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Abstract:  20 

Promoters are one of the most critical regulatory elements controlling metabolic 21 

pathways. However, in recent years, researchers have simply perfected promoter 22 

strength, but ignored the relationship between the internal sequences and promoter 23 

strength. In this context, we constructed and characterized a mutant promoter library of 24 

Ptrc through dozens of mutation-construction-screening-characterization engineering 25 

cycles. After excluding invalid mutation sites, we established a synthetic promoter 26 

library, which consisted of 3665 different variants, displaying an intensity range of more 27 

than two orders of magnitude. The strongest variant was 1.52-fold stronger than a 1 28 

mM isopropyl-β-D-thiogalactoside driven PT7 promoter. Our synthetic promoter library 29 

exhibited superior applicability when expressing different reporters, in both plasmids 30 

and the genome. Different machine learning models were built and optimized to explore 31 

relationships between the promoter sequences and transcriptional strength. Finally, our 32 

XgBoost model exhibited optimal performance, and we utilized this approach to 33 

precisely predict the strength of artificially designed promoter sequences. Our work 34 

provides a powerful platform that enables the predictable tuning of promoters to 35 

achieve the optimal transcriptional strength. 36 

 37 
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Introduction 40 

The application of synthetic biology and metabolic engineering depends on 41 

essential biological regulatory elements, such as promoters1, 2, ribosome binding sites 42 

(RBS)3, 4 and terminators 5. These important elements make genetic circuits more 43 

tunable, inducible, responsive, and/or coordinated6, 7, 8. Basic levels of transcriptional 44 

regulation occur at promoters to ensure natural and synthetic circuits or metabolic 45 

pathways9, 10. To increase regulatory gene expression efficiency, several promoters with 46 

gradient strengths were built and modified by optimizing important genetic elements, 47 

such as -35/-10 boxes, 5-untranslated regions and transcription factor binding sites 11, 48 

12, 13. However, due to weak promoter strengths, low dynamic ranges (the highest 49 

strength/the lowest strength), limited library promoters, and inducers required, these 50 

promoters are often incapable of fine-tuning metabolic pathways. Thus, it is important 51 

to establish and characterize a comprehensive library consisting of hundreds of 52 

promoters, with continuous and broad dynamic ranges.  53 

To overcome these limitations, Mey et al. constructed a synthetic promoter library 54 

with 75 variants using degenerated oligonucleotide primers, comprising a 57 bp length 55 

sequence of 20 random, 13 semi-conserved, and 24 conserved nucleotides 14. Although 56 

the strength of this library was 0.14- to 275-fold that of the Escherichia coli constitutive 57 

promoter PLacI, the library was small, and the strongest promoter was far lower than the 58 

commonly used PT7 promoter. To further extend library size, Zhou et al. 15 and Yang et 59 

al. 16 screened a hundred native promoters from E. coli and Bacillus subtilis. The 60 

transcriptional intensity ranged from 0.007%–4630% that of the PBAD promoter, and 61 

0.03–2.03-fold that of the P43 promoter at the transcriptional level. However, the 62 

strength of these promoters was still not comparative, or far lower than other well-63 

studied promoters, such as P43 
17, PVeg 

17, PT7, Ptrc 
18, and PThl 

19.  64 
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The mutation, modification, or screening of existing promoters is difficult to 65 

obtain the desired ones, thus the de novo design of optimized promoters from sequences 66 

is a promising approach. To do this, the relationship between the promoter sequences 67 

and intensity should be established. However, few reports have contributed to this area. 68 

For example, Jensen et al. 13 revealed a simple statistical method to explore nucleotide 69 

positions, which exerted critical effect on promoter intensity in 69 PL-λ promoter 70 

variants in E. coli. Likewise, Mey et al. 14 and Liu et al. 17 observed similar results by 71 

analyzing a partial least squares (PLS) model in E. coli and Bacillus subtilis using 49 72 

and 214 synthetic promoters, respectively. However, these reports suffered small data 73 

issues, single modeling, imperfect correlations and low dynamic ranges. Therefore, it 74 

is important to identify promoters with gradient strengths, broad dynamic ranges, and 75 

clear sequence profiles to explore and analyze relationships between promoter 76 

sequences and intensity, using huge data and model comparisons. Nowadays, 77 

significant advances have been made in machine and deep learning for big data 78 

analytics 2, 20, making promoter strength prediction achievable. In particular, Gradient 79 

