately analyzed and clustered each of the major groups of CN neurons in each of the 
species. Specifically, in the mouse, we separately clustered excitatory cells, i1 cells, and glycinergic cells 
(i2.1, i2.2, i2.3, i3, e9*/MedL.Bgly). In the chicken, we separated inhibitory and excitatory cells. For low-
resolution clustering (Fig. 4C) of the excitatory cells, we considered them all together.  For higher 
resolution clustering (Fig. 4E), we separately clustered low-resolution clusters 3, 5, and the remaining 
clusters. Each round of clustering proceeded in the same way. Briefly, we selected the 2000 most variable 
genes, regressed out FACS round and the number of detected genes, and calculated a set of truncated PCs, 
which are composed of only the top 40 or 60 genes (Su et al. 2018). We selected the set of relevant PCs 
based on Elbow plots, JackStraw procedure, and manual inspection of PC loadings. We then intentionally 
over-clustered the cells using the Seurat Louvain clustering algorithm (resolution of 2 for mouse and 
human, resolution of 3 for chicken) and joined similar clusters using the Allen Institute’s scratch.hicatt 
package ‘merge_cl’ function using the following parameters; padj.th = 0.05, lfc.th = 1, low.th = 1, q1.th 
= 0.4, q.diff.th = 0.6, de.score.th = 40. This was necessary to allow for both small and large clusters in the 
same cell grouping, as pure Louvain clustering tended to merge distinct but much smaller clusters to 
neighboring larger clusters or split homogenous larger clusters into very similar small clusters. Differential 
gene expression was calculated using the default Wilcox rank-sum test. 

Donor batch effects in the human dataset forced slight variations in this procedure. For human 
inhibitory cells, we used the Seurat data integration feature to integrate across FACS sessions (and the 
correlated donor structure), before proceeding with the pipeline described above. We note here that 
analysis of individual donors gave similar results as the integrated analysis. For excitatory cells, we largely 
analyzed each donor separately as described above, but integrated across them and mice using Seurat v3 
for Fig. 5E. 
 
Hierarchical clustering of cell types and cross-species correlation analysis 
For hierarchical clustering analysis of cell types and cross-species correlation analysis, we broadly 
followed procedures established in (Tosches et al. 2018). For hierarchical clustering within a species, we 
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proceeded as follows. We first identified the set of differentially expressed genes between all cell types 
using a Wilcox Rank Sum test, requiring a minimum fold change of 2 and an adjusted p-value < 0.01. We 
calculated the average expression of these genes for every cell type and normalized expression of each 
gene by its average expression across cell types. We then hierarchically clustered the cell types using a 
Spearman correlation distance metric and average linkage criterion. Multilevel bootstrapping was 
performed as implemented in the R package pvclust with 10,000 steps (Suzuki R and Shimodaira H 2006). 
Bootstrapping confidence was returned as Approximately Unbiased p-value × 100, which gives a 
corrected estimate of how many trees out of 100 bootstrapped trees contained the same leaves below the 
respective node.  

For cross-species analysis, we considered only one-to-one orthologous genes as defined by 
Ensembl. Within each species, we identified and normalized differentially expressed genes as above and 
then took the intersection of differentially expressed genes across species as a basis for further analysis. 
We either hierarchically clustered the cell types using a Spearman correlation distance metric as above 
(e.g. Figs 4D, 5H), or calculated Spearman correlation coefficients for all cross-species cell type pairs 
(e.g. Figs. 4F, 4H, 5D, 5G), and sorted the rows and columns of this matrix by hierarchical clustering 
using a Spearman correlation distance metric. We assessed the significance of cross-species correlations 
by shuffling the expression value of every gene between analyzed cell types 10,000 times, and computing 
the likelihood of obtaining a correlation coefficient as extreme or more extreme than the observed one. 
Correlations with p < 0.05 were labeled with a dot in the correlation matrix. 

We note here that the clustering resolution/criterion in one species will to some extent influence 
the meaning of the resulting hierarchical clustering or correlation matrix by defining the gene space in 
which clustering or correlations are calculated. Consider the largely independent axes of variation of 
excitatory cell types by class and CN subnuclei. Mouse excitatory cell types hierarchically cluster first by 
class then by CN subnuclei (Fig. 2G). In contrast, chicken excitatory cell types cluster first by subnuclei, 
and then by class (Fig. S20G). Nevertheless, the correlation matrix between mouse and chicken excitatory 
cell types is dominated by the class level split, with CN subnuclei level correlations discernible at finer 
clustering resolutions. In this manuscript, we use this property to our advantage when we know more 
about one species than the other, like when comparing the coarse clustering of chicken excitatory neurons 
to mouse CN subnuclei (Fig. 4D). By clustering mouse excitatory cells by their STARmap defined CN 
subnuclei of origin, we shape the space of comparison towards genes that distinguish subnuclei (rather 
than by classes), helping us to define CN subnuclei in the chicken.  
 
