P. 1

1	Draft	Genome	Sequences	of	10	Strains	of	Pseudomonas	syringae	pv.	actinidiae
---	-------	--------	-----------	----	----	---------	----	-------------	----------	-----	------------

2 Biovar 1: A Major Kiwifruit Bacterial Canker Pathogen in Japan

- 3
- 4 Takashi Fujikawa,^{a#} Hiroe Hatomi,^a Hiroyuki Sawada^b
- 5
- ⁶ ^aInstitute of Fruit Tree and Tea Science (IFTS), National Agriculture and Food Research
- 7 Organization (NARO), Tsukuba, Ibaraki, Japan
- ⁸ ^bGenetic Resources Center (GRC), NARO, Tsukuba, Ibaraki, Japan

9

- 10 Running Head: 10 Genome Sequences of *P. s.* pv. *actinidiae* Biovar 1
- 11
- [#]Address correspondence to Takashi Fujikawa, <u>ftakashi@affrc.go.jp</u>

13 Abstract

- 14 Several groups (biovars) of the kiwifruit bacterial canker pathogen, Pseudomonas
- 15 syringae pv. actinidiae, are found in Japan. Here, we sequenced and compared the 10
- 16 genomes of biovar 1, the major group in Japan, which is known as the phaseolotoxin
- 17 producer.

18

19	The kiwifruit bacterial canker pathogen, Pseudomonas syringae pv. actinidiae (Psa),
20	was first described in Japan in 1989 (1). Subsequently, Psa was found in other
21	kiwifruit-producing countries (2). Based on comparative analyses (2-4), Psa was
22	categorized into several groups (biovars). The first Japanese group was named biovar 1
23	(Psa1), which was also later found in Italy and Korea. This biovar produces
24	phaseolotoxin (2), a phytotoxin that inhibits arginine biosynthesis in host plants and
25	results in bacterial canker symptom development. On the Psa1 chromosome, a large
26	number of genes involved in phaseolotoxin biosynthesis are accumulated in an
27	approximately 23 kb region (argK-tox cluster), which is contained in an exogenous
28	genomic island (tox island) that Psa1 acquired in the past (2). However, some Psa1
29	strains found in Ehime Prefecture, Japan (the Ehime isolates) do not produce
30	phaseolotoxin, although they seem to possess the argK-tox cluster (5). On the other
31	hand, several Psa1 strains preserved in the NARO Genebank
32	(https://www.gene.affrc.go.jp/index_en.php) may lack this cluster (2). Here, we selected
33	10 strains (Table 1) that represent Psa1 diversity and conducted comparative genome
34	analyses.
35	Genomic DNA was extracted from the strains using the DNeasy mini kit (Qiagen,
36	Hilden, Germany). Genomic DNA was sequenced using an Ion PGM sequencer with an
37	Ion PGM Hi-Q View OT2 kit, an Ion PGM Hi-Q View Sequencing kit, and a 318 Chip

38	kit v2 (all from Thermo Fisher Scientific Inc., Waltham, MA, USA). The sequence reads
39	were quality controlled (a quality score < 20) and adapter sequences were removed
40	using CLC Genomics Workbench version 12 (Qiagen). Using these reads, contigs
41	(filtered with a size longer than 500 bp) were assembled de novo using the same
42	software with default parameters (mapping mode = Create simple contig sequences
43	(fast), automatic bubble size = yes, minimum contig length = 500, automatic word size
44	= yeas, performing scaffolding = yes, auto-detect paired distances = yes). The draft
45	genomes were annotated using the NCBI Prokaryotic Genome Annotation Pipeline
46	(PGAP) v4. 1 (6).
47	The guanine and cytosine (G+C) content and genome size for these strains were found
48	to be 58.2-58.8% and 4.9-6.3 Mbp, respectively (Table 1). PGAP identified
49	5,606–6,432 genes, including multiple rRNA and tRNA genes. In addition, the argK-tox
50	cluster of each strain was sequenced (Table 2) and compared with the reference genome
51	(CM002753) of ICMP 9617 (pathotype strain of Psa), indicating that some strains have
52	synonymous substitution (silent mutation) in the cluster. Moreover, in the Ehime
53	isolates (MAFF 211981 and 211983), it was clarified that a frameshift mutation in the
54	fatty acid desaturase gene occurred due to a single G insertion, resulting in the loss of
55	the ability to produce phaseolotoxin. On the chromosomes of MAFF 613017, 613018,
56	and 212324, the tox island containing the argK-tox cluster could not be found,