Boosting Decision Tree (GDBT)21, AdaBoost22, Random Forest Regressor23, Xgboost24, 80 

and Recurrent Neural Network25 by one-hot coding have provided efficient 81 

mechanisms to analyze big data in designing functional promoters.  82 

It is well known that the core promoter (−35 box, spacer, and −10 box) and their 83 

flanking regions (down and up elements) of bacterial promoters are closely related with 84 

promoter intensity 26, 27. To generate high strength constitutive promoters and broad 85 

dynamic range libraries, we randomized Ptrc
18 regions by mutation-construction-86 

screening-characterization (MCSC) engineering cycles (Fig. 1a). In doing so, Ptrc 87 

variants we abolished its inherent limitations and derived a series of extremely high 88 

strength constitutive promoters. Based on this mutation library, we reconstructed and 89 
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characterized a de novo synthetic promoter library which can be used as a 90 

comprehensive synthetic biology toolbox for gene expression regulation over a broad 91 

range (Fig. 1b-d). Furthermore, we investigated a direct correlation between promoter 92 

base sequences and transcription strength of the synthetic promoter library, using 93 

machine learning models (Fig. 1e). Taken together, this work not only provided the 94 

constitutive promoters, whose strengths span from low to extremely high, but also 95 

established a promoter strength prediction model which could significantly reduce 96 

promoter characterization workload. 97 

 98 

Results 99 

Generation of the mutant library 100 

We chose the Ptrc promoter (74 bp in length) 18 as a template from the pTrc99a 101 

plasmid to obtain a mutant constitutive promoter library by error-prone PCR in this 102 

work. To extend span strength of the mutation library, iterative MCSC engineering 103 

cycles (Fig. 1a) was performed to obtain both strength enhanced and reduced promoters. 104 

After each round of mutagenesis, we counted the minimum and maximum 105 

fluorescence/OD600 and dynamic range. The minimum fluorescence/OD600 was 106 

relatively stable, remaining between 85–200, while the maximum fluorescence/OD600 107 

showed an obviously increasing trend, and approached the highest after 40 rounds of 108 

MCSC engineering (Fig. S1 a-b). The dynamic range reached the maximum value after 109 

82 rounds of MCSC engineering (Fig. S1 c). After each round of MCSC engineering, 110 

we selected the mutants whose fluorescence intensities changed more than 10 times 111 

(increased or decreased) as the templates for the next round of MCSC engineering. 112 

Finally, we obtained ~6╳104 constructs with an intensity range ~509-fold difference 113 

between the strongest and weakest expression, and the strongest one had the expression 114 
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levels ~127- and 3.14-fold higher than the uninduced and induced Ptrc (1 mM isopropyl-115 

β-D-thiogalactoside (IPTG) induction), respectively (Fig. 2a). Therefore, this mutant 116 

library demonstrated the broad expression levels and excellent resolution.  117 

 118 

Sequence variances of the mutant Ptrc-derived library  119 

After constructing the mutant Ptrc-derived library, we used the high-throughput 120 

sequencing (MiSeq) to understand the sequence variances of the mutant promoters (Fig. 121 

1b) (SRA database # SRR11574455, https://www.ncbi.nlm.nih.gov/sra/SRR11574455). 122 

The MiSeq results show that the mutations were mainly located in the core promoter 123 

and the down element, indicating that the up element only contributes a little to the 124 

promoter strength (Fig. 2b). Furthermore, a total of 66026 different mutants were found 125 

in the library. In statistical analysis, 32.5% of the mutants contained mutations in both 126 

the core promoter and down element region, 63.06% of the mutants contained 127 

mutations only in the down element region, and 0.28% of the mutants contained 128 

mutations only in the up element region. Therefore, we focused on both the core 129 

promoter and down element to exclude the invalid mutations in the up element and 130 

reconstruct a simpler synthetic promoter library (3665 out of 66026 mutant promoters). 131 

The 3665 different Ptrc-derived mutant promoters (74-bp covering core promoter and 132 

down element) 28 were synthesized to form a synthetic promoter library (see Additional 133 

file 2). The 3665 different promoter sequences had 1067 mutations in −35 and/or −10 134 

boxes, 1313 mutations in spacers, and 3581 mutations in down elements, including 9 135 

additions, 513 deletions, and 3143 substitutions. The diverse mutations caused the 136 

diversity of promoter changes, which provides a guarantee for the evolution of 137 

promoters. 138 

 139 
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Characterization of the synthetic promoter library  140 