STARmap in situ sequencing 
We performed STARmap in situ sequencing largely as described in (Wang et al. 2018) using the thin 
section protocol, combined with the sequential gene readout presented in (Wang et al. 2018) for thick 
sections (i.e. every base in every sequencing round encodes one gene). 

Gene sets. We manually selected various gene sets based on our snRNAseq data to distinguish 
CN cell types (Table S3). Taking into account cytoarchitectonic divisions between Medial, Interposed and 
Lateral CN, a minimum core set of 12 genes (Slc17a6, Gad1, Slc6a5, Acan, Sv2c, Slc6a1, Ankfn1, Penk, 
Stac2, Calb2, Kitl, Sez6; Fig. S9) was needed to distinguish all mouse CN cell types (except for i2.2). We 
designed gene-specific snail probes exactly as previously described (Wang et al. 2018). Probes were 
ordered as oPools oligo pools from IDT. For sequencing, we used seven 11 nucleotide orthogonal reading 
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probes (OR1–7) and four 1-base fluorescent probes (1base_F1 to 1base_F4) labeled with Alexa 488, 594, 
674 and 750, respectively (IDT). All sequences can be found in Table S3. 

Sequential STARmap protocol. We performed STARmap library preparation as previously 
described (Wang et al. 2018) with minor modifications.  

Tissue prep. Briefly, we deeply anesthetized a mouse with Isofluorane, then rapidly decapitated it, 
dissected out the brain, and froze it embedded in OCT (Tissue Tek) on dry ice. We then cut 16-µm sections 
on a cryostat and mounted them in 12- or 24-well glass-bottom dishes (P12G-1.5-14-F or P24G-1.5-13-
F, Mattek) that were previously coated with Bind-Silane (GE17-1330-01, Sigma) followed by Poly-L-
Lysine (P8920-100ML, Sigma) according to the manufacturer’s instructions. We fixed the sections in 4 
% Paraformaldehyde (Electron Microscopy Sciences) for 10 minutes at room temperature, washed them 
3 times in PBS, and permeabilized them in methanol precooled to –20 °C at 4 °C for 15 minutes and at –
80 °C for a minimum of 20 minutes, and for long term storage.  

Library prep. For library preparation, we heated snail probes dissolved at 100 µM in RNase free 
H2O to 90 °C for 3 minutes, and let them cool to room temperature for approximately 10 minutes. We 
removed the samples from –80 °C freezer, and let them come to room temperature, before rehydrating 
them in PBSTR [1× PBS (Gibco), 0.1 % Tween-20 (Calbiochem), 0.1 U/µL SUPERase-In (Thermo 
Fisher)] for 2 minutes. Samples were then incubated in hybridization mix [10 nM of each oligo, 2×SSC 
(Sigma), 10 % formamide (Calbiochem), 1 % Tween-20, 20 mM RVC (NEB), 0.1 mg/mL salmon sperm 
DNA (Thermo Fisher)] with agitation at 40 °C overnight. We then washed the samples in PBSTV (1× 
PBS, 0.1 % Tween-20, 2 mM RVC) at room temperature for 2 × 20 minutes, and in 4× SSC in PBSTR at 
37 °C for 20 minutes. We rinsed the sample once in PBST (1x PBS, 0.1 % Tween-20) and incubated it in 
T4 DNA ligation mixture [0.1 U/µL T4 DNA ligase (EL0011, Thermo Fisher), 1× ligase buffer, 0.1 
mg/mL BSA, 0.2 U/µL SUPERase-In] with agitation at room temperature for 2 hours. After washing the 
samples in PBSTR at room temperature for 2 × 20 minutes, we incubated the samples in RCA mixture [2 
U/µL Phi29 (EP0094, Thermo Fisher), 1× Phi29 buffer, 250 µM dNTP, 0.1 mg/mL BSA, 0.2 U/µL of 
SUPERase-In, 20 µM 5-(3-aminoallyl)-dUTP] at 30 °C for 4 hours. We then washed the samples in PBST 
at room temperature for 2 × 20 minutes and treated them with 20 mM acrylic acid NHS ester (Sigma; from 
fresh 0.5 M stock in DMSO) in PBST at room temperature for 2 hours. Samples were then stored overnight 
in PBSTR at 4 °C. We washed the sample in PBST briefly and incubated it in monomer buffer [4 % 
acrylamide (BioRad), 0.2 % BIS-acrylamide (BioRad), 2× SSC] at room temperature for 30 minutes. We 
removed the monomer buffer and added 12 µL polymerization solution (0.2 % ammonium persulfate, 0.2 
% tetramethylethylenediamine in monomer buffer) to the center of the section, and rapidly covered it with 
a GelSlick (Lonza) coated 12 mm coverslip, taking care to remove any bubbles under the coverslip. We 
allowed the sample to polymerize for 1 hour at room temperature and then washed the sample in PBST 2 
× 5 minutes, removing the GelSlick coverslip with forceps without disturbing the sample. We then 
digested the sample in digestion mix [0.8 mg/mL ProteinaseK (Thermo), 2× SSC, 1 % SDS] with agitation 
at 37 °C for 1 hour to overnight and finally washed the sample in PBST for 3 × 5 minutes. 

