### 1 Main manuscript

- 2
- 3 Title
- 4 Evolution of the potassium channel gene Kcnj13 underlies colour pattern
- 5 diversification in Danio fish
- 6
- 7 Authors
- 8 Marco Podobnik
- 9 marco.podobnik@tuebingen.mpg.de
- 10 https://orcid.org/0000-0001-5480-7086
- 11
- 12 Hans Georg Frohnhöfer
- 13 hans-georg.frohnhoefer@tuebingen.mpg.de
- 14 https://orcid.org/0000-0003-4038-7089
- 15
- 16 Christopher M. Dooley
- 17 christopher.dooley@tuebingen.mpg.de
- 18 https://orcid.org/0000-0002-4941-9019
- 19
- 20 Anastasia Eskova
- 21 anastasia.eskova@ibm.com
- 22 https://orcid.org/0000-0002-4599-2109
- 23
- 24 Christiane Nüsslein-Volhard
- 25 christiane.nuesslein-volhard@tuebingen.mpg.de
- 26 https://orcid.org/0000-0002-7688-1401

- 28 Uwe Irion
- 29 uwe.irion@tuebingen.mpg.de

#### 30 https://orcid.org/0000-0003-2823-5840

31

#### 32 Abstract

33 The genetic basis of morphological variation provides a major topic in evolutionary biology<sup>1-6</sup>. Colour patterns in fish are among the most diverse of all vertebrates. 34 35 Species of the genus Danio display strikingly different colour patterns ranging from horizontal stripes, to vertical bars or spots<sup>7-10</sup>. Stripe formation in zebrafish, *Danio* 36 37 rerio, oriented by the horizontal myoseptum, is a self-organizing process based on 38 cell-contact-mediated interactions between three types of chromatophores with a 39 leading role of iridophores<sup>11-14</sup>. We investigated genes known to regulate 40 chromatophore interactions in zebrafish as candidates that might have evolved to 41 produce a pattern of vertical bars in its sibling species. Danio aesculapil<sup>8,10</sup>. Using gene editing<sup>15-17</sup> we generated several mutants in *D. aesculapii* that demonstrate a 42 43 lower complexity in the interactions between chromatophores in this species, as well 44 as a minor role of iridophores in patterning. Complementation tests in interspecific hvbrids<sup>18,19</sup> identified *obelix/Kcnj13*, which encodes an inwardly rectifying potassium 45 channel (Kir7.1)<sup>20</sup>, as a gene evolved between *D. rerio* and *D. aesculapii* as well as 46 47 in two of seven more Danio species tested. Our results demonstrate that the 48 CRISPR/Cas9-system allows straightforward genetic tests also in non-model 49 vertebrates to identify genes that underlie morphological evolution.

50

#### 51 Main

52 Colour patterns are common features of animals and have important functions in 53 camouflage, as signals for kin recognition, or mate choice. As targets for natural and sexual selection, they are of high evolutionary significance<sup>21-24</sup>. The zebrafish, *Danio* 54 rerio, has emerged as a model system to study colour pattern development in a 55 vertebrate<sup>14,25-29</sup>. A fair number of genes have been identified that are required for 56 the formation of the pattern<sup>28,29</sup>, which is composed of a series of horizontal light and 57 58 dark stripes on the flank of the fish as well as in the anal and tail fins (Fig. 1a). The 59 adult pattern is created by three different types of pigment cells (chromatophores) in 60 the skin, black melanophores, blue or silvery iridophores and yellow xanthophores<sup>13,30-32</sup>. The chromatophores producing this pattern mainly originate 61

62 from multipotent neural crest-derived stem cells located at the dorsal root ganglia of the peripheral nervous system<sup>33-37</sup>. Signalling pathways, e.g. Csf1 or Edn3, control 63 proliferation and spreading of chromatophores<sup>38-40</sup>. During metamorphosis, the 64 65 period when adult form and colour pattern are established, assembly into the striped 66 pattern is controlled by interactions between the three cell types. Several genes are 67 autonomously required in the chromatophores for these heterotypic interactions<sup>11,12,20,41-43</sup>. These genes typically encode integral membrane proteins 68 such as adhesion molecules<sup>42</sup>, channels<sup>20</sup>, or components of cellular junctions, some 69 of which mediate direct cell contacts<sup>43,44</sup>. In *Meox1* (*choker*) mutants, lacking the 70 71 horizontal myoseptum as anatomical landmark, the horizontal orientation is lost, but 72 stripes form of normal width and composition (Fig. 1b), indicating that stripe

formation is a process of self-organization of the pigment cells<sup>11</sup>.

74

75 Danio species show an amazing variety of colour patterns, which range from 76 horizontal stripes in D. rerio (Fig. 1a), over vertical bars in D. aesculapii, D. choprae 77 or D. erythromicron (Fig. 1c, g, m) to spotted patterns in D. tinwini or D. margaritatus 78 (Fig. 1d, h). The Danio species diversified for at least 13 million years in Southeast 79 Asia and their spatial distributions only partially overlap today<sup>10,45</sup>. Hybrids between 80 D. rerio and other Danio species can be produced in the laboratory by natural 81 matings or by *in vitro* fertilization<sup>19</sup>. They invariably display colour patterns similar to 82 the stripes in *D. rerio*, thus, horizontal stripes appear to be dominant over divergent patterns (Fig. 1e, f, i, j)<sup>19</sup>; whether this is due to a gain-of-function in striped species 83 or losses in the other species is an open question<sup>25,28,29</sup>. The hybrids are virtually 84 85 sterile impeding further genetic experiments, like QTL mapping, but they allow interspecific complementation tests<sup>19</sup>. Using this approach, we identified the 86 87 potassium channel gene Kcnj13 as repeatedly evolved in the Danio genus.

88

### 89 Prevalent pattern orientation by the horizontal myoseptum

90 To reconstruct the history of colour pattern evolution we first investigated how

91 pattern orientation is inherited in hybrids (see phylogenetic relationships depicted on

92 the left of Fig. 4). The horizontal orientation of the stripes in *D. rerio* depends on the

93 horizontal myoseptum (Fig. 1a, b)<sup>11,13</sup>. The closest sibling species to *D. rerio*,

94 D. aesculapii, shows a very different pattern of vertically oriented dark bars (Fig. 1c)<sup>8</sup>. Similar barred patterns are exhibited by the more distantly related *D. choprae* 95 96 and *D. erythromicron* (Fig. 1g, m). These patterns clearly do not use the horizontal 97 myoseptum for orientation. In all three cases, hybrids with *D. rerio* show a pattern that resembles the horizontal *D. rerio* stripes (Fig. 1e, i, n)<sup>29</sup>. Strikingly, hybrids 98 99 between D. aesculapii and D. choprae display a barred pattern (Fig. 1k). This 100 indicates that the cues for horizontal orientation are lacking and that the pattern 101 develops in a similar manner in both barred species. In contrast, hybrids between 102 D. aesculapii and D. erythromicron develop highly variable patterns without any clear 103 orientation (Fig. 1o; Extended Data Fig. 1). Therefore, the vertical bars must develop

- in a different manner in *D. erythromicron* compared to *D. aesculapii* and *D. choprae*.
- 105

106 Two Danio species display spotted patterns: D. tinwini has dark spots on a light 107 background (Fig. 1d)<sup>9</sup>, whereas *D. margaritatus* shows light spots on a dark background (Fig. 1h)<sup>7</sup>. In both cases, hybrids with *D. rerio* show a stripe pattern 108 similar to *D. rerio* (Fig. 1f, j)<sup>29</sup>. Hybrids between the two spotted species also develop 109 110 a pattern of horizontal stripes, albeit with some interruptions and irregularities (Fig. 111 11). These results indicate that the horizontal myoseptum functions to orient the 112 pattern in the hybrids between *D. tinwini* and *D. margaritatus*, and therefore in at 113 least one of the two parental species. It seems likely that this is the case in D. tinwini, 114 as the spots show some horizontal orientation reminiscent of interrupted stripes. 115 Hybrids between *D. aesculapii* and *D. margaritatus* develop meandering patterns 116 that do not resemble either of the parental species and lack a clear horizontal or vertical orientation (Fig. 1p). Based on the most recent phylogeny<sup>10</sup>, we hypothesize 117 118 an evolutionary history, in which the horizontal orientation of the pattern in the D. 119 rerio group was gained from an ancestral ambiguous pattern and lost again in 120 D. aesculapii. Two other species, D. erythromicron and D. choprae, independently 121 might have acquired a vertical orientation from this ancestral pattern. The patterns of 122 the hybrids between D. aesculapii and D. erythromicron or D. margaritatus, which 123 are without clear orientation, might resemble such an ancestral pattern. These 124 patterns are much more variable than the species patterns (Extended Data Fig. 1) 125 suggesting that the ancestral patterns did not function as recognition signals but 126 rather provided camouflage.

