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Abstract  27 

Background 28 

Infection in the central nervous system is a severe condition associated with high morbidity 29 

and mortality. Despite ample testing, the majority of encephalitis and meningitis cases remain 30 

undiagnosed. Metagenomic sequencing of cerebrospinal fluid has emerged as an unbiased 31 

approach to identify rare microbes and novel pathogens. However, several major hurdles 32 

remains, including establishment of individual limits of detection, removal of false positives 33 

and implementation of universal controls.  34 

Results 35 

Twenty-one cerebrospinal fluid samples, in which a known pathogen had been positively 36 

identified by available clinical techniques, were subjected to metagenomic DNA sequencing 37 

using massive parallel sequencing. Fourteen samples contained minute levels of Epstein-Barr 38 

virus. Calculation of the detection threshold for each sample was made using total leukocyte 39 

content in the sample and environmental contaminants found in bioinformatic classifiers. 40 

Virus sequences were detected in all ten samples, in which more than one read was expected 41 

according to calculations. Conversely, no viral reads were detected in seven out of eight 42 

samples, in which less than one read was expected according to calculations. False positive 43 

pathogens of computational or environmental origin were readily identified, by using a 44 

commonly available cell control. For bacteria additional filters including a comparison 45 

between classifiers removed the remaining false positives and alleviated pathogen 46 

identification.  47 

Conclusions  48 

Here we show a generalizable method for detection and identification of pathogen species 49 

using metagenomic sequencing. The sensitivity for each sample can be calculated using the 50 

leukocyte count and environmental contamination. The choice of bioinformatic method 51 
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mainly affected the efficiency of pathogen identification, but not the sensitivity of detection. 52 

Identification of pathogens require multiple filtering steps including read distribution, 53 

sequence diversity and complementary verification of pathogen reads. 54 

  55 

Keywords  56 

Metagenomics, Cerebrospinal fluid, Pathogen classification, PaRCA, Epstein-Barr virus 57 

 58 

Background 59 

Infections in the central nervous system (CNS) are severe and despite extensive 60 

microbiological diagnostic analysis a causative pathogen cannot be identified in many of the 61 

cases. A majority of CNS infections are caused by viruses, such as herpes simplex virus 1 62 

(HSV1), varicella zoster virus (VZV or human herpesvirus 3) and enterovirus [1, 2]. Among 63 

CNS infections, Streptococcus pneumoniae and Neisseria meningitidis are the most common 64 

pathogens, while fungal or parasitic meningitis CNS infections are less common [3]. Epstein-65 

Barr virus (EBV) has been implicated in recurrent meningitis and chronic encephalitis [4]. 66 

However, due to the high prevalence of EBV and its ability to remain latent in B-lymphocytes 67 

after primary infection and its role in tumorigenesis, assessing the clinical relevance of EBV 68 

DNA detected in cerebrospinal fluid (CSF) is difficult and presence of EBV is often 69 

considered to be an benign incidental finding [5, 6].  70 

 71 

Current microbiological diagnostic methods include cultivation and nucleic acid detection of 72 

CSF, which are restricted to prior knowledge of the putative causing agent. Cultivation can 73 

detect a wide range of microorganisms, however, it is limited to viable and culturable 74 

pathogens. In contrast, nucleic acid detection is rapid and highly sensitive, but constrained to 75 

genetically conserved regions of known pathogens. Metagenomic sequencing using massive 76 

parallel sequencing, has the capability to discern multiple species and identify unknown 77 
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species in samples. In metagenomics, the total nucleic acid present in the clinical sample is 78 

sequenced, thus provides an unbiased tool to diagnose infections and unknown species in 79 

samples [7-12].  80 

 81 

Currently there is no standard for metagenomic sequencing in a clinical setting and the 82 

technique is still faced with some major challenges [13]. Contrary to PCR, the sensitivity in 83 

metagenomic sequencing is dependent on the fraction of pathogen sequences in the total 84 

sequencing library. Furthermore, laboratory contaminations detected in sequencing have been 85 

shown to differ greatly between laboratories and be dependent on the input biomass [14, 15]. 86 

Nucleic acid derived from the host and environmental contaminants must therefore be taken 87 

into account. Previous studies have calculated the sensitivity by using dilution of an 88 

exogenous pathogen into a known quantity of host background. However, this does not take 89 

into account the variability of clinical samples nor does it provide any guidance on how the 90 

sensitivity of each sample should be calculated. 91 

 92 

Bioinformatic pathogen identification is a second major obstacle. Several publically available  93 

bioinformatic tools for classification are available, such as Centrifuge, Kraken and PathSeq 94 

[16-18]. Two conceptual different methods are frequently used, alignment of single reads (e.g. 95 

BLAST), or assemblies (k-mers), against pathogen databases. The list of pathogens generated 96 

by these applications are often long and requires exhaustive examinations in order to discern 97 

the true pathogen from bioinformatic misclassification and environmental contaminations. 98 

Criteria for identifying the causative pathogen include sequences disseminated throughout the 99 

microbial genome of the proposed pathogen, a threshold for number of pathogen reads in 100 

relation to total number of reads, and confirmation using several alignment algorithms have 101 
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been suggested to increase the specificity [19, 20]. Each laboratory does however apply their 102 

own criteria. 103 

 104 

We investigated the robustness of microbial metagenomics for clinical diagnostics of CNS-105 

infections. To evaluate the diagnostic performance of the method, 21 CSF samples with 106 

variable levels of known pathogens were sequenced with the aim to identify factors important 107 

for calculating sensitivity. Also, four different taxonomic classifiers were assessed for their 108 

efficiency to identify pathogens as well as the number of false positive pathogens identified. 109 