Sequencing. We incubated the sample in sequencing mixture (0.1 U/µL T4 DNA ligase, 1× ligase 
buffer, 0.1 mg/mL BSA, 5 µM orthogonal reading probe, 0.25 µM 1base_F1 through F4 each) with 
agitation at room temperature for 3 hours to overnight, followed by washing in Washing&Imaging buffer 
(2× SSC, 10 % formamide) for 3 × 10 minutes. During the second wash, we added 1:1000 DAPI (Thermo). 
We imaged the samples using a 20× air objective on an Andor Dragonfly 500 spinning disk confocal, 
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recording DAPI, 488, 594, 647, and 750 channels in z-stacks with 3 µm spacing. Samples were tiled and 
automatically stitched together with a 10 % overlap between tiles. After imaging, we stripped the samples 
by incubation in stripping buffer (80 % formamide, 0.1 % triton-X100) with agitation at room temperature 
for 3 to 4 × 10 minutes, followed by three 5 minute washes in PBST before the next sequencing round.  

After the last round of sequencing and stripping, we incubated the samples with NeuroTrace 
530/615 Red Fluorescent Nissl Stain (Thermo Fisher) at a 1:100 dilution in PBST at room temperature 
for 1 hour and washed 3 × 10 minutes in Washing&Imaging buffer, before acquiring images of the Nissl 
and DAPI channels for cell segmentation. 

Data processing. We began data processing by producing maximum z-projections of each 
acquired dataset, which was made feasible due to the low density of neurons in the CN. We next registered 
data sets across sequencing and Nissl rounds using the DAPI channel and the Fiji “Register Virtual Stack 
Slices” plug-in and cropped images to the union of all rounds using custom Fiji scripts. We fed cropped 
images of the sequencing rounds into the spacetx starfish pipeline (https://github.com/spacetx/starfish; 
pulled from Github at version alpha 2) for spot/rolony calling using DetectSpots.LacalMaxPeakFinder 
and decode_per_round_max (min_distance = 2, stringency = 0, minimum object area = 4, maximum object 
area; code can be found on https://github.com/nbingo/starmap-spacetx). In parallel, we trained a pixel-
level classifier in ilastik (Berg et al. 2019) on the Nissl images to classify pixels into “Nissl” and 
“background”, and applied this classifier to all Nissl images. We fed the resulting ilastik “Nissl” 
probability maps into a custom Fiji macro, which smoothed the input, applied a threshold, filled holes, 
and applied a watershed algorithm to segment individual cells. Finally, we combined the segmented cells 
and starfish identified rolonies in MatLab (R2018b, Mathworks) to generate a cell × gene counts matrix. 
To avoid noise from incomplete stripping or cross-reactivity between sequencing rounds, we set a 
minimum signal intensity which a rolony had to exceed to be counted. Note that this cutoff is channel-
dependent, as e.g. the 730 channel is weaker than the 647 channel independent of the gene probed for. 

Cell type calling. Using the Nissl images as a guide, we defined Medial, Interposed, and Lateral 
CN in every section. To call cell types within each thus defined nucleus we binarized gene expression into 
“on” and “off” using a general threshold across all genes but fine-tuned this threshold for individual very 
highly or lowly expressed genes. We then defined cell types by logical combinations of binarized marker 
genes, guided by snRNAseq data. Generally, we first divided the population of excitatory cells into Class 
A or Class B cells and then identified individual cell types within these classes using additional marker 
genes. Cells that expressed either Slc17a6 or Gad1/Slc6a6 but did not match a specific cell type were 
labeled as unassigned. 
 
Viral injections 
We performed stereotaxic surgeries and viral injections using standard procedures. Briefly, we 
anesthetized mice using 1–2 % isoflurane and placed them in a stereotaxic apparatus (Kopf Instruments). 
We pressure injected AAV virus into specific brain regions at a rate of 3–5 nL/sec using a UMP3 
UltraMircoPump (World Surgical Instruments).  