#### 127

#### 128 Chromatophore interactions in stripes and bars

129 To investigate the developmental and genetic basis for the differences in pattern 130 formation, we focussed on the sibling species D. rerio and D. aesculapii, which 131 display horizontal stripes and vertical bars, respectively (Fig. 1a, c). In D. rerio, 132 during early metamorphosis, iridophores emerge along the horizontal myoseptum to form the first light stripe (Extended Data Fig. 2a)<sup>11-13</sup>. In contrast, in *D. aesculapii* 133 134 iridophores appear more scattered over the flank and only during later stages 135 (Extended Data Fig. 2b, d). This indicates that it is not the physical presence of the 136 horizontal myoseptum, which exists in both species, but specific guidance signals 137 directing the cells into the skin in *D. rerio*, which lack in *D. aesculapii*. Later, when 138 iridophores, covered by compact xanthophores, have formed the first contiguous 139 light stripe with adjacent melanophore stripes in *D. rerio* (Extended Data Fig. 2c, e), 140 in *D. aesculapii* melanophores and xanthophores intermix broadly (Extended Data 141 Fig. 2f); they sort out loosely into vertical bars of low contrast without coherent 142 sheets of dense iridophores between the melanophore bars during later stages 143 (Extended Data Fig. 2h). Our observations suggest that the different patterns in 144 these sibling species are produced by the presence or absence of guidance signals 145 for iridophores along the horizontal myoseptum as well as by cellular interactions 146 that prevent mixing of melanophores and xanthophores in *D. rerio* but not in *D.* 147 aesculapii.

148

149 To address the role of the different cell types, we used the CRISPR/Cas9 system to 150 generate mutants lacking individual chromatophore types in *D. aesculapii*. Whereas 151 in *D. rerio* vestiges of the striped pattern form in the absence of one chromatophore type (Fig. 2a, b, c)<sup>11</sup>, loss of either melanophores (Fig. 2d) or xanthophores (Fig. 2e) 152 153 completely abolishes the patterning in *D. aesculapii*. This indicates that the repulsive 154 interactions between melanophores or xanthophores and iridophores, which account for the residual patterns in *D. rerio*<sup>11,12</sup>, are absent in *D. aesculapii*. In contrast, 155 156 eliminating iridophores in D. aesculapii still permits some melanophore bar formation 157 (Fig. 2f). This indicates that iridophores, which play a dominant role for stripe

158 formation in *D. rerio*, are dispensable for the formation of vertical bars in

159 *D. aesculapii*.

160

161 Next, we analysed genes with known functions in heterotypic interactions between 162 chromatophores. In D. rerio loss-of-function mutations in the gap junction genes Cx39.4 (luchs)<sup>44,46</sup> and Cx41.8/Gja5b (leopard)<sup>41,46,47</sup> as well as mutations in lgsf11 163 164 (seurat)<sup>42</sup>, which codes for a cell adhesion molecule, lead to melanophore spots (Fig. 165 2j, Extended Data Fig. 3a, c, e), whereas mutations in Kir7.1/Kcnj13 (obelix/jaguar) result in fewer and wider stripes with some mixing of melanophores and 166 xanthophores (Fig. 2g)<sup>20,48</sup>. So far, only dominant alleles of *Kcnj13* have been 167 described<sup>41,46,49</sup>. We used the CRISPR/Cas9 system to generate a Kcnj13 loss-of-168 169 function allele in *D. rerio*, which is recessive (Fig. 2h, Extended Data Fig. 3e, g, 170 Supplementary Information). To investigate the functions of these four genes in 171 D. aesculapii, we generated mutants in the orthologs. In all of them we find an even 172 distribution of melanophores (Fig. 2i, Extended Data Fig. 3b, d, f, h) indicating that 173 the interactions mediated by these genes are essential to generate the melanophore 174 bars in *D. aesculapii*. The complete loss of a pattern in single mutants in *D*. 175 aesculapii is different from D. rerio where this occurs only in double mutants 176 (Fig. 2k)<sup>46</sup>. In concert with predictions of agent-based models of patterning<sup>50</sup>, this 177 indicates that the robust formation of horizontal stripes in *D. rerio* is due to a gain in 178 complexity based on partially redundant chromatophore interactions. These are 179 dominated by iridophores and oriented by an as yet unidentified signal along the 180 horizontal myoseptum. D. aesculapii might have secondarily lost the dominance of 181 iridophores leading to a pattern based primarily on interactions between 182 xanthophores and melanophores and thus of lower complexity.

183

The ability to generate loss-of-function mutations in both species allowed us to
generate interspecific hybrids, which carry loss-of-function alleles from both parental
species. These hybrids are very similar to the respective *D. rerio* mutants (Fig. 2I,
Extended Data Fig. 3i, j), indicating that these genes have the same functions during
stripe formation in *D. rerio* and the hybrids.

#### 190 Kcnj13 evolved repeatedly in the Danio genus

191 Next, we generated reciprocal heterozygotes, i.e. interspecific hybrids carrying a 192 loss-of-function allele from either one of the parental species in an otherwise identical genetic background<sup>18</sup>. This powerful genetic test to identify evolved genes 193 194 has not been applied in vertebrates, so far. We expect similar patterns in these 195 hybrids if the gene function can be fully provided by either wild-type allele. A 196 qualitatively altered hybrid pattern would reveal that one of the wild-type alleles 197 cannot complement the loss-of-function of the other, therefore indicating functional 198 changes during evolution. We found that heterozygous hybrids with the loss-of-199 function allele of *Kcnj13* from *D. rerio* display a pattern of spots or interrupted stripes 200 whereas a striped pattern forms with the mutant allele from *D. aesculapii* (Fig. 3a, b, 201 Extended Data Fig. 4g, h). This indicates that the wild-type allele from *D. aesculapii* 202 cannot compensate for the loss of the D. rerio allele. In contrast, in the case of 203 heterozygous hybrids with Cx39.4, Cx41.8 and Igsf11 striped patterns 204 indistinguishable from wild-type hybrids are formed regardless whether the wild-type 205 allele stems from *D. rerio* (Extended Data Fig. 4b, d, f) or the other species 206 (Extended Data Fig. 4a, c, e). These reciprocal heterozygosity tests indicate that 207 Cx39.4, Cx41.8 and Igsf11 provide similar functions in both species, whereas the 208 function of *Kcnj13* has evolved between the two species.