Two commonly available cell lines were implemented as a positive and negative control to 110 

support the removal of environmental contaminants and bioinformatic misclassifications. 111 

Pathogen detection in DNA metagenomic sequencing in CSF is mainly limited by the 112 

leukocyte count which affects the sensitivity and bioinformatic missclassifications which 113 

affects the efficiency of pathogen identification.  114 

 115 

Results 116 

We implemented a metagenomic DNA sequencing methodology to unbiasedly detect 117 

microbial species in CSF samples from patients with CNS symptoms in which a pathogen or 118 

EBV had been detected (Additional Table 1). Samples positively identified with pathogen-119 

specific quantitative PCR (qPCR), 16S rRNA gene sequencing or bacterial/mycotic culture in 120 

CSF were included. Different pathogen types and variation of viral loads were chosen. CSF 121 

samples containing low levels of EBV were chosen to establish the sensitivity of the method. 122 

DNA from each sample was extracted and fragmented before library preparation and 123 

sequenced using massive parallel sequencing. Datasets were processed using five 124 

bioinformatic tools (Additional Figure 1). 125 

 126 
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Bioinformatic classifiers 127 

Four bioinformatic classifiers were included, Kraken2, Centrifuge, our in-house developed 128 

PaRCA (Pathogen detection for Research and Clinical Applications) and CosmosID. 129 

CosmosID was tested mainly for its ability to generate concise pathogen lists, but the format 130 

of the platform prevented a detailed analysis of the raw data and was therefore not included in 131 

all comparisons in the manuscript. The four bioinformatic classifiers diverged with regards to 132 

fraction of processed reads (from 85%-100%, Additional Table 2-3). However, the ability to 133 

identify the primary pathogen was similar comparing the classifiers. 134 

 135 

Sensitivity 136 

Initially, three CSF samples (Sample 1-3) with high virus load of herpesvirus were analyzed. 137 

HSV1 and VZV were detected by all bioinformatic classifiers (Table 1). In sample 1, HSV1 138 

was positively identified at 1×104 genome equivalents per milliliter (Geq/ml) using qPCR. 139 

The sequencing library consisting of more than 15 million reads contained 6.2-7.2 HSV1 140 

reads per million sequences analyzed (parts per million; ppm). The following two samples 141 

originated from patients with similar values of VZV DNA levels quantified by qPCR (1.9 and 142 

3.9×105  Geq/ml). Despite equivalent levels a ten-fold difference in detected VZV reads was 143 

observed between sample two (15-16 ppm) and sample three (135-147 ppm). Sample 2 144 

contained 272×106 white blood cells (WBC) per liter compared with sample 3 which 145 

contained 17×106 WBC per liter (Table 1). We hypothesized that the difference in sensitivity 146 

was related to variations in leukocyte composition in the sample.  147 

 To further test the sensitivity, two CSF samples containing JC polyomavirus 148 

(JCV), a DNA virus with a relatively small genome, were processed. One sample contained 149 

high virus levels (1.9×105 Geq/ml) and the other low virus levels (4.3×103 Geq/ml) (Sample 150 
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4-5). JCV DNA was readily detected in both samples ranging from 1757-2096 ppm in sample 151 

4 and 40-57 ppm in sample 5. 152 

In order to verify that the methodology was applicable for bacterial agents, we 153 

sequenced CSF from two patients with pneumococcal meningitis, diagnosed by cultivation 154 

and/or 16S rRNA gene Sanger sequencing (Sample 6-7). DNA from Streptococcus 155 

pneumoniae (S. pneumoniae) was classified with a range between 30,704-60,661 ppm 156 

(Sample 6), and 679-804 ppm (Sample 7). In addition to the bacterial samples, we included 157 

two CSF samples from patients with RNA viral enterovirus CNS infection (Sample 8-9). As 158 

expected, no DNA reads were identified. Enterovirus was, however, found using 159 

metagenomic RNA sequencing (Additional figure 2)  160 

Samples with co-infections, where EBV was detected along with a primary 161 

infectious agent (Enterovirus sample 9, VZV sample 10-11 and Cryptococcus sp. sample 12), 162 

were analyzed. Neither the EBV nor the enterovirus was detected in sample 9.  VZV and EBV 163 

was detected in sample 10, and only VZV was detected in sample 11. Neither yeast nor EBV 164 

DNA was detected in sample 12. The results where expected when the following equation 165 

was applied for calculating the sensitivity for each agent.  166 

The theoretically expected number of pathogen reads was calculated according 167 

to pathogen genome size (GP), the diploid human genome size of 6.5 billion basepairs (GH), 168 

pathogen copy according to PCR per milliliter (CP), whole blood cell count per milliliter (CH), 169 

and adjusted according to the volume (V), sequencing library size (L) and mappability in 170 

percent (M) to remove major contaminants.  171 

 172 
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Thus, the detection limit of a single read of a pathogen with a 1 million basepair genome in 174 

CSF with normal WBC count (5×103 per milliliter) using an input volume of 0.3 milliliter and 175 

>95% mappability require a sequencing library of approximately 10 million reads. 176 