After high-throughput sequencing and reconstruction, the fluorescence intensity 141 

of all reconstructs in the synthetic promoter library were measured and analyzed. Three 142 

methods were adopted and evaluated for the synthetic promoter library. First, to 143 

standardize our synthetic promoter library, all synthetic promoters were compared with 144 

the induced Ptrc and PT7 promoters in E. coli. To do this, PT7 promoter was used to 145 

replace PTrc promoter on the backbone of vector pL0-sfGFP (Fig. 3a). To focus on 146 

comparing the strength of the promoter, all constructs were performed on the same 147 

backbone and introduced into E. coli. Expressions and comparison between fluorescent 148 

intensity of the synthetic promoters and the known promoters are shown in Fig. 3b. The 149 

maximum strength of our synthetic promoter library was ~114-fold that of uninduced 150 

Ptrc, ~1.52-fold that of 1 mM IPTG induced PT7, and ~2.83-fold that of 1 mM IPTG 151 

induced Ptrc, with a ~454-fold difference between the strongest and weakest expressions.  152 

To analyze the universality of the synthetic promoter library when expressing 153 

different genes, a set of synthetic promoters (selected based on multiples of control 154 

fluorescence intensity) 29 were chosen and used to control the expression of β-155 

galactosidase (lacZ) and lactate dehydrogenase (ldhA). According to the fluorescence 156 

intensity data of the synthetic promoter library, 21 promoters (PL3153, PL757, PL2776, 157 

PL862, PL3034, PL2346, PL3293, PL2983, PL1078, PL3224, PL2169, PL1958, 158 

PL1260, PL3088, PL1456, PL2666, PL3227, PL948, PL3001, PL2986, and PL3147) 159 

with fluorescence intensity multiple that of the Ptrc (0.5–100 times) in the synthetic 160 

promoter library were selected and used to express lacZ instead of sfgfp in the plasmid 161 

(Fig. S2a and Additional file 2). After the recombinant strains were constructed, the β-162 

galactosidase activity was measured. The same trend was observed in the β-163 

galactosidase activities as for the sfGFP expression driven by the same promoters (Fig. 164 
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S2b). The enzyme activity of lacZ correlated well with the fluorescence/OD600 (R
2=0.94) 165 

(Fig. 3c). The specific β-galactosidase activities spanned a ~188- and ~60-fold range 166 

relative to the Mlac0 (MG1655ΔlacZ) and Mlac1 (pTrc-lacZ), respectively. The 167 

corresponding fluorescence intensity spanned a ~184- and ~71-fold range relative to 168 

the Mlac0 (MG1655ΔlacZ) and ML1 (pTrc-sfGFP), respectively. Thus, to find the most 169 

suitable promoter for expression, there is only the need to choose different folds of 170 

promoters in the synthetic library according to fluorescence intensity. Furthermore, we 171 

also found that the transcriptional (2-ΔΔCt) and translation level of β-galactosidase were 172 

highly correlated (Fig. 3d and Fig. S2c). The relative levels of the lacZ transcripts 173 

spanned a 13-fold range under the control of the selected promoters.  174 

To test the effect of the synthetic promoters on the genome, we modified the lactate 175 

dehydrogenase gene (ldhA) in E. coli through replacing the native ldhA promoter by the 176 

synthetic promoters (Fig. S3a). We deleted the wild type ldhA promoter in E. coli 177 

MG1655 forming the strain Mldh0 as control. Five different promoters, PL1409, PL908, 178 

PL2436, PL3189, and PL1993, that were 49.52%, 110.61%, 556.41%, 4086.54%, and 179 

9826.74% the strength of PldhA, respectively (Fig. S3b), were selected to substitute the 180 

PldhA in the chromosome of strain Mldh0 using CRISPR-Cas9, resulting in strains 181 