209

210 To investigate if *Kcnj13* underlies the pattern variation more broadly across the 211 Danio genus, we tested seven additional species (Fig. 4a, top to bottom). As 212 mentioned above, wild-type hybrids between D. rerio and all other Danio species 213 display horizontal stripes, resembling the *D. rerio* pattern, with slight defects in 214 D. albolineatus (Fig. 4b). Strikingly, not only D. rerio Kcni13 k.o. / D. aesculapii 215 hybrids (Fig. 4c, highlighted in magenta) but also D. rerio Kcnj13 k.o. / D. tinwini 216 hybrids developed patterns of spots or interrupted stripes indicating that the Kcni13 217 function must have evolved compared to D. rerio (Fig. 4c, highlighted in yellow). This 218 pattern, which is qualitatively different from all wild-type hybrids and also from the D. 219 rerio Kcnj13 mutant pattern, is similar to the parental pattern of D. tinwini, where 220 dense iridophores interrupt the dark melanophore stripes (Fig. 1d, Fig. 4c). D. rerio 221 Kcnj13 k.o. / D. choprae hybrids also developed patterns that resemble interrupted

222 stripes (Fig. 4c, highlighted in cyan), similar to the D. rerio Kcnj13 k.o. / D. aesculapii 223 hybrid pattern (Fig. 4c). No gualitative differences were detected between wild-type 224 hybrids (Fig. 4b) and hybrids heterozygous for *D. rerio Kcnj13* in the case of *D.* 225 kyathit, D. nigrofasciatus, D. albolineatus, D. erythromicron and D. margaritatus (Fig. 226 4c). This indicates that the alleles from these species complement the loss of the D. 227 rerio Kcnj13 allele. Functional changes of Kcnj13 occurred in D. aesculapii, D. tinwini 228 and D. choprae compared to D. rerio, however, heterozygous hybrids did not 229 develop pure D. rerio Kcni13 mutant patterns indicating that the orthologs still 230 provide some function for patterning across all species tested. The separated 231 positions of the three species with the different functions of Kcnj13 in the phylogenetic tree (graph on the left of Fig. 4)<sup>10</sup> indicate a repeated and independent 232

233 evolution of the same gene.

234

#### 235 Kcnj13

Potassium channels have important roles in tissue patterning<sup>51</sup>, notably in the 236 regulation of allometric growth of fins in *D. rerio*<sup>52,53</sup>. *Kcnj13* encodes an inwardly 237 238 rectifying potassium channel (Kir7.1) conserved in vertebrates (Extended Data Fig. 239 5). Mutations are known to cause defects in tracheal development in mice<sup>54</sup> and two 240 rare diseases in humans leading to visual impairment<sup>54-60</sup>. During colour pattern formation in *D. rerio* its function is autonomously required in melanophores<sup>48</sup>, and in 241 242 ex vivo studies it was shown that the channel is involved in the contact-dependent 243 depolarisation of melanophores upon interaction with xanthophores leading to a repulsion between these cells<sup>43</sup>. Evolution in *Kcnj13* in *D. aesculapii*, *D. tinwini* and 244 245 D. choprae might therefore cause differences in heterotypic chromatophore 246 interactions between species. The protein coding sequences of *Kcnj13* orthologs are 247 highly conserved in all Danio species with only very few diverged sites in the 248 cytoplasmic N- and C-terminal parts of the protein (Extended Data Fig. 6). Whether 249 any of these amino acid changes might affect the function of the channel and/or if 250 changes in gene expression are the basis for the repeated evolution of Kcnj13 will 251 require further experiments.

253 In contrast to mammals and birds, basal vertebrates retained several chromatophore 254 types providing a substrate for the development of elaborate colour patterns. Their 255 rapid and extensive evolutionary diversification is most likely if the number of underlying genes is small<sup>61</sup>. Several patterning genes have been repeatedly 256 identified in genetic screens in *D. rerio*<sup>41,46,49</sup>. These genes provide candidates that 257 258 might have evolved to contribute to patterning differences between Danio species. 259 Evolved genes have been identified in D. albolineatus and D. nigrofasciatus, where 260 changes in two signalling pathways, Csf1 or Edn3, likely underlie patterning 261 variations by differentially promoting xanthophore or iridophore development, respectively<sup>19,36,62</sup>. We focused on genes regulating heterotypic interactions between 262 263 chromatophores as a potential genetic basis for colour pattern evolution. Using 264 interspecific mutant complementation tests we identified the potassium channel gene 265 Kcnj13 as contributing to patterning divergence in multiple Danio species. We have 266 shown that this genus offers the opportunity to identify evolved genes and to 267 reconstruct the evolution of biodiversity.

268

#### 269 Main Text References

| 270 | 1 | Sucena, E. & Stern, D. L. Divergence of larval morphology between                    |
|-----|---|--------------------------------------------------------------------------------------|
| 271 |   | Drosophila sechellia and its sibling species caused by cis-regulatory evolution      |
| 272 |   | of ovo/shaven-baby. Proceedings of the National Academy of Sciences of the           |
| 273 |   | United States of America 97, 4530-4534, doi:10.1073/pnas.97.9.4530 (2000).           |
| 274 | 2 | Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by              |
| 275 |   | repeated fixation of Ectodysplasin alleles. Science 307, 1928-1933,                  |
| 276 |   | doi:10.1126/science.1107239 (2005).                                                  |
| 277 | 3 | Westerman, E. L. et al. Aristaless Controls Butterfly Wing Color Variation           |
| 278 |   | Used in Mimicry and Mate Choice. Curr Biol 28, 3469-3474 e3464,                      |
| 279 |   | doi:10.1016/j.cub.2018.08.051 (2018).                                                |
| 280 | 4 | Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363,   |
| 281 |   | 499-504, doi:10.1126/science.aav3824 (2019).                                         |
| 282 | 5 | Hu, Y., Linz, D. M. & Moczek, A. P. Beetle horns evolved from wing serial            |
| 283 |   | homologs. <i>Science</i> <b>366</b> , 1004-1007, doi:10.1126/science.aaw2980 (2019). |

| 284 | 6  | Orteu, A. & Jiggins, C. D. The genomics of coloration provides insights into           |
|-----|----|----------------------------------------------------------------------------------------|
| 285 |    | adaptive evolution. Nat Rev Genet, doi:10.1038/s41576-020-0234-z (2020).               |
| 286 | 7  | Roberts, T. R. The 'celestial pearl danio', a new genus and species of                 |
| 287 |    | colourful minute cyprinid fish from Myanmar (Pisces: Cypriniformes). Raffles           |
| 288 |    | Bulletin of Zoology <b>55</b> , 131-140 (2007).                                        |
| 289 | 8  | Kullander, S. O. & Fang, F. Danio aesculapii, a new species of danio from              |
| 290 |    | south-western Myanmar (Teleostei: Cyprinidae). Zootaxa 2164, 41-48 (2009).             |
| 291 | 9  | Kullander, S. O. & Fang, F. Danio tinwini, a new species of spotted danio from         |
| 292 |    | northern Myanmar (Teleostei: Cyprinidae). Ichthyological Exploration of                |
| 293 |    | Freshwaters <b>20</b> , 223-228 (2009).                                                |
| 294 | 10 | McCluskey, B. M. & Postlethwait, J. H. Phylogeny of zebrafish, a "model                |
| 295 |    | species," within Danio, a "model genus". <i>Mol Biol Evol</i> <b>32</b> , 635-652,     |
| 296 |    | doi:10.1093/molbev/msu325 (2015).                                                      |
| 297 | 11 | Frohnhöfer, H. G., Krauss, J., Maischein, H. M. & Nüsslein-Volhard, C.                 |
| 298 |    | Iridophores and their interactions with other chromatophores are required for          |
| 299 |    | stripe formation in zebrafish. Development 140, 2997-3007,                             |
| 300 |    | doi:10.1242/dev.096719 (2013).                                                         |
| 301 | 12 | Patterson, L. B. & Parichy, D. M. Interactions with iridophores and the tissue         |
| 302 |    | environment required for patterning melanophores and xanthophores during               |
| 303 |    | zebrafish adult pigment stripe formation. PLoS genetics 9, e1003561,                   |
| 304 |    | doi:10.1371/journal.pgen.1003561 (2013).                                               |
| 305 | 13 | Singh, A. P., Schach, U. & Nüsslein-Volhard, C. Proliferation, dispersal and           |
| 306 |    | patterned aggregation of iridophores in the skin prefigure striped colouration         |
| 307 |    | of zebrafish. Nature cell biology 16, 607-614, doi:10.1038/ncb2955 (2014).             |
| 308 | 14 | Irion, U., Singh, A. P. & Nüsslein-Volhard, C. in Current Topics in                    |
| 309 |    | Developmental Biology Ch. 8, (Elsevier Inc., 2016).                                    |
| 310 | 15 | Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in                    |
| 311 |    | adaptive bacterial immunity. Science <b>337</b> , 816-821,                             |
| 312 |    | doi:10.1126/science.1225829 (2012).                                                    |
| 313 | 16 | Hwang, W. Y. et al. Heritable and precise zebrafish genome editing using a             |
| 314 |    | CRISPR-Cas system. <i>PloS one</i> <b>8</b> , e68708, doi:10.1371/journal.pone.0068708 |
| 315 |    | (2013).                                                                                |
|     |    |                                                                                        |