We included additional nine CSF samples with low levels of EBV DNA (50-177 

2000 Geq/ml) (Sample 13-21). With the exception of sample 13 (patient diagnosed with CNS 178 

Hodgkin’s lymphoma type Post-Transplant Lymphoproliferative Disorder), and sample 16, 179 

where EBV was considered the cause of the symptoms, the EBV findings were clinically 180 

interpreted as benign incidental findings i.e. not the causative agent for  the symptoms of 181 

infection. The EBV DNA detected in the majority of samples is likely to originate from 182 

latently infected B-lymphocytes recruited into the CSF. Despite the limitations for absolute 183 

quantification using qPCR and the stochasticity of distribution of low level pathogen particles, 184 

with one exception the calculated reads correlated with the detected reads in the sequencing 185 

data (Table 1). In ten samples, more than 1 viral reads was expected and pathogen sequences 186 

were found in all samples (Additional Figure 3). In seven samples where less than 1 read was 187 

expected to be found, EBV reads were only detected in one dataset (sample 17). Sixteen 188 

copies of EBV per milliliter was detected in sample 17 using qPCR and 11 reads were 189 

detected using metagenomic sequencing even though 0.3 reads were expected. The 190 

discrepancy between the calculation and and sequencing results is most likely due to the 191 

stochastic distribution of the few viral particles in the sample. In sample 20, 0.99 reads were 192 

expected to be detected in the dataset and a single EBV-read was identified in two of the four 193 

classifiers (Kraken2 and Centrifuge). This read was further confirmed using BLAST. The 194 

WBC count in sample 18 was below the reference interval of the leukocyte cell counter and 195 

was therefore omitted.  196 

All pathogen reads from PaRCA were mapped against the corresponding 197 

genome sequences using CLC genomics workbench (Figure 1a-e, Additional Figure 4). A 198 
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dispersed distribution of the reads to the corresponding genomes was observed for all 199 

samples, except sample 10, where 5 of the 7 VZV reads (1 overlapping read) originate from a 200 

repetitive region within the genome and is therefore expected to be detected at a higher rate, 201 

and the last 2 reads map to a downstream gene (no overlap) (Additional Figure 4d). Each 202 

sequencing library was subjected to BLAST using the respective reference pathogen genome. 203 

The variation of the absolute number pathogen reads comparing the different classifiers 204 

detected was lower than 25% (Table 1). 205 

Qualitative and quantitative detection of a known pathogen can thus reproducibly be carried 206 

out using the different types of bioinformatic classifiers. Furthermore, an estimation of 207 

sensitivity for pathogens can be generated for each sample which can guide the clinician 208 

whether the sequencing depth is sufficient to find a certain type of pathogen (Additional Table 209 

4). Notably however, each classifier produced diverse quantities of false positive hits. 210 
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Table 1. Metagenomic sequencing pipeline results. 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

Reads from each classifier from verified pathogen. Calculated reads in accordance with the presented algorithm. N/A: leukocyte count 226 

missing for sample 4 and 5, leukocyte count for sample 18 is below reference value, calculation is not applicable for bacteria, fungi and 227 

RNA virus. 16S rRNA: 16S rRNA gene Sanger sequencing, HSV1: Herpes simplex virus 1, VZV: Varicella Zoster virus, JCV: JC polyomavirus, 228 

EBV: Epstein-Barr virus 229 

Sample Verified 
Pathogen 

Clinical 
Method 

qPCR 
(Geq/ml
) 

PaRC
A 
(reads
)  

Kraken2 
(reads) 

Centrifug
e 
(reads)  

CosmosI
D 
(reads)  

BLAST 

(reads
) 

Calculate
d reads 

Range  
(ppm) 

   Leukocytes
    (x106/l) 

1 HSV1 qPCR  1.0x104 97 105 107 107 108 90 6.2-7.2 41 

2 VZV qPCR  3.9x105 213 219 223 211 213 365 14.9-16.0 272 

3 VZV qPCR  1.9x105 2,196 2,234 2,251 2,170 2,197 3,072 134.8-147.1 17 

4 JCV qPCR  1.9x105 23,766 24,018 24,190 22,318 23,847 N/A 1,757-2,096 N/A 

5 JCV qPCR  4.3x103 496 512 515 484 498 N/A 39.8-57.1 N/A 

6 S. 
pneumoniae 

Cultivation/16S rRNA N/A 766,74
4 

699,662 575,646 701,304 643,083 N/A 30,704-60,611 55 

7 S. 
pneumoniae 
EBV 

16S rRNA  
qPCR  

N/A 
3.7x102 

12,988 
- 

11,762 
- 

12,511 
- 

12,277 
- 

12,274 
- 

N/A 
0.1 

679-804 
Undet. 

1064 

8 Enterovirus qPCR  6.6x104 - - - - - N/A Undet. 95 

9 Enterovirus 
EBV 

qPCR  
qPCR  

5.8x104 

4.1x102 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

N/A 
0.1 

Undet. 
Undet. 

814 

10 EBV 
VZV 

qPCR  
qPCR  

1.9x103 

4.7x103 
10 
7 

9 
7 

9 
7 

8 
7 

9 
7 

2.5 
4.5 

0.8-1.1 
0.7-0.8 

181 

11 EBV 
VZV 

qPCR  
qPCR  

5.0 x101 

2.9x103 
- 
15 

- 
15 

- 
15 

- 
12 

- 
15 

0.1 
5.5 

Undet. 
1.2-1.7 

90 

12 EBV 
Yeast sp. 

qPCR  
Cultivation/Filmarray

9.1 x102 

N/A 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

0.2 
N/A 

Undet. 
Undet. 