57	suggesting that these strains may not have experienced the island acquisition event. The
58	fact that such diversification has occurred in the <i>argK-tox</i> cluster is an important piece
59	of evidence for elucidating the pathogenicity, ecology and evolution of Psa1.
60	
61	Data availability. All sequences identified in this study have been deposited in
62	GenBank (see Tables 1 and 2 for accession numbers).
63	
64	Acknowledgments
65	We are grateful to Ms. M. Taguchi and Ms. A. Sasaki for supporting this work. We also
66	thank the members of IFTS-NARO and GRC-NARO for their helpful discussions. We
67	would like to thank Editage (www.editage.jp) for English language editing. This
68	research received no specific grant from any funding agency in the public, commercial,
69	or not-for-profit sectors.
70	
71	References
72	1. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M. 1989. Pseudomonas
73	syringae pv. actinidiae pv. nov.: the causal bacterial canker of kiwifruit in Japan.
74	Ann Phytopath Soc Japan 55:437–444.
75	2. Sawada H, Fujikawa T. 2019. Genetic diversity of Pseudomonas syringae pv.

76		actinidiae, pathogen of kiwifruit bacterial canker. Plant Pathol 68:1235–1248.
77	3.	Chapman JR, Taylor RK, Weir BS, Romberg MK, Vanneste JL, Luck J, Alexander
78		BJR. 2012. Phylogenetic relationships among global populations of Pseudomonas
79		syringae pv. actinidiae. Phytopathology 102:1034-1044.
80	4.	Vanneste JL, Yu J, Cornish DA, Tanner DJ, Windner R, Chapman JR, Taylor RK,
81		Mackay JF, Dowlut S. 2013. Identification, virulence, and distribution of two
82		biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis
83		07 700 710
00		97:708-719.
84	5.	97:708-719. Miyoshi T, Shimizu S, Sawada H. 2012. Occurrence and distribution of a defective
	5.	
84	5.	Miyoshi T, Shimizu S, Sawada H. 2012. Occurrence and distribution of a defective
84 85	5.	Miyoshi T, Shimizu S, Sawada H. 2012. Occurrence and distribution of a defective non-phaseolotoxin-producing mutant of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> in
84 85 86		Miyoshi T, Shimizu S, Sawada H. 2012. Occurrence and distribution of a defective non-phaseolotoxin-producing mutant of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> in Ehime Prefecture, Japan (in Japanese with English summary). Jpn J Phytopathol

90 Annotation Pipeline. Nucleic Acids Res 44:6614-6624.

	Strain information					Genome information				PGAP ^a annotation			Reads information			
Strain	Isolation host	Isolation area	Isolation year	GenBank accession no.	Genome size (bp)	G+C content (mol %)	No. of contigs	N_{50}	Total no. of genes	rRNAs (5S, 16S, 23S)	tRNAs	SRA ^b accession no.	No. of reads	Average length (bp)	Genome coverage (x)	
MAFF 302091	Actinidia deliciosa	Kanagawa Prefecture (Pref.)	1984	<u>JAAEYK00</u> <u>0000000</u>	4,916,203	58.2	2,497	2,502	6,374	2, 1, 1	29	<u>SRR11730</u> <u>631</u>	60,196	236	7.7	
MAFF 302133	A. arguta	Kanagawa Pref.	1987	<u>JAAEYI000</u> <u>000000</u>	5,928,911	58.8	653	14,454	5,654	3, 1, 1	39	<u>SRR11730</u> <u>639</u>	262,576	221	26.4	
MAFF 302145	A. deliciosa	Wakayama Pref.	1988	<u>JAAEYG00</u> <u>0000000</u>	5,164,482	58.4	2,311	3,012	6,432	3, 1, 2	28	<u>SRR11730</u> <u>634</u>	97,845	210	8	
MAFF 613024	A. deliciosa	Shizuoka Pref.	1995	<u>JAAEYH00</u> <u>0000000</u>	4,927,103	58.2	2,470	2,552	6,335	2, 1, 1	28	<u>SRR11730</u> <u>633</u>	57,728	235.6	7.2	
MAFF 211985	A. deliciosa	Ehime Pref.	2000	<u>SMHD0000</u> <u>0000</u>	5,951,025	58.8	475	26,121	5,880	2, 1, 1	44	<u>SRR11730</u> <u>626</u>	286,416	231.9	100.1	
MAFF 211981	A. deliciosa	Ehime Pref.	2000	<u>JAAEYJ000</u> <u>000000</u>	5,947,905	58.8	524	19,906	5,628	3, 1, 1	41	<u>SRR11730</u> <u>636</u>	527,346	221.5	42.3	