| 316 | 17 | Irion, U., Krauss, J. & Nüsslein-Volhard, C. Precise and efficient genome               |
|-----|----|-----------------------------------------------------------------------------------------|
| 317 |    | editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827-               |
| 318 |    | 4830, doi:10.1242/dev.115584 (2014).                                                    |
| 319 | 18 | Stern, D. L. Identification of loci that cause phenotypic variation in diverse          |
| 320 |    | species with the reciprocal hemizygosity test. <i>Trends Genet</i> <b>30</b> , 547-554, |
| 321 |    | doi:10.1016/j.tig.2014.09.006 (2014).                                                   |
| 322 | 19 | Parichy, D. M. & Johnson, S. L. Zebrafish hybrids suggest genetic                       |
| 323 |    | mechanisms for pigment pattern diversification in Danio. Development genes              |
| 324 |    | and evolution <b>211</b> , 319-328 (2001).                                              |
| 325 | 20 | Iwashita, M. et al. Pigment pattern in jaguar/obelix zebrafish is caused by a           |
| 326 |    | Kir7.1 mutation: implications for the regulation of melanosome movement.                |
| 327 |    | <i>PLoS genetics</i> <b>2</b> , e197, doi:10.1371/journal.pgen.0020197 (2006).          |
| 328 | 21 | Darwin, C. The Descent of Man, and Selection in Relation to Sex. John                   |
| 329 |    | Murray, London. (1871).                                                                 |
| 330 | 22 | Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu Rev Cell            |
| 331 |    | Dev Biol 24, 425-446, doi:10.1146/annurev.cellbio.24.110707.175302 (2008).              |
| 332 | 23 | Cuthill, I. C. et al. The biology of color. Science 357,                                |
| 333 |    | doi:10.1126/science.aan0221 (2017).                                                     |
| 334 | 24 | Nüsslein-Volhard, C., Grutzmacher, S. & Howard, J. Animal beauty : on the               |
| 335 |    | evolution of biological aesthetics. (The MIT Press, 2019).                              |
| 336 | 25 | Parichy, D. M. Evolution of danio pigment pattern development. Heredity 97,             |
| 337 |    | 200-210, doi:10.1038/sj.hdy.6800867 (2006).                                             |
| 338 | 26 | Kondo, S., Iwashita, M. & Yamaguchi, M. How animals get their skin patterns:            |
| 339 |    | fish pigment pattern as a live Turing wave. Int J Dev Biol <b>53</b> , 851-856,         |
| 340 |    | doi:10.1387/ijdb.072502sk (2009).                                                       |
| 341 | 27 | Singh, A. P. & Nüsslein-Volhard, C. Zebrafish stripes as a model for                    |
| 342 |    | vertebrate colour pattern formation. Curr Biol 25, R81-92,                              |
| 343 |    | doi:10.1016/j.cub.2014.11.013 (2015).                                                   |
| 344 | 28 | Irion, U. & Nüsslein-Volhard, C. The identification of genes involved in the            |
| 345 |    | evolution of color patterns in fish. Curr Opin Genet Dev 57, 31-38,                     |
| 346 |    | doi:10.1016/j.gde.2019.07.002 (2019).                                                   |
| 347 | 29 | Patterson, L. B. & Parichy, D. M. Zebrafish Pigment Pattern Formation:                  |
| 348 |    | Insights into the Development and Evolution of Adult Form. Annu Rev Genet               |
| 349 |    | <b>53</b> , 505-530, doi:10.1146/annurev-genet-112618-043741 (2019).                    |
|     |    |                                                                                         |

- 30 Hirata, M., Nakamura, K., Kanemaru, T., Shibata, Y. & Kondo, S. Pigment cell
  organization in the hypodermis of zebrafish. *Developmental dynamics : an*official publication of the American Association of Anatomists 227, 497-503,
  doi:10.1002/dvdy.10334 (2003).
- 31 Hirata, M., Nakamura, K. & Kondo, S. Pigment cell distributions in different
  tissues of the zebrafish, with special reference to the striped pigment pattern. *Developmental dynamics : an official publication of the American Association*of Anatomists 234, 293-300, doi:10.1002/dvdy.20513 (2005).
- 358 32 Mahalwar, P., Walderich, B., Singh, A. P. & Nüsslein-Volhard, C. Local
  reorganization of xanthophores fine-tunes and colors the striped pattern of
  zebrafish. *Science* 345, 1362-1364, doi:10.1126/science.1254837 (2014).
- 361 33 Budi, E. H., Patterson, L. B. & Parichy, D. M. Post-embryonic nerve-
- associated precursors to adult pigment cells: genetic requirements and
  dynamics of morphogenesis and differentiation. *PLoS genetics* 7, e1002044,
  doi:10.1371/journal.pgen.1002044 (2011).
- 365 34 Mongera, A. *et al.* Genetic lineage labeling in zebrafish uncovers novel neural
  366 crest contributions to the head, including gill pillar cells. *Development* 140,
  367 916-925, doi:10.1242/dev.091066 (2013).
- 368 35 Dooley, C. M., Mongera, A., Walderich, B. & Nusslein-Volhard, C. On the
  ambryonic origin of adult melanophores: the role of ErbB and Kit signalling in
  establishing melanophore stem cells in zebrafish. *Development* 140, 10031013, doi:10.1242/dev.087007 (2013).
- 36 Patterson, L. B., Bain, E. J. & Parichy, D. M. Pigment cell interactions and
  differential xanthophore recruitment underlying zebrafish stripe reiteration and
  Danio pattern evolution. *Nature communications* 5, 5299,
- doi:10.1038/ncomms6299 (2014).
- 376 37 Singh, A. P. *et al.* Pigment Cell Progenitors in Zebrafish Remain Multipotent
  377 through Metamorphosis. *Dev Cell* 38, 316-330,
- 378 doi:10.1016/j.devcel.2016.06.020 (2016).
- 379 38 Parichy, D. M. *et al.* Mutational analysis of endothelin receptor b1 (rose)
  380 during neural crest and pigment pattern development in the zebrafish Danio
  381 rerio. *Developmental biology* 227, 294-306, doi:10.1006/dbio.2000.9899
  382 (2000).