164 

13 EBV qPCR  1.9x103 81 85 82 79 82 20.5 6.7-7.5 26 

14 EBV qPCR  3.7x102 - - - - - 0.6 Undet. 253 

15 EBV qPCR  3.2x102 6 6 6 6 6 2.5 0.4-0.5 44 

16 EBV qPCR  2.7x102 232 228 225 213 223 18.5 21.2-22.8 4 

17 EBV qPCR  1.6x102 11 10 11 11 11 0.3 1.0-1.2 148 

18 EBV qPCR  1.6x102 - - - - - N/A Undet. <4 

19 EBV qPCR  8.1 x101 - - - - - 0.6 Undet. 31 

20 EBV qPCR  5.0 x101 - 1 1 - 1 0.99 0-0.1 14 

21 EBV qPCR  5.0 x101 8 8 8 8 9 1.5 0.7-0.8 9 
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False positive pathogens  230 

The diversity of viral species detected in metagenomic sequencing libraries were relatively 231 

low and recurrent. PaRCA, Kraken2, Centrifuge and CosmosID identified 2-31, 5-13, 17-96 232 

and 0-4 viral species in each sample respectively (Figure 2a, Additional Table 5). Many of the 233 

most abundant viral species identified were found in multiple samples (Figure 3). Two 234 

samples (4 and 13) contained human virus which were not detected in multiple samples and 235 

not a previously confirmed pathogen (see below).  236 

The non-pathogen/EBV viral reads were either of human origin, misclassified or 237 

contaminations. Human endogenous retrovirus K was identified in all samples, except for the 238 

water control, which was expected as the reads originates from the human genome (Figure 3 239 

bottom, Additional Table 5). Another ubiquitously detected virus was the BeAN 58058 virus, 240 

which was detected in all samples, except for the water control. An additional BLAST 241 

examination identified these hits as human reads. Low levels of phage sequences known to 242 

infect bacteria from the Enterobacterales order were detected in a few samples and in the 243 

water control, most likely derived from bacteria purified enzymes used in the various steps of 244 

library preparation. A conspicuous pseudomonas phage contaminant in sample 4, 5 and the 245 

water control are likely derived from a bacterial contaminant at one of the sequencing sites. 246 

Streptococcus phage species were detected in sample 6, from a patient with S. pneumoniae 247 

meningitis. Importantly, the most prominent viral species identified in patient samples were 248 

also present in the cell controls at similar levels and displayed a similar sequence identity and 249 

could therefore be discarded as a pathogen.  250 

Compared with the relatively few viral agents detected by the classifiers, 251 

bacterial species were abundant; 61-712 bacterial species were identified using PaRCA, 370-252 

1408 in Kraken2, 845-2826 in Centrifuge and 0-14 in CosmosID (Figure 2b).  Two samples 253 

originated from patients with a known S. pneumoniae meningitis (sample 6 and 7) and 254 
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bacteria were detected at 69,088 ppm and 803 ppm resepectively (PaRCA). With the omission 255 

of the positive samples 6 and 7, trace levels (3.4-18.2 ppm) of S. pneumoniae was 256 

ubiquitously detected in all samples. A known environmental contamination of Pseudomonas 257 

was detected in the majority of the samples. In two samples (4 and 5) Pseudomonas 258 

constituted 389,480 ppm (39%) and 590,195 ppm (59%) of the entire sequencing library 259 

respectively, while the prevalence in other samples were lower 6.6-75,279 ppm (0.0007-260 

7.5%). A large fraction of the detected bacteria are still left when using previously suggested 261 

fixed cut-off at 100 ppm (0.01%) (Figure 2) and unlike the virus species the 262 

contaminants/misclassifications cannot be entirely removed using the control samples. 263 

However, when further applying an additional filter of comparison of the detected bacterial 264 

species between the three classifiers (PaRCA, Kraken2 and Centrifuge) only the known 265 

pathogen (S. pneumoniae) or environmental contaminants (Pseudomonas and Escherichia 266 

coli) was left. Similarily no eukaryotic species were found in all three classifiers. 267 

Considering the ubiquitous presence of viral misclassifications and 268 

contaminants in samples as well as controls, a viral pathogen is easily identifiable, but require 269 

additional analyses including read distribution and BLAST analysis, for verification in a 270 

clinical setting (discussed below). In contrast, the large number of bacterial species identified 271 

pose a bioinformatic challenge as the bacterial sequence can be derived from kit 272 

contaminants, lab environment or bioinformatic misclassifications which obscure the 273 

pathogen reads. As with the virus hits, removal of bacterial contaminants using cell controls 274 

can efficiently remove the majority of species, but additional filters are required (Figure 4).   275 

 276 

Controls 277 

Two types of controls, water and cell control, were tested for their ability to mirror the 278 

bioinformatic missclassifications and contaminations observed in samples. In the water 279 
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control the dataset consisted of 99.6% bacterial sequences and 0.06% viral sequences 280 

(Additional Table 5). The cell controls originating from EBV-transformed cancer cells had a 281 

composition more similar to the samples with 99.2-99.4% human sequences. The number of 282 

viral and bacterial strains detected in the water control was 12 and 568 respectively. In 283 

contrast the cell controls contain sequences ranging from 3-4 viral and 61-177 bacterial 284 

strains.  285 

The viral strains in the water control were mainly of phage origin. In contrast the 286 

viral strains detected in the cell controls were similar to the CSF samples, mainly Human 287 

endogenous retrovirus K and BeAN 58058 virus. Both cell lines originate from EBV-288 

transformed cancer cells and harbours EBV DNA. The ppm-values of each cell line between 289 

sequencing runs was reproducible and no significant difference was found between the 290 

classifiers (Additional Figure 5, Additional Table 6).  291 

In the water control, 98% of the sequencing library consisted of reads from 292 

Pseudomonas and the second most abundant bacterial strain found was Escherichia coli 293 

(0.1%), which is to be expected as most enzymes are produced in this bacterial system. In 294 

contrast, none of the bacterial strains in the cell controls constituted more than 0.1% of the 295 

sequencing library. 296 

Thus, the water control efficiently amplified the environmental and kit contaminants,  but in 297 

contrast to the cell control did not find human misclassifications. Also, since the water control 298 

consist entirely of contaminants, the absolute or proportionate content did not allow for a 299 

direct comparison with the patient samples. The cell control allowed for direct quantitive and 300 

qualitative subtraction of the majority of contaminants and putative pathogens were identified.  301 