Mldh1409, Mldh2436, Mldh908, Mldh3189, and Mldh1993. The fluorescence 182 

strengths of PL2436 on the genome were almost the same as PldhA, indicating the 183 

expression level of lactate dehydrogenase was similar (Fig. S3b-c). The lactate 184 

dehydrogenase activity of MG1655, Mldh1409, Mldh2436, Mldh908, Mldh3189, and 185 

Mldh1993 was 1.29, 0.96, 1.33, 2.44, 3.16, and 3.63-fold of the control (Mldh0), 186 

respectively (Fig. S3c). As shown in Fig. S3d, the transcription levels of ldhA (2−ΔΔCt) 187 

had a similar trend with fluorescence intensity and enzyme activities. Taken together, 188 

the fluorescence intensity of the same synthetic promoter candidates was tested, and the 189 
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activities of lactate dehydrogenase and transcription levels of ldhA showed similar 190 

results (Fig. S3b-d). These results provided robust, strain-independent, gene-191 

independent regulation.  192 

 193 

Machine learning-based rational design of promoters  194 

Although a synthetic promoter library was obtained, it was extremely crucial to 195 

determine the functional relationships between promoter sequences and the strength to 196 

achieve the rational design of the desired promoter. PLS models 11, 13, 17 with 197 

multinomial statistics are often used for exploring nucleotide positions that have a 198 

significant effect on promoter intensity. After the promoter sequence is encoded, PLS 199 

compares the basic relationship between the two sequences. It tries to find the multi-200 

dimensional direction of each promoter sequence to explain the multi-dimensional 201 

direction, with the largest intensity sequence variance. As such, we first tried the PLS 202 

model to predict promoter strength according to the given sequences. The data-set was 203 

randomly split into two parts: the training set, including 90% of the 3665 synthetic 204 

promoters, and the test set, including the remaining promoters 11. The training set was 205 

utilized to construct the PLS model. In this procedure, 74 latent variables were 206 

determined as previously described 30 and retained in the PLS model (R2=0.66) (Fig. 207 

4a). The predicted and origin corresponded to the predicted promoter strength 208 

(log10(fluorescence/OD600)) by model and the observed promoter strength 209 

(log10(fluorescence/OD600)), respectively.  210 

Due to the differences in mutant methods and huge databases, the final PLS 211 

training result was not perfect. Therefore, we started to try other machine and deep 212 

learning models, we chose the models Gradient Boosting Decision Tree (GDBT) 21, 213 

AdaBoost 22, Random Forest Regressor 23, XgBoost 24, and Recurrent Neural Network 214 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.170365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

25 for research using the scikit-learn Python package. All models were modeled on 90% 215 

of the data, and then the predictions of this model were tested against mean were trained 216 

to eliminate the problems of multicollinearity, and efficiently verified using 10-fold 217 

cross-validation (i.e. by training surements for the remaining 10%) with the 218 

performance measured as the mean absolute error (MAE) of relative strength 219 

(cross_val_score and RepeatedKFold from the scikit-learn Python package, 220 

https://scikit-learn.org/stable/). Finally, the XgBoost was identified as the best model 221 

with the lowest average cross-validated MAE (test MAE) (0.204) and highest R2 (0.77) 222 

for promoter prediction (Fig. 4a). Therefore, by applying XgBoost, an excellent 223 

relationship was found between promoter sequences and intensity. This XgBoost model 224 

can be a useful tool to rationally design a functional promoter to fine-tune gene 225 

expression. In this model, once the promoter sequence was input, the promoter strength 226 

was obtained.  227 

XgBoost model verification 228 

To further verify the performances of the established XgBoost model, we 229 

rationally designed a new promoter library. To do this, the mutation possibility at each 230 

position of strong and weak promoters (the Ptrc promoter as an interval between strong 231 

and weak ones) in the synthetic promoter library was analyzed by a statistical analysis 232 

approach 25,27. The positions 25, 28, 32, 41, 43, 46, 51, and 54 were identified as the 233 

most critical bases at which mutations could significantly influence promoter strength 234 

(Fig. 4b). In this regard, we randomized these eight sites (such as A) to different bases 235 