| 383 | 39 | Parichy, D. M. & Turner, J. M. Temporal and cellular requirements for Fms                |
|-----|----|------------------------------------------------------------------------------------------|
| 384 |    | signaling during zebrafish adult pigment pattern development. Development                |
| 385 |    | <b>130</b> , 817-833 (2003).                                                             |
| 386 | 40 | Walderich, B., Singh, A. P., Mahalwar, P. & Nusslein-Volhard, C. Homotypic               |
| 387 |    | cell competition regulates proliferation and tiling of zebrafish pigment cells           |
| 388 |    | during colour pattern formation. Nat Commun 7, 11462,                                    |
| 389 |    | doi:10.1038/ncomms11462 (2016).                                                          |
| 390 | 41 | Haffter, P. et al. Mutations affecting pigmentation and shape of the adult               |
| 391 |    | zebrafish. Development genes and evolution 206, 260-276, doi:DOI                         |
| 392 |    | 10.1007/s004270050051 (1996).                                                            |
| 393 | 42 | Eom, D. S. et al. Melanophore migration and survival during zebrafish adult              |
| 394 |    | pigment stripe development require the immunoglobulin superfamily adhesion               |
| 395 |    | molecule Igsf11. <i>PLoS genetics</i> <b>8</b> , e1002899,                               |
| 396 |    | doi:10.1371/journal.pgen.1002899 (2012).                                                 |
| 397 | 43 | Inaba, M., Yamanaka, H. & Kondo, S. Pigment pattern formation by contact-                |
| 398 |    | dependent depolarization. Science 335, 677, doi:10.1126/science.1212821                  |
| 399 |    | (2012).                                                                                  |
| 400 | 44 | Watanabe, M., Sawada, R., Aramaki, T., Skerrett, I. M. & Kondo, S. The                   |
| 401 |    | Physiological Characterization of Connexin41.8 and Connexin39.4, Which Are               |
| 402 |    | Involved in the Striped Pattern Formation of Zebrafish. J Biol Chem 291,                 |
| 403 |    | 1053-1063, doi:10.1074/jbc.M115.673129 (2016).                                           |
| 404 | 45 | Parichy, D. M. Advancing biology through a deeper understanding of                       |
| 405 |    | zebrafish ecology and evolution. <i>Elife</i> <b>4</b> , doi:10.7554/eLife.05635 (2015). |
| 406 | 46 | Irion, U. et al. Gap junctions composed of connexins 41.8 and 39.4 are                   |
| 407 |    | essential for colour pattern formation in zebrafish. <i>Elife</i> <b>3</b> , e05125,     |
| 408 |    | doi:10.7554/eLife.05125 (2014).                                                          |
| 409 | 47 | Watanabe, M. et al. Spot pattern of leopard Danio is caused by mutation in               |
| 410 |    | the zebrafish connexin41.8 gene. EMBO reports <b>7</b> , 893-897,                        |
| 411 |    | doi:10.1038/sj.embor.7400757 (2006).                                                     |
| 412 | 48 | Maderspacher, F. & Nüsslein-Volhard, C. Formation of the adult pigment                   |
| 413 |    | pattern in zebrafish requires leopard and obelix dependent cell interactions.            |
| 414 |    | Development <b>130</b> , 3447-3457 (2003).                                               |

| 415 | 49 | Henke, K. et al. Genetic Screen for Postembryonic Development in the                 |
|-----|----|--------------------------------------------------------------------------------------|
| 416 |    | Zebrafish (Danio rerio): Dominant Mutations Affecting Adult Form. Genetics           |
| 417 |    | <b>207</b> , 609-623, doi:10.1534/genetics.117.300187 (2017).                        |
| 418 | 50 | Volkening, A. & Sandstede, B. Iridophores as a source of robustness in               |
| 419 |    | zebrafish stripes and variability in Danio patterns. Nat Commun 9, 3231,             |
| 420 |    | doi:10.1038/s41467-018-05629-z (2018).                                               |
| 421 | 51 | Dahal, G. R. et al. An inwardly rectifying K+ channel is required for patterning.    |
| 422 |    | Development 139, 3653-3664, doi:10.1242/dev.078592 (2012).                           |
| 423 | 52 | Perathoner, S. et al. Bioelectric signaling regulates size in zebrafish fins.        |
| 424 |    | <i>PLoS genetics</i> <b>10</b> , e1004080, doi:10.1371/journal.pgen.1004080 (2014).  |
| 425 | 53 | Stewart, S. <i>et al.</i> <em>longfin</em> causes <em>cis</em> -ectopic              |
| 426 |    | expression of the <em>kcnh2a ether-a-go-go</em> $K^+$ channel to                     |
| 427 |    | autonomously prolong fin outgrowth. <i>bioRxiv</i> , 790329, doi:10.1101/790329      |
| 428 |    | (2019).                                                                              |
| 429 | 54 | Lee, M. M., Ritter, R., 3rd, Hirose, T., Vu, C. D. & Edwards, A. O. Snowflake        |
| 430 |    | vitreoretinal degeneration: follow-up of the original family. Ophthalmology 110,     |
| 431 |    | 2418-2426, doi:10.1016/S0161-6420(03)00828-5 (2003).                                 |
| 432 | 55 | Hejtmancik, J. F. et al. Mutations in KCNJ13 cause autosomal-dominant                |
| 433 |    | snowflake vitreoretinal degeneration. Am J Hum Genet 82, 174-180,                    |
| 434 |    | doi:10.1016/j.ajhg.2007.08.002 (2008).                                               |
| 435 | 56 | Sergouniotis, P. I. et al. Recessive mutations in KCNJ13, encoding an                |
| 436 |    | inwardly rectifying potassium channel subunit, cause leber congenital                |
| 437 |    | amaurosis. <i>Am J Hum Genet</i> <b>89</b> , 183-190, doi:10.1016/j.ajhg.2011.06.002 |
| 438 |    | (2011).                                                                              |
| 439 | 57 | Khan, A. O., Bergmann, C., Neuhaus, C. & Bolz, H. J. A distinct vitreo-retinal       |
| 440 |    | dystrophy with early-onset cataract from recessive KCNJ13 mutations.                 |
| 441 |    | <i>Ophthalmic Genet</i> <b>36</b> , 79-84, doi:10.3109/13816810.2014.985846 (2015).  |
| 442 | 58 | Pattnaik, B. R. et al. A Novel KCNJ13 Nonsense Mutation and Loss of Kir7.1           |
| 443 |    | Channel Function Causes Leber Congenital Amaurosis (LCA16). Hum Mutat                |
| 444 |    | <b>36</b> , 720-727, doi:10.1002/humu.22807 (2015).                                  |
| 445 | 59 | Perez-Roustit, S. et al. Leber Congenital Amaurosis with Large Retinal               |
| 446 |    | Pigment Clumps Caused by Compound Heterozygous Mutations in Kcnj13.                  |
| 447 |    | Retin Cases Brief Rep 11, 221-226, doi:10.1097/ICB.000000000000326                   |
| 448 |    | (2017).                                                                              |
|     |    |                                                                                      |

| 449 | 60 | Toms, M. et al. Missense variants in the conserved transmembrane M2 |
|-----|----|---------------------------------------------------------------------|
|-----|----|---------------------------------------------------------------------|

- 450 protein domain of KCNJ13 associated with retinovascular changes in humans
- 451 and zebrafish. *Exp Eye Res* 189, 107852, doi:10.1016/j.exer.2019.107852
  452 (2019).
- Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. *Science* 323, 732-737, doi:10.1126/science.1157966 (2009).
- 455 62 Spiewak, J. E. *et al.* Evolution of Endothelin signaling and diversification of
- 456 adult pigment pattern in Danio fishes. *PLoS genetics* **14**, e1007538,
- 457 doi:10.1371/journal.pgen.1007538 (2018).