 302 
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Unexpected virus findings 303 

In sample 2 and 3 we identified 29-34 EBV reads in both samples in all classifiers (Additional 304 

Table 5). The reads were dispersed throughout the genome and displayed minor sequence 305 

variability with the reference genome in accordance with previous EBV findings (Additional 306 

Figure 6a-b). Due to the limited sample volume we were unable to verify and quantify this 307 

finding using qPCR.  308 

In sample 4 we identified three viruses which were unexpected, mastadenovirus, 309 

papillomavirus and torque teno virus (Additional Figure 6c-e). PaRCA identified 32 reads 310 

matching human mastadenovirus C (HAC), Kraken2 32 reads, Centrifuge 30 reads and 311 

CosmosID did not report any HAC sequences. The majority of reads, 25 out of 32 where 198 312 

bp long, 5 reads where shorter and 2 were longer. BLAST-analysis showed that all reads 313 

shared the same 3’-end. Four reads had mismatches in comparison with reference sequence. 314 

Considering the size and distribution of the reads our findings are most likely a laboratory 315 

amplicon contamination. Human papillomavirus (HPV) reads were detected in PaRCA (12 316 

reads), Kraken2 (2 reads), but not by Centrifuge and CosmosID. Ten of the 12 reads were 105 317 

bp long and the remaining two, 104 bp and 106 bp respectively. All reads aligned to the 3’-318 

end of the virus genome in the L1 gene. Examination of BLAST results showed a high 319 

similarity with HPV98 with a one or two base-pair mismatch. As above, considering the size 320 

and distribution of the reads our findings were most likely a laboratory amplicon 321 

contamination. CosmosID has an inbuilt function to filter out hits that are considered to be 322 

amplicons, therefore the software did not report these reads. Different strains of 323 

Anellovirus/Torque teno virus (TTV) were detected in the classifiers. PaRCA identified 75 324 

reads, Kraken2 25 reads, Centrifuge 55 reads, while CosmosID did not detect any TTV reads. 325 

Five distinct consensus reads/contigs were formed from the 75 reads identified in PaRCA. 326 

Thirty-one reads formed a consensus reads of 196bp. BLAST analysis of this read displayed a 327 
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97% identity with TTV14, but only for 91bp of the fragment. The remaining parts of the 328 

contig did not show any alignment with any viral species. The origin of this read is therefore 329 

unknown. BLAST analysis of the remaining 4 reads/contigs showed alignment (>95% query 330 

cover and identity)  to an Anellovirus isolate previously identified in metagenomics. The 331 

alignment showed an unusual coverage of the 5’-end of the genome and all the reads were 332 

aligned to the first half of the genome. The reason for this unusual coverage is unknown, but 333 

considering that TTV is widely detected in metagenomic sequencing and the multiple reads 334 

aligning to a clinical isolate it is probable that these four contigs/reads originate from the 335 

patient sample. 336 

In sample 13, we detected 10 reads corresponding to hepatitis C virus (HCV) in 337 

PaRCA. Kraken2, Centrifuge and CosmosID detected 5, 6 and 6 reads respectively. The 10 338 

reads were concentrated to the 5’-end of the genome, but spread within the initial half of the 339 

genome (Additional Figure 6f). An analysis of the BLAST results showed alignment with 340 

HCV genotype 1. Synonymous mutations were found in multiple reads as well as gaps. Two 341 

reads had a fusion between sequences from different regions of the HCV genome. The 342 

sequence diversity indicates that the virus is from a patient, but the frameshift and fusion 343 

reads indicates that they are of an artificial origin. Also, the patient had undergone HCV 344 

serology analysis which was negative. Finally, considering that HCV is a RNA virus this 345 

finding is most likely a laboratory amplicon contamination. 346 

 347 

Discussion 348 

In this study we subjected 21 CSF samples from patients with suspected or confirmed CNS 349 

infection to metagenomic DNA sequencing. Pathogen detection accuracy and efficiency was 350 

evaluated using five bioinformatic tools. Using 12 samples with minute levels of EBV we 351 

concluded that the sensitivity of detection was mainly affected by leukocyte content in the 352 
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samples and to lesser degree environmental contamination. Bioinformatic classifiers were 353 

essentially equally efficient in terms of sensitivity, but produced vastly different number of 354 

false positive hits, which inhibited efficient clinical pathogen identification. The removal of 355 

these false positive hits originating from contaminants and bioinformatics classifications were 356 

alleviated by using a EBV-containing cell control which served as a positive as well as a 357 

negative control. A number of criteria have been suggested for how to identify a causative 358 

agent in clinical samples e.g. by calculating the fraction of pathogen reads and/or an absolute 359 

number of reads. However, using these methods the majority of samples used in this study 360 

would be considered negative and/or contain a large number of agents which would be 361 

considered falsely positive dependent on the choice of classifier. The lower detection limit 362 

could be generalized and compared between studies/laboratories if the leukocyte count was 363 

provided. In a similar manner, a general quantification of viral content using ppm is an 364 

efficient reference point for comparison between studies [21, 22]. Furthermore, it is evident 365 

that local contaminants greatly impact the sequencing library constitution. Therefore, it is 366 

necessary that findings in negative controls from each study is presented in its entirety. Nine 367 