For anterograde tracing (Fig. 1) we injected 150 nL AAV8-CAG-tdTomato (UNC gene therapy 
stock vector, Boyden lab Control Vector) into a single site per mouse. We used the following coordinates 
in the right hemisphere (all relative to lambda); anterior Medial CN: –1.83 mm AP,  0.6 mm ML, 3.3 mm 
DV (N = 5 mice); posterior Medial CN: –2.18 mm AP, 1.0 mm ML, 3.2 mm DV (N = 5 mice); Interposed 
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CN: –1.83 mm AP, 1.0 mm ML, 3.4 DV (N = 6 mice); Lateral CN: –1.4 mm AP, 2.45 mm ML, 3.7mm 
DV (N = 7 mice).  

For collateralization mapping (Fig. 6C, D) we injected 150 nL of AAV8-CAG-FLEX-tdTomato 
(UNC gene therapy stock vector, Boyden lab Control Vector) into the right Lateral CN (–1.4 mm AP, 2.45 
mm ML, 3.7mm DV from lambda) and 150 nL AAVretro-Ef1a-Cre (Salk vector core, Addgene #55637) 
into either left zona incerta (–2.03 mm AP, 2.0 mm ML, 4.0 mm DV from bregma, N = 3 mice) or left 
brainstem reticular nuclei (parvocellular reticular nucleus, –2.18 mm AP, 1.3 mm ML, 5.5 mm DV from 
lambda, N = 2 mice; –2.78 mm AP, 1.3 mm ML, 5.5 mm DV from lambda, N = 1 mouse). The center of 
each retrograde injection site was permanently labeled with co-injected red retrobeads (Lumafluor).  

For collateralization mapping as shown in Fig. S24 we injected 5 × 200 nL of AAV8-CAG-FLEX-
tdTomato (UNC gene therapy stock vector, Boyden lab Control Vector) into the CN at 5 locations (–1.83 
mm AP, 0.6 mm ML, 3.3 mm DV; –1.83 mm AP, 1.5 mm ML, 3.4 mm DV; –1.83 mm AP, 2.0 mm ML, 
3.4 mm DV; –1.4 mm AP, 2.45 mm ML, 3.7 mm DV; –2.18 mm AP, 1.0 mm ML, 3.2 mm DV; all from 
lambda). Per animal, we then injected ~200 nL AAVretro-Ef1a-Cre (Salk vector core, Addgene #55637) 
into one site contralateral to the CN injections. Coordinates for these injections are as follows. VL 
thalamus: –1.07 mm AP, 1.25 mm ML, 3.5 mm DV from bregma; CM thalamus: –1.43 mm AP, 0 mm 
ML, 3.6 mm DV from bregma; Superior colliculus: –3.27 mm AP, 0.5 mm ML, 1.5 mm DV from bregma; 
Red nucleus: –3.5 mm AP, 0.6 mm ML, 3.6 mm DV from bregma; Pontine nuclei: –3.9 mm AP, 0.6 mm 
ML, 5.6 mm from bregma; Vestibular nuclei: –1.5 mm AP, 1 mm ML, 4 mm DV from lambda; Vermis: 
–1.5 mm AP, 0 mm ML, 1.25 mm DV from lambda; Crus 1: –1.5 mm AP, 3 mm ML, 2.5 mm DV from 
lambda; Spinal cord: injection between C1 and C2, at 0.8 mm and 0.25 mm depth. 

For retrograde tracing followed by STARmap (Fig. 6A, B) we injected 150 nL of AAVretro-Ef1a-
FlpO (Salk vector core, Addgene #55637) or AAVretro-Ef1a-Cre (Salk vector core, Addgene #55636) 
into right zona incerta (–2.03 mm AP, 2.0 mm ML, 4.0 mm DV from bregma, N = 2 mice per virus) and 
150 nL of an AAVretro:Ef1a:mycH2B virus (packaged by Stanford Virus Core) with one of two variable 
3’UTRs into the right parvocellular reticular nucleus (–2.18 mm AP, 1.3 mm ML, 5.5 mm DV from 
lambda, N = 2 mice per virus), resulting in an N = 4 independent mice with dual injections into zona 
incerta and parvocellular reticular nucleus. 

All viruses were allowed to express for a minimum of three weeks before proceeding with 
experiments. 
 