#### 459 Methods

- 460 No statistical methods were used to predetermine sample size. The experiments
- 461 were not randomized. The investigators were not blinded to allocation during
- 462 experiments and outcome assessment.

463

464 Fish husbandry

- 465 Zebrafish, *D. rerio*, were maintained as described earlier<sup>1</sup>. If not newly generated
- 466 (Table 4, Supplementary Information), the following genotypes were used: wild-type

467 Tuebingen/TU, nacre<sup>w2</sup>/nac/Mitfa<sup>2</sup>, pfeffer<sup>tm236</sup>/pfe/Csf1ra<sup>3</sup>, transparent<sup>b6</sup>/tra/Mpv17<sup>4</sup>,

468 leopard<sup>t1</sup>/leo/Cx41.8<sup>5,6</sup>, luchs <sup>t37ui</sup>/luc/Cx39.4<sup>7</sup>, obelix<sup>tXG6</sup>/obe/Kcnj13<sup>7</sup>.

- 469 D. aesculapii and D. albolineatus were treated identical to D. rerio. For the other
- 470 Danio species, D. kyathit, D. tinwini, D. nigrofasciatus, D. choprae, D. margaritatus
- 471 and *D. erythromicron* individual pair matings were not successful. Therefore, the fish
- 472 were kept in groups in tanks containing boxes lightly covered with Java moss
- 473 (*Taxiphyllum barbieri*), which resulted in sporadic matings and allowed us to collect
- 474 fertilized eggs.
- 475 Interspecific hybrids were either obtained by natural matings or by in vitro
- 476 fertilizations<sup>8</sup>. Heterozygous or trans-heterozygous mutant hybrids were identified by
- 477 PCR and sequence analysis using specific primer pairs (Table 1 and 3,
- 478 Supplementary Information).
- 479 All species were staged according to the normal table of *D. rerio* development<sup>9</sup>. All
- 480 animal experiments were performed in accordance with the rules of the State of
- 481 Baden-Württemberg, Germany, and approved by the Regierungspräsidium
- 482 Tübingen.

483

#### 484 CRISPR/Cas9 gene editing

- 485 The CRISPR/Cas9 system was applied either as described in<sup>10</sup> or according to the
- 486 guidelines for embryo microinjection of IDT. Briefly, oligonucleotides were cloned into
- 487 pDR274 to generate the sgRNA vector (Table 2, Supplementary Information).
- 488 sgRNAs were transcribed from the linearized vector using the MEGAscript T7

489 Transcription Kit (Invitrogen). Alternatively, target-specific crRNAs and universal 490 tracrRNAs were purchased from IDT. sgRNAs or crRNA:tracrRNA duplexes were 491 injected as ribonucleoprotein complexes with Cas9 proteins into one-cell stage 492 embryos. The efficiency of indel generation was tested on eight larvae at 1 dpf by 493 PCR using specific primer pairs and by sequence analysis as described previously (Table 1 and 3, Supplementary Information)<sup>11</sup>. The remaining larvae were raised to 494 495 adulthood. Mature F0 fish carrying indels were outcrossed. Loss-of-function alleles in 496 heterozygous F1 fish were selected to establish homozygous or trans-heterozygous 497 mutant lines (Table 4, Supplementary Information).

498

#### 499 Image acquisition

500 Anesthesia of adult fish was performed as described previously<sup>11</sup>. A Canon 5D Mk II

501 camera was used to obtain images. Juvenile fish were either embedded in low

502 melting point agarose or fixed in 4% formaldehyde/0.08% glutaraldehyde and then

503 photographed under a Leica MZ1 stereomicroscope (Extended Data Fig. 2). Images

504 were processed using Fiji<sup>12</sup>, Adobe Photoshop and Adobe Illustrator CS6.

505

506 RNA-Sequencing and transcriptome analysis

- 507 Skin of *Danio* species
- 508 Adult fish (n=5 each for *D. rerio* (TU), *D. aesculapii*, *D. kyathit*, *D. nigrofasciatus*,
- 509 D. tinwini, D. albolineatus, D. choprae, D. erythromicron, D. margaritatus) were
- 510 euthanized by exposure to buffered 0.5 g/L MS-222 (Tricaine). Skin tissues were
- 511 dissected in ice-cold PBS and collected using TRIzol (Life Technologies). RNA
- 512 integrity and quantity were assessed by Agilent 2100 Bioanalyzer. Library
- 513 preparation (TruSeq stranded mRNA, Illumina; 200 ng per sample) and sequencing
- 514 (NovaSeq 6000, 2 x 100 bp) were performed by CeGaT GmbH (Tübingen,
- 515 Germany). RNA-Seq analysis was carried out using the Danio rerio GRCz11
- 516 genome build for all *Danio* species and STAR aligner with default settings<sup>13</sup>.
- 517 Differential expression analysis was then carried out using DESeq2<sup>14</sup>. The actual
- 518 commands used can be found here: <u>https://github.com/najasplus/STAR-deseq2</u>.

#### 519

#### 520 Sequence analysis

- 521 We found SNPs in the coding region of Kcnj13 and considered other resources<sup>15</sup>,
- 522 including the latest zebrafish reference genome assembly (GRCz11) and the ENA
- 523 deposition Zebrafish Genome Diversity (PRJEB20043, Wellcome Trust Sanger).
- 524 Also, all identified SNPs in the *kcnj13* coding sequence from the Zebrafish Mutation
- 525 Project were incorporated<sup>16</sup>. The variant calling pipeline for all *Danio* species
- 526 consisted of GATK 3.8 and 4 and picard<sup>17</sup> from STAR-aligned bam files based on
- 527 GATK Best-Practices pipeline. The full commands used can be found here:
- 528 <u>https://github.com/najasplus/rnaseq\_variant\_calling</u>. Furthermore, variants were also
- 529 called and checked using SAMtools, mpileup and bcftools<sup>18</sup>. The protein sequence
- alignment was produced using T-coffee<sup>19</sup> and refined using BOXSHADE (developed
- 531 by Kay Hofmann and Michael D. Baron, unpublished) and Microsoft Word.
- 532

### 533 Methods References

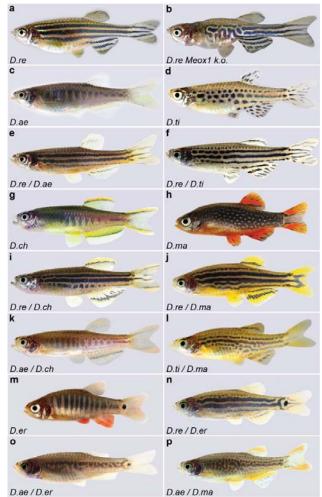
534 1 Brand, M., Granato, M. & Nüsslein-Volhard, C. in Zebrafish: A Practical 535 Approach (eds C. Nüsslein-Volhard & R. Dahm) (Oxford University Press, 536 2002). 537 2 Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. 538 nacre encodes a zebrafish microphthalmia-related protein that regulates 539 neural-crest-derived pigment cell fate. Development **126**, 3757-3767 (1999). 540 3 Odenthal, J. et al. Mutations affecting xanthophore pigmentation in the 541 zebrafish, Danio rerio. Development 123, 391-398 (1996). 542 4 Krauss, J., Astrinidis, P., Fröhnhofer, H. G., Walderich, B. & Nüsslein-Volhard, 543 C. transparent, a gene affecting stripe formation in Zebrafish, encodes the 544 mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open 545 **2**, 703-710, doi:10.1242/bio.20135132 (2013). 546 5 Haffter, P. et al. Mutations affecting pigmentation and shape of the adult 547 zebrafish. Development genes and evolution 206, 260-276, doi:DOI 548 10.1007/s004270050051 (1996).