(i.e. C, T, G, or B), leaving the other 66 sites unchanged to form a new promoter library, 236 

with a size of 390625 (58 possible sequences) (Additional file 2). Predictive models of 237 

relative strength for the newly designed promoter assembly library were constructed, 238 

following a similar strategy based on one-hot encoding of features and the best model 239 
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regression and cross-validation way. To accumulate enough data to train an independent 240 

model, 100 promoters (Additional file 2) were randomly selected from the new 241 

promoter assembly library, and the promoter sequence was used as an additional input 242 

feature. In addition, 27 well-studied promoters (Additional file 2) 11, 12, 31, 32,29, 33 were 243 

entered into the model to test the universality. The intensity of the 127 promoters 244 

formed the test set and were predicted by the fully trained XgBoost model. The 245 

predicted intensity versus the observed intensity (fluorescence intensity) were shown 246 

in Fig. 4c.  In the test set, the model generated good results. We evaluated model 247 

performance through the R criterion and the MAE (R2 = 0.88, MAE=0.148). These 248 

results thus indicated a satisfactory correlation of promoter strength to the sequence. 249 

Based on these validation experiments, the established XgBoost model not only held a 250 

huge numbers of experimentally verified data, but also provided a robust predictive 251 

function for the expression levels of 127 unique expression vectors in numerous 252 

conditions. Therefore, we established a relationship between promoter sequence and 253 

strength in E. coli, an unprecedented discovery.  254 

 255 

Discussion 256 

Generally, gradient strength promoters are essential elements for pathway fine-257 

tuning 9, 10. However, existing promoters suffer with low strength, narrow strength span 258 

and limited numbers. Simply engineering or screening natural promoters is not only 259 

laborious, but also difficult to identify high strength promoters. To overcome these 260 

challenges, we iteratively evolved Ptrc promoters based on MCSC engineering cycles, 261 

and reconstructed a synthetic promoter library, after MiSeq sequencing and mutation 262 

analysis. This synthetic promoter library consisted of 3665 gradient strength promoters; 263 

the strongest promoter was 1.52-fold the strength of a 1 mM IPTG induced PT7 264 
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promoter. Using the synthetic promoter library as an input dataset, we built and 265 

optimized a series of promoter strength prediction models. In comparing models, the 266 

XgBoost model performed the optimally (R2 = 0.77, MAE = 0.205). To further verify 267 

XgBoost model reliability, we compared the predicted and actual strength of a hundred 268 

rationally designed artificial promoters (R2= 0.88). Taken together, we rationally 269 

designed and provided a powerful platform to enable predictable promoter tuning to 270 

transcriptional strength. 271 

Although many advancements have been made in past decades, the strength and 272 

dynamic range of promoters were relatively low and narrow, respectively17, 18. In 273 

addition, promoter characterization in the literature is often performed using different 274 

genetic backgrounds and testing conditions, resulting in unquantifiable performances 275 

when applying them to the same host. Hence, several studies have screened hundreds 276 

of gradient strength constitutive promoters from E. coli 15, B. subtilis 16, C. glutamicum 277 

34, and S. cerevisiae 35. However, the strength of these constitutive promoters is still far 278 

lower than what is required for high expression levels, especially for protein over-279 

overexpression. Single rounds of screening from mutation libraries are difficult to 280 

obtain for extremely high strength promoters36. Hence, the iterative generation of high 281 

strength promoters is a promising strategy to extend promoter strength. In this regard, 282 

the Ptrc promoter was evolved by several MCSC engineering cycles, and a series of 283 

extremely high strength promoters were screened.  284 

We further analyzed the mutation library and found that mutation sites were mainly 285 

distributed in the core promoter (−35 box, spacer, −10 box) and down element. The core 286 

promoter is known to have a great influence on gene expression 37, 38, 39, 40, 41, 42, 43, 44. 287 

In-depth research found that changes in up elements 45, 46, 47, 48 and down elements 49 288 

also had a significant contribution to gene expression, but the contribution was not as 289 
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great as that of the core promoter. However, there were only a few up element changes. 290 

To facilitate the study, we only explored the core promoter and down elements of 291 

mutant promoters. We then constructed a synthetic promoter library with 3665 mutant 292 

promoter constructs, which exhibited a 454.26-fold difference between the strongest 293 

and weakest expression. The strength of the synthetic promoters was much higher than 294 

other reported promoters and it was not necessary to tandem multiple promoters to 295 

achieve a higher intensity 17, 50. 296 

Although the Ptrc promoter was generally considered as a strong inducible 297 

promoter, it worked well in the absence of an inducer 51. Thus, it could somehow work 298 

as a typical constitutive promoter. Originally, we searched for native constitutive 299 