Brain clearing, whole-brain imaging, and quantification 
Brain clearing and imaging. For all whole-brain tracing experiments, we transcardially perfused mice 
with 20 mL 1× PBS (Thermo) containing 10 µg/mL Heparin (Sigma Aldrich), followed by 20 mL 4% 
paraformaldehyde (Electron Microscopy Sciences) before removing each intact brain, as well as (for Figs. 
1, S1-S9, S24) the spinal cord (treated as a brain in what follows) and postfixing at 4 °C overnight. The 
clearing protocol was largely performed as previously described (Chi et al. 2018; Ren et al. 2019). Briefly, 
we washed postfixed brains at room temperature in PBS for 3 × 1 hour and then dehydrated them in an 
ascending methanol gradient [20/40/60/80/100/100 % methanol in B1n buffer (0.1 % Triton-X100, 0.3 M 
glycine, 0.001 % 10N NaOH)] for 1 hour per step. We delipidated the brains by overnight incubation in 2 
: 1 mixture of dichloromethane (Sigma) and methanol, followed by a 1 hour incubation in 100 % 
dichloromethane. After three washes in 100 % methanol (30 minutes, 45 minutes, and 1 hour long) we 
bleached the brains in a 5 : 1 mixture of methanol : 30 % H2O2 (Sigma) for 4 hours at room temperature, 
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and rehydrated the brains in a reverse methanol : B1n gradient (80/60/40/20 %, 30 minutes each). We then 
washed the brains in B1n buffer for 1 hour and permeabilized them with two washes in PTxwH buffer (1× 
PBS, 0.1 % Triton-X100, 0.05 % Tween-20, 2 µg/mL heparin, 0.02% NaN3) containing 5 % DMSO and 
0.3 M glycine for 1 and 2 hours. We washed the brains in PTxwH overnight and performed primary 
antibody labeling using a rabbit polyclonal anti-RFP antibody (Rockland #600-401-379) at 1:500 in 
PTwxH at 37 °C for 10 days. We then washed the brains in PTxwH at 37 °C for three days with regular 
buffer changes and performed secondary antibody labeling using AlexaFluor647 donkey anti-rabbit 
polyclonal antibody (A-31573, Thermo Fisher) at 1:1000 in PTwxH at 37 °C for 8 days. We then washed 
the brains in PTwxH at 37 °C for 2.5 days, followed by 2.5 days at 37 °C in PBS. After this washing, we 
embedded the spinal cords in 2 % low melting point agarose (Sigma) and proceeded with clearing the 
brains in an ascending methanol : H2O gradient (20/40/60/80/100 %, 30 minutes each) at room temperature 
followed by two additional washes in 100 % methanol (1 hour and 1.5 hours each). We then incubated the 
brains in a 2 : 1 dichloromethane : methanol mix overnight, followed by three washes in 100 % 
dichloromethane (30 minutes, 1 hour, 1.5 hours). Finally, we cleared the brains in 100 % dibenzylether, 
switching the brains to fresh dibenzylether for long term storage after 4 hours. 

We imaged brains and spinal cords at least 24 hours after clearing on a LaVision Utramicroscope 
II light-sheet using a 2× objective and a 3 µm step size taking horizontal optical sections through the brain, 
with the ventral side facing up. We physically trimmed off the olfactory bulbs and frontal cortex to fit the 
brain into the field of view of the microscope and imaged the entire remaining brain volume except for 
the most dorsal and lateral regions of the cerebral cortex. Note that the CN do not project to the trimmed 
regions. This procedure, therefore, did not result in a loss of projection data. Antibody signal was collected 
in the 647 channel with 28 horizontal focusing steps to homogenize z-resolution across the field. The 
autofluorescence signal and retrobead injection site signal were collected in the 488 and 561 channel, 
respectively, without horizontal focusing. 

Axon quantification. We classified axons in our whole-brain imaging datasets using a hybrid 
strategy using the 3D U-Net convolutional network TrailMap (Friedmann et al. 2020) and an ilastik pixel-
level classifier (Berg et al. 2019). After adjusting pixel values by multiplication with a scalar to match the 
background levels seen in the TrailMap training dataset, TrailMap was very good at detecting most axons 
but missed axons and fiber bundles with the highest signal-to-noise ratio. We, therefore, trained a simple 
ilastik pixel-level classifier to detect these very bright axons and combined the TrailMap and ilastik 
probability maps by a maximum operation. The resulting hybrid probability map faithfully captured CN 
axons in our data sets. 

We then aligned the autofluorescence channel of our brains to the Allen Institute’s Common 
Coordinate framework (Renier et al. 2016) using elastix (Klein et al. 2009). As reference brain, we used 
a custom version of the Allen STP reference brain at 25 µm resolution in which we changed the pixel 
values of all fiber tract annotated regions to be bright (as they are in Adipocleared brains), rather than dark 
(as they are in serial 2-photon tomography), which greatly improved alignment in the brainstem and where 
ever axon bundles closely abutted the (always dark) regions outside the brain. We applied the same 
transformation to the detected axon volumes returned by the TrailMap/ilastik pipeline, thresholded the 
probability maps, and quantified the number and density of axonal voxels in each annotated brain region 
in Matlab normalizing each brain to the total number of axon containing voxels (R2018b, Mathworks). In 
this analysis, we ignored the incompletely imaged isocortex and striatum, as well as any voxels in the 
‘root’, fiber tract, corpus callosum, and ventricle annotation. In some brains, we observed spurious, sparse 
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innervation of the ipsilateral cortex and deep layers of the contralateral cortex, as well as innervation of 
the claustrum. These projections are likely caused by virus leak along the cerebellar peduncle out of the 
CN. As a result, we removed the spuriously innervated claustrum from our analysis. In the ipsilateral 
hemisphere, we further removed the CN as the injection sites. In total, we quantified 242 and 246 brain 
regions in the right and left hemispheres, respectively. 