| 549        | 6  | Watanabe, M. et al. Spot pattern of leopard Danio is caused by mutation in            |
|------------|----|---------------------------------------------------------------------------------------|
| 549<br>550 | 0  | the zebrafish connexin41.8 gene. <i>EMBO reports</i> <b>7</b> , 893-897,              |
|            |    |                                                                                       |
| 551        | 7  | doi:10.1038/sj.embor.7400757 (2006).                                                  |
| 552        | 7  | Irion, U. <i>et al.</i> Gap junctions composed of connexins 41.8 and 39.4 are         |
| 553        |    | essential for colour pattern formation in zebrafish. <i>Elife</i> <b>3</b> , e05125,  |
| 554        |    | doi:10.7554/eLife.05125 (2014).                                                       |
| 555        | 8  | Parichy, D. M. & Johnson, S. L. Zebrafish hybrids suggest genetic                     |
| 556        |    | mechanisms for pigment pattern diversification in Danio. Development genes            |
| 557        |    | and evolution <b>211</b> , 319-328 (2001).                                            |
| 558        | 9  | Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E.        |
| 559        |    | Normal table of postembryonic zebrafish development: staging by externally            |
| 560        |    | visible anatomy of the living fish. Developmental dynamics : an official              |
| 561        |    | publication of the American Association of Anatomists <b>238</b> , 2975-3015,         |
| 562        |    | doi:10.1002/dvdy.22113 (2009).                                                        |
| 563        | 10 | Irion, U., Krauss, J. & Nüsslein-Volhard, C. Precise and efficient genome             |
| 564        |    | editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827-             |
| 565        |    | 4830, doi:10.1242/dev.115584 (2014).                                                  |
| 566        | 11 | Meeker, N. D., Hutchinson, S. A., Ho, L. & Trede, N. S. Method for isolation of       |
| 567        |    | PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43, 610, 612,             |
| 568        |    | 614, doi:10.2144/000112619 (2007).                                                    |
| 569        | 12 | Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.    |
| 570        |    | Nat Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).                                |
| 571        | 13 | Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr Protoc              |
| 572        |    | <i>Bioinformatics</i> <b>51</b> , 11 14 11-11 14 19, doi:10.1002/0471250953.bi1114s51 |
| 573        |    | (2015).                                                                               |
| 574        | 14 | Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and           |
| 575        |    | dispersion for RNA-seq data with DESeq2. Genome Biol <b>15</b> , 550,                 |
| 576        |    | doi:10.1186/s13059-014-0550-8 (2014).                                                 |
| 577        | 15 | Bowen, M. E., Henke, K., Siegfried, K. R., Warman, M. L. & Harris, M. P.              |
| 578        |    | Efficient mapping and cloning of mutations in zebrafish by low-coverage               |
| 579        |    | whole-genome sequencing. <i>Genetics</i> <b>190</b> , 1017-1024,                      |
| 580        |    | doi:10.1534/genetics.111.136069 (2012).                                               |
| -          |    |                                                                                       |

| 581<br>582<br>583<br>584<br>585 | 16<br>17                                                                     | <ul> <li>Dooley, C. M. <i>et al.</i> Multi-allelic phenotypinga systematic approach for the simultaneous analysis of multiple induced mutations. <i>Methods</i> 62, 197-206, doi:10.1016/j.ymeth.2013.04.013 (2013).</li> <li>Poplin, R. <i>et al.</i> Scaling accurate genetic variant discovery to tens of thousands of samples. <i>bioRxiv</i>, 201178, doi:10.1101/201178 (2018).</li> </ul> |
|---------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 586                             | 18                                                                           | Li, H. et al. The Sequence Alignment/Map format and SAMtools.                                                                                                                                                                                                                                                                                                                                    |
| 587                             |                                                                              | Bioinformatics 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).                                                                                                                                                                                                                                                                                                                          |
| 588                             | 19                                                                           | Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast                                                                                                                                                                                                                                                                                                                    |
| 589                             |                                                                              | and accurate multiple sequence alignment. <i>J Mol Biol</i> <b>302</b> , 205-217,                                                                                                                                                                                                                                                                                                                |
| 590                             |                                                                              | doi:10.1006/jmbi.2000.4042 (2000).                                                                                                                                                                                                                                                                                                                                                               |
| 591                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 592                             | Data                                                                         | and code availability                                                                                                                                                                                                                                                                                                                                                                            |
| 593                             | The c                                                                        | ataset generated during this study is available at The European Nucleotide                                                                                                                                                                                                                                                                                                                       |
| 594                             | Archi                                                                        | ve (ENA) accession number: pending.                                                                                                                                                                                                                                                                                                                                                              |
| 595                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 596                             | Ackn                                                                         | owledgements                                                                                                                                                                                                                                                                                                                                                                                     |
| 597<br>598                      | by an ERC Advanced Grant "DanioPattern" (694289) and the Max Planck Society, |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 599                             | Germ                                                                         | any.                                                                                                                                                                                                                                                                                                                                                                                             |
| 600                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 601                             | Auth                                                                         | or information                                                                                                                                                                                                                                                                                                                                                                                   |
| 602                             | Affilia                                                                      | tions                                                                                                                                                                                                                                                                                                                                                                                            |
| 603<br>604                      | -                                                                            | rtment ECNV, Max Planck Institute for Developmental Biology, Tübingen,<br>n-Württemberg, Germany                                                                                                                                                                                                                                                                                                 |
| 605<br>606                      |                                                                              | o Podobnik, Hans Georg Frohnhöfer, Christopher Dooley, Anastasia Eskova,<br>tiane Nüsslein-Volhard, Uwe Irion                                                                                                                                                                                                                                                                                    |
|                                 |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |

- 607 IBM Systems, IBM Research and Development GmbH, Böblingen, Baden-
- 608 Württemberg, Germany
- 609 Anastasia Eskova

610

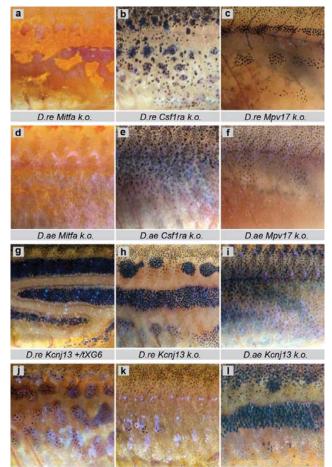

### 611 Contributions

- All authors were involved in the design of the experiments. M.P., U.I. and H.G.F.
- 613 performed the experiments. U.I., C.N.V., M.P., H.G.F. and C.D. analysed the data
- 614 with support of A.E. M.P. made the figures with contributions from U.I. and C.N.V.
- 615 U.I., C.N.V. and M.P. wrote the manuscript. C.N.V. and U.I. acquired funding.

- 617 Corresponding author
- 618 Correspondence to Uwe Irion.
- 619
- 620 Ethics declaration
- 621 Competing interests
- 622 The authors declare no competing interests.
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636

### 637 Figures and Figure Legends

#### 638




#### 639

#### 640 Fig. 1: Colour patterns in *Danio* fish and interspecific hybrids.

- 641 **a**, Colour pattern of zebrafish, *D. rerio* (*D.re*). **b**, *D. rerio* Meox1 (choker) mutants,
- 642 which lack a horizontal myoseptum. c, D. aesculapii (D.ae). d, D. tinwini (D.ti). e,
- 643 Interspecific hybrid between *D. rerio* and *D. aesculapii* and, **f**, between *D. rerio* and
- 644 D. tinwini. g, D. choprae (D.ch). h, D. margaritatus (D.ma). i Interspecific hybrid
- 645 between *D. rerio* and *D. choprae*, **j**, and between *D. rerio* and *D. margaritatus*. **k**,
- 646 Interspecific hybrid between *D. aesculapii* and *D. choprae*. I, Interspecific hybrid
- 647 between *D. tinwini* and *D. margaritatus*. **m**, *D. erythromicron (D. er)*. **n**, Interspecific
- 648 hybrid between *D. rerio* and *D. erythromicron*. **o**, Interspecific hybrid between
- 649 D. aesculapii and D. erythromicron. p, Interspecific hybrid between D. aesculapii and
- 650 D. margaritatus.