promoters as the candidates for directed evolution. However, none of them was 300 

comparable with the PTrc promoter in strength. In other words, the mutant native 301 

constitutive promoter might not meet our requirements of directed evolution. In this 302 

regard, we selected Ptrc as the original promoter to establish comprehensive and 303 

constitutive promoter libraries. These libraries exhibited great stability in the 304 

expression of different reporter genes in both plasmids and the genome. 305 

Previously, it was almost impossible to rationally predict promoter strength 306 

directly based on sequences. An ideal model was based on the predicted 307 

thermodynamics to predict the strength of the promoters. However, the thermodynamic 308 

model was too ideal to understand the promoters precisely and most of the time, the 309 

predicted promoters generated from the above models were far from the experimental 310 

results. Machine or deep learning models were independent of the “mechanisms” and 311 

thus provided a promising approach to predict promoter strength, without fully 312 

understanding mechanisms. Recently, Wang et al. successfully established a 313 

complicated AI model that could be used to rationally design and predict promoters2. 314 
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The model was based on the training of natural promoters which usually had moderate 315 

strength. Although 70.8% of promoters exhibited activity, their strength was generally 316 

low. In our study, the training of the XgBoost model was based on the high strength Ptrc 317 

promoter library. Hence, our model predicts the high strength promoters. Furthermore, 318 

we found that the fluorescence intensity deviated from the trend line when 319 

log10
(sfGFP/OD600) lower than 2.5, which represents the low fluorescence intensity was not 320 

well worked for the model. With the development of AI, we believe that models that 321 

can precisely design desired promoters and predict the strength of a given promoter can 322 

be established in the near future.  323 

 324 

Methods 325 

Bacterial strains and cultivation 326 

E. coli JM109 was used for plasmid cloning and MG1655 K12, MG1655 (DE3) 327 

were used for gene expression. Inoculates were cultured in 50 mL Luria Bertani (LB) 328 

in 250 mL shaker flasks at 200 rpm. Assay strains were inoculated (10% working 329 

volume) into M9 minimal medium 52, including 5 g/L D-glucose (M9G) and 0.1% 330 

amino acids12, 31 for the determination of fluorescence expression intensity. Gene 331 

expression was induced initially by 1 mM IPTG or no inducer 33. All other strains were 332 

cultured at 37°C in LB medium, supplemented with 100 mg/mL ampicillin. All strains 333 

and plasmids are listed in Table S1. All primers are listed in Table S2. 334 

Plasmid construction 335 

The sfGFP ORF was amplified from the pJKR-H plasmid 53 with pL1-sfGFP F 336 

and pL1-sfGFP R primers and ligated into EcoR I/Hind III sites of pTrc99a, resulting 337 

in pL1-sfGFP. The negative control and backbone pL0-sfGFP (no promoter) was 338 

constructed by whole plasmid PCR 54 from pL1-sfGFP, using the pL0-sfGFP F and R. 339 
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Products were digested by CIAP and ligated using DNA T4 ligase. PT7 promoter was 340 

amplified from pACYC-Duet-1 plasmid by primer pair of T7-F/T7-R. pT7-sfGFP 341 

plasmid was generated by whole plasmid PCR 54, as previously described.  342 

Random mutagenesis, to generate novel promoters, was conducted by error-prone 343 

PCR 55 with Taq DNA polymerase in the existence of Mn2+, Mg2+, and dNTP, using 344 

plasmid pTrc99a (Novagen, CA, USA) as the template along with the er-Trc F and er-345 

Trc R. The primers mentioned above were used to perform 30 amplification cycles. The 346 

standard reaction conditions were as follows: 200 μl reaction volume; 10 pM each 347 

primer; 0.0625~3 mM MnCl2 or 0.5~12 mM MgCl2 or different ratios of 100 mM dNTP 348 

mixture; 2×Taq DNA polymerase. The cycle profile was: 1 min 94°C, 2 min 59°C, and 349 

3 min 72°C. Then the SanPrep Column PCR Product Purification Kit (Sangon Biotech, 350 

Shanghai, China) was used to purify PCR products. The backbone was linearized by 351 

whole plasmid PCR with T0-sfGFP F and R, using plasmid pL1-sfGFP as the template. 352 

Following purification and digestion with Dpn I, the insert and backbone were 353 

assembled using Gibson method 28 and transformed into E.coli JM109. After colony 354 