To produce brain-wide projection heat maps, we thresholded the aligned TrailMap/ilastik output 
at 25 µm resolution from all replicate brains, and normalized each brain by the total number of axonal 
voxels. We then summed all brain volumes and divided each voxel by the number of summed brains. 
Finally, we smoothed the output by a 9 voxel box filter. No voxels except for ventricles (which contained 
distracting background signal) were blanked. 

To derive the projection probability maps of Lateral CN Class A and Class B neurons, we first 
derived probability maps of zona incerta and reticular nucleus projecting Lateral CN neurons. We summed 
the aligned and thresholded TrailMap/ilastik output at 25 µm resolution from all replicate brains, divided 
voxel values by the number of summed brains, and smoothed the output by a 9 voxel box filter. No voxels 
except for ventricles (which contained distracting background signal) were blanked. We then assumed 
that 𝑃(𝑍𝐼	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑛𝑔) = 𝑥𝑃(𝐶𝑙𝑎𝑠𝑠𝐴) + (1 − 𝑥)𝑃(𝐶𝑙𝑎𝑠𝑠𝐵) and conversely, 𝑃(𝑅𝑒𝑡	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑛𝑔) =
𝑦𝑃(𝐶𝑙𝑎𝑠𝑠𝐴) + (1 − 𝑦)𝑃(𝐶𝑙𝑎𝑠𝑠𝐵), where 𝑥 = #	@ABCC	D	EFAAC	ABGFAFH	GI	JK	LMNFEOLPM

OPOBA	EFAAC	ABGFAFH	GI	JK	LMNFEOLPM
 and 𝑦 =

#	@ABCC	D	EFAAC	ABGFAFH	GI	QFO	LMNFEOLPM
OPOBA	EFAAC	ABGFAFH	GI	QFO	LMNFEOLPM

. Importantly, we can determine 𝑥 and 𝑦 from the retrograde STARmap 

experiments. Deriving 𝑃(𝐴)	and 𝑃(𝐵) is then simply a question of solving a quadratic equation. This 
derivation assumes homogeneous projection probabilities to zona incerta and brainstem reticular nuclei 
within the population of lateral CN Class A and Class B neurons.  
 