91 Table 1. Genome data and accession numbers of 10 strains of *Pseudomonas syringae* pv. *actinidiae* biovar 1.

P. 7

P. 8

MAFF	Α.	Ehime	2000	JAAEYF00	5 99 5 500	50.4	0.155	2 202	6.2.12		24	SRR11730	114 (10	220 5	0.6
211983	deliciosa	Pref.	2000	0000000	5,236,580	58.4	2,155	3,303	6,342	1, 1, 1	34	<u>632</u>	114,619	230.7	8.6
MAFF	Α.	Shizuoka	1986	JAAEYL00	5,999,477	58.8	494	23,006	5,606	3, 1, 1	44	<u>SRR11730</u>	813,046	215.5	65
613017	deliciosa	Pref.	1980	0000000	5,999,477	30.8	494	23,000	5,000	3, 1, 1		<u>635</u>	813,040	213.3	05
MAFF	А.	Shizuoka	1096	JAAEYM00	5 921 751	500	1.046	0.662	5 014	1 1 1	39	<u>SRR11730</u>	151,420	215 5	16.3
613018	deliciosa	Pref.	1986	0000000	5,821,751	58.8	1,046	9,663	5,914	1, 1, 1	39	<u>637</u>	151,420	215.5	10.3
MAFF	А.	Shizuoka		JAAEYN00	6 227 040	59.6	(00)	17.026	(120	0.1.1	27	<u>SRR11730</u>	407.067	227.2	24.0
212324	deliciosa	Pref.	unknown	0000000	6,327,049	58.6	609	17,836	6,120	2, 1, 1	37	<u>638</u>	407,967	237.2	34.9

92 ^aNCBI Prokaryote Genome Annotation Pipeline

93 ^bSequence Read Archive

		argK-ta		
Strain	Phaseolotoxin synthesis	<i>argK-tox</i> gene cluster	<i>argK-tox</i> gene cluster accession no.	Detail
MAFF 302091	+	+	<u>MT551019</u>	Same sequence as ICMP9617
MAFF 302133	+	+	<u>MT551015</u>	Same sequence as ICMP9617
MAFF 302145	+	+	<u>MT551014</u>	Same sequence as ICMP9617
MAFF 613024	+	+	<u>MT551013</u>	Same sequence as ICMP9617

94 Table 2. Detail and accession numbers for the *argK-tox* gene cluster of 10 strains of *Pseudomonas syringae* pv. *actinidiae* biovar 1.

MAFF 211985	+	+	<u>MT551017</u>	Synonymous substitution (silent mutation) in some coding genes against ICMP9617
MAFF 211981	-	+	<u>MT551016</u>	Synonymous substitution (silent mutation) in some coding genes against ICMP9617 Frameshift mutation in the fatty acid desaturase gene due to the insertion of a single 'G '
MAFF 211983	-	+	<u>MT551018</u>	Synonymous substitution (silent mutation) in some coding genes against ICMP9617 Frameshift mutation in the fatty acid desaturase gene due to the insertion of a single 'G'
MAFF 613017	-	-	-	Absence of <i>tox</i> island
MAFF 613018	-	-	-	Absence of <i>tox</i> island
MAFF 212324	-	-	-	Absence of <i>tox</i> island

95 ^a + denotes presence, - denotes absence

96