CSF-samples were identified at the clinic to only contain EBV, and we did not identify any 368 

additional pathogen, confirming the results from the clinic. Importantly, using our algorithm a 369 

lower detection limit could be determined for pathogens. An alternative to metagenomic 370 

sequencing is removal of the dominating host background using various methods including 371 

centrifugation and nuclease treatment [23, 24]. However, this will deplete the majority of 372 

nucleic acid and only minute amounts of nucleic acid will be left, which complicates the 373 

library preparation. Sensitivity would also be reduced, especially for intracellular virus, and 374 

bacteria which might precipitate if centrifugation is used. Likewise the specificity would be 375 

impaired by the overwhelming number of environmental contaminants as seen in our water 376 

control. 377 
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 Our bioinformatic classifier PaRCA, which uses a combination of single reads 378 

alignment and assemblies was able to detect more reads from HAC, HPV, TTV and HCV, but 379 

failed to detect the single EBV read in sample 20. Bioinformatic classifiers for clinical 380 

practice should not only quantify the pathogen reads, but also provide information of read 381 

distribution, sequence diversity and subtraction of environmental contaminants and 382 

bioinformatic misclassifications, facilitating pathogen detection as shown in this study. Novel 383 

pathogens will also require classifiers to detect diverse sequences, as well as enable 384 

investigation of sequences which might not classify completely to a genus. Our finding of a 385 

novel TTV strain shows that there is a large difference between bioinformatics classifiers 386 

ability to identify divergent sequences. 387 

 In this study we have used archived material, which impair a proper RNA 388 

analysis due to degradation. Future studies using fresh CSF-samples where RNA integrity and 389 

quantity is measured may provide similar guidelines for RNA pathogen detection. We only 390 

included two verified bacterial CSF-samples in this study, one which was detected by 391 

culturing and 16S rRNA gene sequencing, and the second one detected by 16S rRNA gene 392 

sequencing. A limit of using metagenomic sequencing of CSF from bacterial meningitis 393 

patients is the high levels of leukocytes, but this may be compensated by the higher amount of 394 

bacterial nucleic acid compared with viral genomes. Here, we applied a fraction cutoff for 395 

bacterial findings (>0.01%) in order to decrease the amount of false positive bacterial species 396 

findings. This cutoff value should not be considered fixed and future studies with larger 397 

bacterial cohort would provide additional guidelines for bacterial species identification.  398 

 399 

Conclusions 400 

We suggest that prior to clinical metagenomic DNA sequencing, an estimation of sequencing 401 

depth is made by adjusting it to the leukocyte content in the sample. Also, a pathogen-402 
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containing cell control sequenced at the same depth should be included in the same 403 

sequencing run in order to generate the same type of reproducible background. Bioinformatic 404 

processing should include a comparison between the pathogens detected in the cell control 405 

and the sample as well as between multiple classifiers. Further candidate pathogens reads 406 

should be confirmed by using BLAST and mapped against a reference genome to identify 407 

read distribution and sequence diversity. A comprehensive evaluation including a theoretical 408 

estimation on sensitivity of the metagenomics test as well as other clinical microbiological 409 

assays e.g. serology and PCR should assist the clinician in interpreting the final results. 410 

 411 

Methods  412 

Sample collection 413 

Included in this retrospective study were cerebrospinal fluid samples from patients with CNS 414 

symptoms of infection, in which the Department of Clinical Microbiology at Sahlgrenska 415 

University Hospital or the The Public Health Agency of Sweden previously had verified the 416 

infectious agent during 2015-2017. The sample cohort was chosen to include a variety of 417 

microorganisms (DNA/RNA virus, bacteria or fungi) with varying concentration of the 418 

pathogens as determined by confirmatory testing using qPCR, cultures, 16S rRNA gene 419 

Sanger sequencing or FilmArray (Additional Methods). The samples were stored at -20°C 420 

after clinical testing. The cell lines P3HR1 (HTB-62, American Type Culture Collection, 421 

ATCC, USA) and Namalwa (CRL-1432, American Type Culture Collection, ATCC, USA), 422 

were used as combined negative controls as well as positive controls, due to its inherent EBV 423 

genome. The controls were processed in parallel with the patient samples during all the 424 

laboratory steps.  425 

  426 
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Sample processing 427 

For samples processed at the Department of Clinical Microbiology at Sahlgrenska University 428 

Hospital, total nucleic acid was extracted from 400 µl of cerebrospinal fluid using the MagNA 429 

Pure Compact Nucleic Acid Isolation Kit I (Roche Diagnostics, Indianapolis, IN, USA) on the 430 

MagNA Pure compact automated extractor. For samples processed at The Public Health 431 

Agency of Sweden, total nucleic acid was extracted from 200 µl of cerebrospinal fluid sample 432 

using the MagDEA® Dx SV (Precision System Science Co Ltd, Matsudo-city, Chiba, Japan) 433 

on the magLEAD® 12gC automated extractor (Precision System Science Co Ltd). DNA 434 

concentrations were determined using the Qubit Fluorometer (Thermo Fisher Scientific, 435 

Waltham, MA, USA) using the dsDNA HS Assay Kit (Thermo Fisher). 436 

  437 

Library preparation and sequencing  438 

DNA libraries were prepared according to the modified protocol for metagenomic samples, 439 

developed at the Public Health Agency of Sweden, using the Ion Xpress Plus Fragment 440 

Library Kit (Thermo Fisher) on the AB Library Builder System (Thermo Fisher). Samples 441 

were fragmented to 200 bp, followed by ligation of Ion P1 Adapter as well as Ion Xpress 442 

Barcode adapters. The protocol was adjusted to suit low-input samples (<50 ng DNA) by 443 

using a reduced volume of P1 adapter and barcodes (0.5 µl). The libraries were amplified, 444 

selecting the number of amplification cycles according to the sample input concentration, 445 

varying between 14 to 20 cycles. Amplified libraries were size selected choosing an optimal 446 

size range for each individual sample to ensure removal of small-sized PCR concatemers, 447 

varying between 100 to 320 bp (including adapters). Size selection was performed using the 448 