Second-order projection tracing in silico  
To determine the brain-wide projections of thalamic voxels innervated primarily by Class A or Class B 
Lateral CN neurons, we used the Allen voxel scale connectivity model (Knox et al. 2019) 
(https://github.com/nbingo/Mouse-voxel-connectivity-simplified). First, we determined which voxels in 
the thalamus are primarily innervated by Lateral CN Class A or Class B neurons by selecting voxels in 
the 25 µm resolution space for which P(A) – P(B) > 0.3 or P(B) – P(A) > 0.3, respectively. Similarly, we 
selected voxels primarily innervated by ZI-projecting or Ret-projecting Lateral CN neurons by performing 
pixel-wise two-sample t-tests and selecting pixels for which p < 0.01. We then downsampled the binarized 
brain with these voxels labeled to 100 µm resolution and used positive thalamic 100 µm voxels as 
“injection” voxels in the Allen connectivity model. We finally normalized the resulting projection 
probability maps by the number of “injection” voxels, as the final probability map is the sum of each 
“injection” voxel’s projection probability map. For region-level quantification, we summed up all voxel 
values in each region and divided them by the number of voxels in the region. In total, we quantified 261 
regions per hemisphere covering the entire brain except for thalamus, which we removed as the in silico 
equivalent of the injection site. 
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Figure 1: Brain-wide projections of mouse CN. (A) Schematic of the cerebellar circuit. Information 
enters the cerebellar cortex through mossy fibers from the PN and elsewhere in the brain, and climbing 
fibers from the IO. Purkinje cells send cerebellar cortex output to the CN, which project to many brain 
regions. PN, pontine nuclei; Thal, thalamus; VN, vestibular nuclei; RN, red nucleus; SC, superior 
colliculus; IO, inferior olive; GC, granule cells; PC, Purkinje cells. (B) Vertebrate cladogram, annotated 
with the number of CN pairs. (C) Schematic of the Medial, Interposed, and Lateral CN in mice. (D) 
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Schematic of experimental workflow. Anterograde tracers were injected into individual nuclei. After 
expression, brains were cleared and imaged, and images were registered onto Allen CCF. Axons were 
quantified using a custom classification pipeline based on TrailMap (Friedmann et al. 2020) and ilastik 
(Berg et al. 2019). (E) Dorsal view of a representative brain volume with detected axons plotted in red. *, 
tracer injection site. Dashed line denotes the midline. (F) Dendrogram showing hierarchical clustering of 
23 brains with injections into anterior Medial, posterior Medial, Interposed, and Lateral CN. Medial CN 
is most distinct from the other CN. Line color and grey numbers indicate bootstrapping-based branch 
confidence measured by the Approximately Unbiased p-value (out of 100 (Shimodaira 2005)). Values 
>40 indicate reasonable support. (G) Heat maps of axonal innervation from the three mouse CN. Coronal 
sections are shown, spaced 625 µm apart along the A–P axis, with Allen compartments in background. 
Scale bar = 1 mm. Heat maps were derived from N = 5 anterior Medial CN, 5 posterior Medial CN, 6 
Interposed CN, and 7 Lateral CN injections. *, average tracer injection sites. Arrowheads and insets show 
shifted projections in (G(i)) contralateral thalamus and (G(ii)) ipsilateral brainstem. Scale bar = 500 µm. 
(H) Sagittal heat map, showing shifted projection patterns in the contralateral superior colliculus. Scale 
bar, main = 1 mm; inset = 500 µm. In this and all subsequent figures: A, anterior; P, posterior; D, dorsal; 
V, ventral; M, medial; L, lateral. 
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Figure 2: Mouse CN cell types. (A) Workflow of snRNAseq of mouse CN. The three cerebellar nuclei 
were dissected separately, cell nuclei were liberated, sorted for NeuN expression, and sequenced.  (B) 
Marker gene expression for all CN neurons. The division into rhombic lip (RL)- and ventricular zone 
(VZ)-derived cells is indicated. N = 6 rounds of FACS using 9 mice each. (C) Representative image of 
permanently labeled RL-derived cells probed for endogenous marker gene expression. Arrow, excitatory 
neuron; arrowhead, inhibitory neuron; *, Slc6a5+ RL-derived. Scale bar = 50 µm. N = 2. (D, E) Clustering 
results for VZ- and RL-derived cells, labeled by clustering result (top) and CN dissection (middle), with 
marker gene expression at the bottom. (F) Marker gene expression for all mouse CN cell types. (G) 
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Hierarchical clustering of excitatory CN cell types in the space of differentially expressed genes, using a 
correlation-based distance metric. Line color and grey numbers indicate bootstrapping-based branch 
confidence measured by the Approximately Unbiased p-value (out of 100 (Shimodaira 2005)). Values 
>40 indicate good support.  
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Figure 3: Spatial organization of CN mouse cell types. (A) Representative STARmap coronal section 
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of the CN, showing 7 marker genes for illustration. Cytoarchitectonic subnuclei boundaries are 
indicated. Scale bar = 100 µm. N = 2, each dataset includes two hemispheres each of 3–6 coronal 
sections spanning the anterior–posterior axis of the CN. (B) Zoom in on the area marked in (A). Scale 
bar = 100 µm. Four excitatory cells are marked and decomposed into the 7 illustrated STARmap 
channels. Comparison to snRNAseq data (dot plot) yields the classification of the cells into 
transcriptomic cell types. (C–F) Classification results of the same section shown in (A). Colored cells 
represent all excitatory and inhibitory neurons by their assigned transcriptomic cell type according to the 
color scheme of Fig. 2 (C); excitatory neurons only colored by class (D); Class A-only (E) and Class B-
only (F) excitatory neurons colored by their transcriptomic cluster showing subnuclei specificity. 
Unassigned neurons in each case are in gray. (G) Summary table of STARmap results for all excitatory 
cell types, noting the location of each cell type and new cell type names. Grey entries signify minor 