PCR, these right recombinant plasmids were transferred into MG1655 and the 355 

fluorescence intensity was detected. The other constructions in this study also used the 356 

Gibson assembly method, as described above.  357 

About ~6104 colonies were visually screened from agar plates. A single colony 358 

from each plate was picked into M9G for fluorescence detection. After MiSeq, the 359 

reconstructed 3665 synthetic promoters were named PLN, forming the synthetic 360 

promoter library. They were transformed into MG1655 and called MLN. The promoters 361 

for predicting the XgBoost model were named pZN, transformed into MG1655, and 362 

called MZN. The synthetic promoters carrying lacZ were called pLacN, transformed 363 

into MG1655, and named MlacN. The different synthetic promoters replacing the ldhA 364 
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promoter in MG1655 were called MldhN. 365 

 366 

MiSeq sequencing 367 

Selected mutants were sequenced using primers Miseq F and Miseq R. A total of 368 

~6104 single colonies obtained by MCSC were mixed and plasmids were extracted to 369 

form a mixture sample. Samples were MiSeq sequenced by Sangon Biotech (Shanghai, 370 

China). The original MiSeq data was submitted to the SRA database, under accession 371 

number SRR11574455 (https://www.ncbi.nlm.nih.gov/sra/SRR11574455). 372 

 373 

Library screening using the sfGFP reporter assay 374 

Single colonies on agar plates were inoculated into 96-well plates including 200 375 

μL LB. After 8–12 h, the inoculums were inoculated (2% working volume) into 180 μL 376 

M9G. The cultures were grown at 37°C with 300 rpm. After 4–6 h, the fluorescence 377 

and optical density were monitored on a plate reader (Tecan) at when OD600 reached 378 

0.4–0.6. A 100 μL sample was transferred to a black 96-well plate, and the sfGFP 379 

fluorescence was measured at 485 nm after excitation at 528 nm using a plate reader 380 

(Tecan). Fluorescence was measured in arbitrary units (AFU) while optical density was 381 

determined by absorbance (OD) at 600 nm. The intensity of sfGFP was characterized 382 

and calculated by sfGFP fluorescence/OD600. The negative controls are MG1655 K12 383 

and ML0 (MG1655 carrying pL0-sfGFP).  384 

 385 

Genome manipulation 386 

The lacZ and promoter ldhA were knocked out separately in E. coli MG1655 by 387 

CRISPR-Cas9 approach 56. Gene insertion was a similar step to the knockout procedure 388 

and the template introduced the fragment to be inserted. The template, which included 389 
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the upstream 500 bp, PL908, and downstream 500 bp, was obtained from pldh908. The 390 

rest of the procedure followed the same steps as with the knockout manipulation. The 391 

synthetic promoters PL1409, PL1993, PL2436, and PL3189 were inserted in E. coli 392 

MG1655 using the same method. The related sgRNA was designed and shown in 393 

Supplementary Table S3. 394 

 395 

Analysis of transcriptional intensity  396 

Total RNA was extracted using the Ultrapure RNA Kit (Novoprotein, Shanghai, 397 

China) and reverse transcribed using the SuperRT One-Step RT-PCR Kit (Novoprotein, 398 

Beijing, China). Real time quantitative PCR (qPCR) using a SuperRT One-Step RT-399 

PCR Kit (Novoprotein, Beijing, China) was performed and analyzed according to the 400 

protocol 57, 58.  401 

Enzyme activity assays 402 

Cell crude extracts were obtained and analyzed to measure enzyme activity. β-403 

galactosidase measurements were performed as described by Miller et al. 59, 60. The 404 

lactate dehydrogenase assay was conducted according to previously published methods 405 

61, 62. Protein concentrations were performed using the Bradford method 63. 406 

 407 

Model construction and prediction  408 

The training set was generated by experimental parameters and calculated relative 409 

strengths. The training set contained 90% of the data, and testing predictions against 410 

measurements for the remaining 10%. Values in the training set were encoded into one-411 

hot binary vectors. One-hot coding makes the discrete features continuous, allowing the 412 

model to optimally process data. On the other hand, through the representation of one-413 

dimensional vectors, the purpose of expanding features is achieved, to a certain extent, 414 
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the features can be sparse to prevent overfitting. Each input sequence was encoded into 415 

an eigenvector of length 74 bp with this method. The models were trained (Gradient 416 