Pippin Prep platform (Sage Science, Beverly, MA, USA) with 2 % Dye free Agarose Gel 449 

Cassette. Following visualization and an estimation of the concentration using the High 450 

Sensitivity D1000 DNA Kit on the Agilent 2200 TapeStation system (Agilent Technologies, 451 
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CA, USA), the samples were pooled according to concentration. Subsequently, libraries were 452 

purified using Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA). Finally, libraries 453 

were quantified using qPCR with the Ion Library TaqMan Quantitation Kit (Thermo Fisher) 454 

and the size estimated using High Sensitivity D1000 DNA Kit on Agilent 2200 TapeStation 455 

system (Agilent Technologies). For template preparation, libraries were pooled to a final 456 

concentration of 50 pM, if obtainable. For libraries with lower concentration than 50 pM, 457 

libraries were pooled to the available concentration. Thereafter, the Ion Chef Platform was 458 

used to ligate the libraries onto spheres using the Ion 540 Kit-Chef (Thermo Fisher). 459 

Following clonal amplification, libraries were loaded onto Ion 540 Chip and sequencing was 460 

performed on the S5 System (XL, Prime; Thermo Fisher) according to the manufacturer’s 461 

protocol for 200 bp read length. 462 

  463 

Bioinformatic analysis 464 

Quality Control  465 

BAM-files were converted into fastq files using the Torrent Suite Software provided for Ion 466 

S5 system. Reads were processed with FASTX toolkit [25] to fasta files. Fastqc was used to 467 

identify low-quality reads. Sequences were then subjected to the individual pipelines 468 

described below. 469 

  470 

Pathogen detection for Research and Clinical Applications (PaRCA) 471 

Databases were created using built-in tools in Kraken2 and Kaiju. Briefly, databases, 472 

corresponding to bacteria, viruses and eukaryotes were created at DNA, RNA and protein 473 

level resulting in nine total k-mer databases. The viral databases were comprised of all viral 474 

data in GenBank, the bacterial database consisted of the full Progenomes data [26] and 475 

eukaryotic databases were composed of the GenBank data for vertebrates, parasites and fungi. 476 
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After download, the Progenomes database was continuously updated using scripts to reflect 477 

changes within the NCBI taxonomy. Reads were initially trimmed at both directions using 478 

BBDuk (BBMap 37.50) using an entropy mask of 0.9, trim quality of 16 and a minimum 479 

length of 40. Reads were corrected using Fiona (0.2.9) with id=3 for substitution errors. 480 

Reads were classified using Kraken2 and Kaiju by using individual databases. Kraken2 results 481 

were filtered using the kraken-filter with a threshold of 0.15 for eukaryotes and 0.05 for 482 

viruses and bacteria (a higher threshold indicates higher stringency). Thresholds for Kaiju: 483 

score and minimum matches were set to 85.20 for eukaryotes, 80.18 for bacteria and 75.15 for 484 

viruses. 485 

After initial classification and filtering, Kraken2 results were individually compared and reads 486 

with hits in multiple databases were evaluated based on k-mer score with the highest scoring 487 

match being retained for further downstream analysis. Kaiju scores were internally compared 488 

and the hit with the longest protein alignment was preserved. Reads with both Kraken2 and 489 

Kaiju hits were then compared and the lowest common ancestor of the two results was 490 

selected using mergeOutputs with “-c lowest” from the Kaiju package. Reads where the 491 

lowest common ancestor was a species designation were directly counted and saved while 492 

reads with a higher lowest common ancestor were further processed in the pipeline. Reads 493 

only classified by a single k-mer classifier were labelled as “singletons” and further 494 

processed. 495 

Reads were ordered by taxonomic ID, which then were regressed through the 496 

taxonomic tree until either a genus-level or kingdom-level was reached. Reads without genus-497 

level information or reads with a classification above genus level were stored separately for 498 

further analysis. After ordering into genus, all taxonomic IDs corresponding to a member of 499 

the genus were automatically downloaded from NCBI and corresponding accession identifiers 500 

were parsed from the NCBI accession dump file. Accession identifiers were then used to 501 
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create a slice of the BLAST nt-database for that specific genus. Reads classified as belonging 502 

to the order “primates” was not processed further and received the taxonomic ID 9606 (Homo 503 

Sapiens). 504 

Reads were analyzed in BLAST within the genus using a threshold of an e-value 505 

of 10-3 and the ten best hits were then retained. The ten results per read were parsed and the 506 

bit-score per taxon in the hits were aggregated. The taxon with the highest aggregate bit score 507 

was then selected as the putative taxon ID for the read. After taxon identification, results were 508 

merged and regressed in order to identify the species level classification of the putative taxon. 509 

If the kingdom level was reached before a species identification was found, the original taxon 510 

identifier was used in its place. Finally, any reads that were not successfully classified within 511 

a genus in the BLAST database creation step were collected and subjected to BLAST against 512 

the full NT-database with an e-value of  >10-5 and a minimum query coverage of 20% as 513 

threshold, again the ten best hits were preserved. The results from both BLAST analyses were 514 

aggregated based on bit score and the resulting taxon ID regressed to species level if possible. 515 