contributions to the indicated subnuclei. (H) Correlation matrix of all excitatory cell types annotated by 
subnuclei location. IntA correlates well with Lat in both Class A and Class B, whereas IntP is more 
similar to Medial CN cell types. (I) Hierarchical clustering of CN subnuclei. Line color and grey 
numbers indicate bootstrapping-based branch confidence measured by the Approximately Unbiased p-
value (out of 100 (Shimodaira 2005)). Values >40 indicate good support.  
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Figure 4: CN cell types in the chicken. (A) Workflow for chicken snRNAseq. The entire CN were 
dissected together from frozen tissue, cell nuclei were released and sorted for NeuN expression, and 
sequenced using a SmartSeq2 protocol. (B) Marker gene expression in all chicken CN neurons. The 
division into excitatory and inhibitory neurons is indicated. N = 3 chickens. (C) Coarse clustering result 
of all excitatory cells. (D) Dendrogram showing hierarchical clustering of coarse excitatory chicken 
clusters and mouse excitatory neurons grouped by subnuclei. Line color and grey numbers indicate 
bootstrapping-based branch confidence measured by the Approximately Unbiased p-value (out of 100 
(Shimodaira 2005)). Values >40 indicate good support. (E) High-resolution clustering results of chicken 
excitatory neurons. Anatomical demarcations are inferred from comparative analysis with mouse 
subnuclei in panel D. Inset shows marker gene expression. (F) Correlation matrix between mouse and 
chicken excitatory cell types. A clear division of chicken excitatory cell types into Class A and Class B is 
apparent. Dots indicate significant correlations. (G) Clustering results of inhibitory neurons. Inset shows 
marker gene expression. (H) Correlation matrix between mouse and chicken inhibitory neurons. Dots 
indicate significant correlations. 
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Figure 5: Class B neurons expanded in human Lateral CN. (A) Overview of workflow for human 
snRNAseq. The three CN are separately dissected from frozen tissue, and processed for snRNAseq of 
NeuN+ nuclei as done for mouse and chicken CN. (B) Marker gene expression for all human CN neurons. 
N = 3 donors. The division between excitatory and inhibitory neurons is indicated. (C) Interposed and 
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Lateral CN excitatory clusters from donor H1, in which the entire Lateral CN was dissected and 
representative cells sequenced. Cells are colored by cluster assignment and dissection label. Some cells 
dissected with the Medial CN appear in Interposed clusters and likely represent Interposed CN 
contamination of the Medial CN dissection. (D) Correlation matrix of mouse and human donor H1 
Interposed and Lateral CN excitatory cell types. Human Interposed CN contains cell types that correlate 
with both mouse Class A and Class B cell types. Human Lateral CN only correlates with Class B neurons. 
Dots indicate significant correlations. (E) Seurat integration of mouse and human Interposed and Lateral 
CN cells. Human Lateral CN cells fall exclusively into Class B domain of the tSNE plot, whereas 
Interposed cells fall into both classes. (F) Clustering results of human inhibitory neurons across all donors, 
integrated by FACS session using Seurat. Cells are colored by cluster assignment. Marker gene expression 
is indicated in the insert. (G) Correlation matrix of mouse and human inhibitory neurons, showing one-to-
one correspondences. Dots indicate significant correlations. (H) Hierarchical clustering of CN inhibitory 
cell types across all three species (color coded). Conservation of three inhibitory classes across amniotes 
is apparent. Greyscales of line and numbers indicate bootstrapping-based branch confidence measured by 
the Approximately Unbiased p-value (out of 100 (Shimodaira 2005)). Values >40 indicate good support. 
(I) Schematic illustrating the proposed model of subnucleus duplication-and-divergence (left) and biased 
expansion of Class B excitatory neurons in human Lateral CN (right). 
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Figure 6: Differential projections of Lateral CN Class A and B neurons in mice. (A) Schematic of 
retrograde tracing and STARmap identification of Class A and B neurons in the Lateral CN. Contralateral 
zona incerta (ZI) and contralateral parvocellular reticular nucleus were injected with different AAVretro 
tracers. Gene expression was then measured by STARmap in the ipsilateral Lateral CN. (B) Quantification 
of retrograde tracing results across N = 4 independent mice for the Lateral CN at class resolution. *, 
p<0.05, paired t-test without corrections for multiple comparisons. (C) Schematic of collateralization 
mapping experiments. AAVretro-Ef1a-Cre was injected into either contralateral ZI or contralateral Ret, 
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and AAV-CAGs-FLEX-tdTomato was injected into ipsilateral Lateral CN. After allowing marker 
expression, brains were cleared, volumetrically imaged, and aligned to Allen CCF. (D) Heat map showing 
all differentially innervated contralateral regions (p < 0.05, no multiple comparison correction) from Ret-
projecting (N = 3) and ZI-projecting (N = 4) Lateral CN cells. Brain regions are sorted by mean innervation 
difference. (E) Probability maps of Class A and Class B projection patterns as computed from ZI and Ret 
collateralization patterns. Scale bar = 1 mm. Shown are coronal sections 625 µm apart along the A–P axis. 
Regions of differential intralaminar thalamus innervation ((i) and (ii)) and of the AAVretro-Cre injection 
sites ((iii) and (iv)) by Class A and Class B neurons are highlighted. Scale bar = 1 mm. (F) Workflow for 
in silico tracing of second-order projections from preferentially Class A- or B-innervated thalamic voxels. 
Starting voxels are identified and fed into a voxel scale connectivity model derived from Allen 
connectivity atlas injections (Knox et al. 2019). (G) Coronal sections (500 µm apart along the A–P axis) 
showing brain-wide normalized projection probabilities from thalamic voxels preferentially innervated by 
Class A (green) or Class B (magenta). Scale bar = 1 mm.  
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