Boosting Decision Tree (GDBT)21, AdaBoost22, Random Forest Regressor23, Xgboost24, 417 

Recurrent Neural Network25) to eliminate multicollinearity interference, and were 418 

cross-validated by 10-fold cross-validation with the performance indicators as the MAE 419 

of relative strength (cross_val_score and RepeatedKFold from the scikit-learn Python 420 

package). Using this data processing method for coding promoters, we established a 421 

promoter sequence predictive model based on each algorithm, to predict promoter 422 

strength using the same strategy. This code can be found at 423 

https://github.com/YuDengLAB/Predictive-the-correlation-between-promoter-base-424 

and-intensity-through-models-comparing. 425 

 426 

Data availability 427 

All experimental data were determined in triplicate, and error bars represent the 428 

standard deviation. The original MiSeq data has been submitted to the SRA database 429 

under accession number SRR11574455 430 

(https://www.ncbi.nlm.nih.gov/sra/SRR11574455). The code to predict the correlation 431 

between promoter base and intensity through comparing models can be found at 432 

https://github.com/YuDengLAB/Predictive-the-correlation-between-promoter-base-433 

and-intensity-through-models-comparing. 434 

  435 
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Figure legends 680 

 681 

Fig. 1 Schematic diagram of the strategies based on the promoter library to predict 682 

promoter strength.  683 

(a) Schematic illustration of the screening procedure for the promoter region evolution 684 

by MCSC engineering approach. (b) High-throughput sequencing for all mutant 685 

promoters. (c) Reconstruction of the synthetic promoter library based on MiSeq. (d) 686 

Characterization of promoter variants using different reporters. (e) Modeling and 687 

prediction based on base sequence and intensity. 688 
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 689 

Fig. 2 Promoter abundance distribution map.  690 

(a) Detection of fluorescence intensity and sanger sequencing for mutants during 691 

MCSC engineering. The structure of the entire promoter region included up element, 692 

core promoter, down element. 5G8 represents the strain’s position was in G8 wells of 693 

the fifth 96 plates. Other similar strains were named as described above. Red column 694 

represents 1 mM IPTG induced Ptrc promoter. Orange column represents uninduced Ptrc 695 

promoter. (b) Distribution of mutation positions in high-throughput sequencing. 696 

 697 
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 698 

Fig. 3 Construction and characterization of the promoter clusters using different 699 

reporters. 700 

(a) Schematic diagram of different promoters expressing the sfGFP protein. (b) 701 

Expressions and comparison of fluorescent intensity of different promoters. Data are 702 

means ± standard deviation for three independent experiments. PT7 and Ptrc promoters 703 

that were induced by 1 mM IPTG were colored by red and yellow. Uninduced Ptrc 704 

promoter was colored by black. The embedded figure represents part of the gradient 705 

strength promoters in the synthetic promoter library. (c) Relationship between β-706 

galactosidase activity and sfGFP expression levels. (d) Cognation of the activity of 707 

promoter candidates at the transcriptional and expression level of lacZ. Level of 708 
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changes of mRNA level (2−ΔΔCt) of lacZ measured by real-time fluorescence 709 

quantitative PCR. (e) Relationship between lactate dehydrogenase activity and sfGFP 710 

expression levels in genome. (f) Cognation of the activity of promoter candidates at the 711 

transcriptional and expression level of ldhA. mRNA level(2−ΔΔCt) of ldhA was measured 712 

by real-time fluorescence quantitative PCR. All experiments were performed three 713 

times and the error bars represent standard deviation. 714 

 715 

  716 
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 717 

Fig. 4 Accurate prediction of the correlation between the promoter sequence and 718 

intensity by the machine learning model. 719 

(a) Comparison and establishment of different models based on the Ptrc-derived 720 

synthetic promoter library. (b) Statistical distribution of mutations and their effects on 721 

mutant fluorescence. The red and blue curves represent strong and weak mutants, 722 

respectively. (c) The predicted promoter strength (predict, log10
(fluorescence/OD600)) versus 723 

the observed promoter strength (origin, log10
(fluorescence/OD600)) of the training set and the 724 

test set. The R criterion was given as the relative error sum of squares. MAE represent 725 

mean absolute error. 726 
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