Classified reads were collected and presented using a krona-graph and tables in 516 

an html format. Tables were reorderable on name, taxonomic id and read count. Tables were 517 

also filterable, including wildcard functionality. FASTQ-files containing reads classified to an 518 

individual species and aggregates corresponding to kingdoms and unclassified reads were 519 

directly downloadable. 520 

  521 

Kraken2  522 

We used Kraken2 with a dustmasker included in the package. 523 

  524 

Centrifuge  525 
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We subjected our samples to Centrifuge with the inbuilt quality control and repeatmasker 526 

based on dustmasking from NCBI tools. Briefly, the dustmasker converts the low-quality 527 

regions into N’s so the aligner skips aligning these sequences [16]. In order to obtain reads 528 

from all pathogens included in this study, the total of both leaf and genus levels were 529 

incorporated from the Centrifuge reports, thus leading to higher amounts of total classified 530 

reads, however, since not all species were converted into the ETE3 toolkit, and some stops at 531 

genus level, this does not affect final results of classified pathogens.  532 

 533 

CosmosID  534 

Unassembled sequencing reads were directly analyzed using the commercially available 535 

genomic platform CosmosID to achieve identification of microbes at species level [27]. Each 536 

uploaded sample was searched and cleared from host sequences by the platform prior to 537 

analysis. CosmosID automatically filters out phages and amplicon-originated sequences.   538 

 539 

BLAST  540 

BLAST analysis was performed with reference genomes for the pathogens. The cutoff was set 541 

to ≥95% sequence identity and an e-value of ≤10-3. Following standard steps for pre-542 

processing reads, a BLAST search was performed with reads set as subjects and reference 543 

genomes set as queries. Reference genomes used were NC_001806 (HSV1), NC_001348 544 

(VZV), NC_00196 (JCV), NC_003098 (S. pneumoniae), NC_007605 (EBV), NC_001405 545 

(Human Mastadenovirus C; MAVC), FM_955837.2 (Human Papillomavirus 98; HPV98), 546 

MH_649255.1 (Anellovirus ), and NC_004102.1 (HCV). 547 

 548 

Calculations and statistical analysis 549 
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CLC genomics workbench (Ver. 11, Qiagen) was used to perform and plot coverage analysis. 550 

Classified sequences from Kraken2 and Centrifuge were visualized using Pavian [28]. Ratio 551 

between sample ppm and control ppm were calculated, where an ratio ≤ 10 were considered a 552 

contamination. 553 

GrapPad Prism Ver. 7.0c was utilized to perform statistical analysis. Kruskal-Wallis test with 554 

Dunn´s multiple comparison tests was applied to compare reproducibility through pipelines. 555 

A p-value ≤ 0.05 were considered significant.  556 

 557 

  558 
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Reads from samples not shown in main figure mapped to reference genomes of (a) VZV 671 

(NC_001348), (b) JCV (NC_00196), (c) S. pneumoniae (NC_003098), (d, f) VZV 672 

(NC_001348), and (e, g-j) EBV (NC_007605) using CLC Genomics Workbench. Number of 673 

reads (y-axis) at each nucleotide position of the genome (x-axis) depicted in blue. Dark blue 674 

represents peak, bright blue average and light blue minimum coverage for respective section 675 

of the genome. 676 

 677 

Additional figure 5. Cell control coverage density plot and reproducibility (pdf) 678 

Coverage analysis of EBV reads detected in cell controls Namalwa (a) and P3HR1 (b) 679 

mapped to EBV reference genome (NC_007605) using CLC Genomics Workbench. Number 680 

of reads (y-axis) at each nucleotide position of the genome (x-axis) depicted in blue. Dark 681 

blue represents peak, bright blue average and light blue minimum coverage for respective 682 

section of the genome. EBV reads shown as parts per million reads (ppm) in each of the cell 683 

line controls for each of the bioinformatic classifier (c), n=4 (Namalwa) or n=5 (P3HR1); 684 

Kruskal-Wallis test with Dunn ś multiple comparisons show no significant difference 685 

between the pipelines. 686 

 687 

Additional figure 6. Coverage analysis for unexpected findings (pdf) 688 

Reads from samples with ambigous findings mapped to reference genomes of EBV 689 

NC_007605 (a-b), Human Mastadenovirus C (MAVC) NC_001405 (c), Human 690 

Papillomavirus 98 (HPV98) FM_955837.2 (d), Anellovirus MH_649255.1 (e), and HCV 691 

NC_004102.1 (f), using CLC Genomics Workbench.   692 
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Figure Captions 693 

Figure 1. Pathogen genome alignment  694 

Coverage density plot of sequencing reads from respective sample and control detected in 695 

PaRCA aligned to reference genomes of HSV1 (a), VZV (b), JCV (c), S. pneumoniae (d) and 696 

EBV (e-f). Number of reads (y-axis) at each nucleotide position of the genome (x-axis) 697 

depicted in blue. Dark blue represents peak, bright blue average and light blue minimum  698 

coverage for respective section of the genome.  699 

 700 

Figure 2. Detected pathogens in bioinformatic classifiers  701 

Number of viral (a) and bacterial species (b) classified in each of the samples and controls 702 

using the different bioinformatic classifiers. Dark blue bars shows number of total number of 703 

species classified, bright blue bars shows amount of bacterial species over the fraction cutoff 704 

(≥0.01% of the dataset), light blue bars shows number of species not removed using controls.  705 

 706 

Figure 3. Viral species identified in datasets  707 

Heatmap showing the ten most abundant viral species in each sample detected using PaRCA. 708 

AcMNPV: Autographa californica multiple nucleopolyhedrovirus. Controls: P; P3HR1, N; 709 

Namalwa, W; water.  710 

 711 

Figure 4. Discerning microbial pathogens from contaminations and misclassifications 712 

Flowchart for identification of pathogens by removing false positive species. Virus 713 

contaminants can be removed by comparison of datasets with controls and manual 714 

examination of remaining viral reads. Phages can be disregarded as these virus do not infect 715 

human cells. Bacterial species require additional filters including a cutoff value and 716 

comparison between classifiers. 717 
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