#### 651



#### 652

D.re Cx39.4 k.o. D.re Cx39.4 k.o.; Kcnj13 k.o. D.re Kcnj13 k.o. / D.ae Kcnj13 k.o.

#### 653 Fig. 2: Mutant phenotypes in *D. rerio*, *D. aesculapii* and their hybrids.

654 In *D. rerio* loss of one type of pigment cell, **a**, melanophores in *Mitfa* (*nacre*) mutants,

**b**, xanthophores in *Csf1ra* (*pfeffer*) mutants, or **c**, iridophores in *Mpv17* (*transparent*)

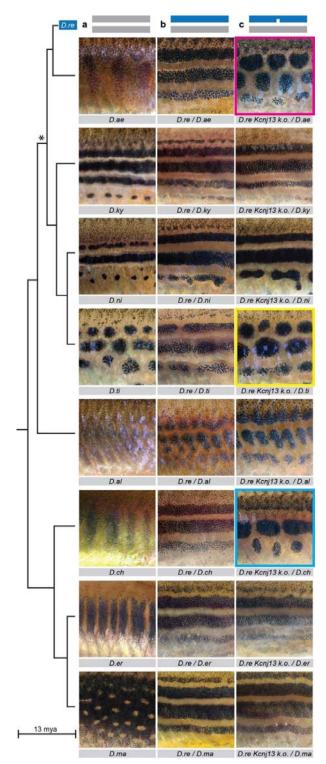
656 mutants, still permits rudimentary aggregation of dense iridophores (a) or

657 melanophores (b, c). In *D. aesculapii*, **d**, loss of melanophores in *Mitfa* mutants or **e**,

loss of xanthophores in *Csf1ra* mutants, abrogate any residual pattern formation.

However, f, bars still form in *Mpv17* mutants, despite the absence of iridophores. g,

- 660 *D. rerio* heterozygous for the dominant allele *Kcnj13<sup>tXG6</sup>/obelix*. **h**, *D. rerio*
- homozygous for the loss-of-function allele *Kcnj13<sup>t24ui</sup>*. i, *D. aesculapii* homozygous
- 662 for a *Kcnj13* loss-of-function allele. **j**, *D. rerio* homozygous for the loss-of-function of
- 663 Cx39.4. k, in *D. rerio* double mutants for *Cx39.4* and *Kcnj13* patterning is completely
- absent. I, interspecific hybrids between *D. rerio* and *D. aesculapii* that are both
- 665 mutant in Kcnj13.




667 D.re / D.ae Kcnj13 k.o.

### 668 Fig. 3: A reciprocal heterozygosity test to identify *Kcnj13* evolution.

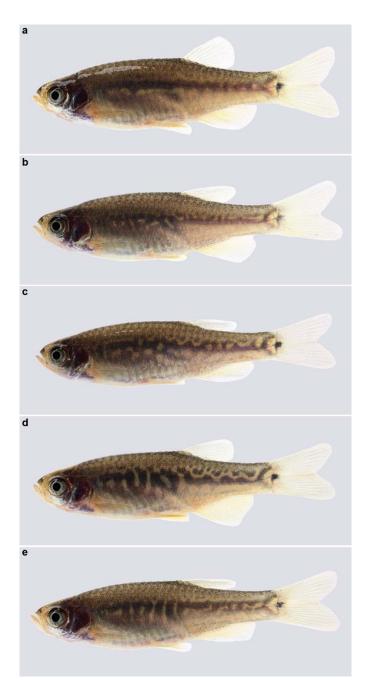
- 669 Two interspecific hybrids between D. rerio and D. aesculapii, which are
- 670 heterozygous for a *Kcnj13* loss-of-function mutation. **a**, stripes are interrupted in
- 671 hybrids carrying the mutant allele from *D. rerio* (nick in the blue line representing the
- 2672 zebrafish genome). **b**, hybrids carrying the mutant allele from *D. aesculapii* (nick in
- 673 the magenta line, representing the *D. aesculapii* genome) are indistinguishable from
- 674 wild-type hybrids (Fig. 1e).

676



677

678 Fig. 4: Repeated *Kcnj13* evolution.


679 **a**, From top to bottom wild-type Danio colour patterns (D. rerio species group: barred

680 D. aesculapii, D.ae, the closest relative to D. rerio; striped D. kyathit, D.ky; striped

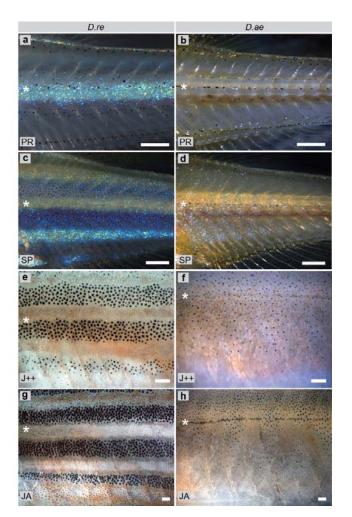
- 681 D. nigrofasciatus, D.ni; spotted D. tinwini, D.ti;) unpatterned D. albolineatus, D.al; (D.
- 682 choprae species group: barred D. choprae, D.ch; barred D. erythromicron, D.er,
- 683 spotted *D. margaritatus*, *D.ma*). The phylogenetic tree to the left depicts the
- 684 relationships between the species<sup>1</sup>. The asterisk denotes an uncertainty in the
- 685 phylogenetic relationships within the *D. rerio* species group. **b**, Hybrids between
- 686 D. rerio (D.re) and eight other danios (from top to bottom D. aesculapii, D.ae,
- 687 D. kyathit, D.ky, D. nigrofasciatus, D.ni, D. tinwini, D.ti, D. albolineatus, D.al,
- 688 D. choprae, D.ch, D. erythromicron, D.er, D. margaritatus, D.ma). c, Interspecific
- 689 hybrids carrying the Kcnj13 k.o. allele from D. rerio and the wild-type allele in the
- 690 eight species. Pattern defects occur in three cases, D. rerio Kcnj13 k.o. / D.
- 691 aesculapii (magenta box), D. rerio Kcnj13 k.o. / D. tinwini (yellow box) and D. rerio
- 692 Kcnj13 k.o. / D. choprae (cyan box). In the other five cases the patterns in
- 693 heterozygous hybrids do not differ from the striped patterns of wild-type hybrids.

### 694 Extended Data Figures, Tables and Legends

#### 695



696


697 Extended Data Fig. 1: Variability of patterns in interspecific hybrids between D.

#### 698 aesculapii and D. erythromicron

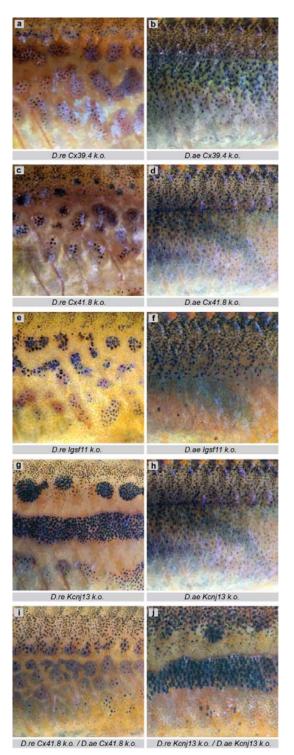
699 Interspecific hybrids between *D. aesculapii* and *D. erythromicron*, **a - e**, show a

range of patterns without clear horizontal or vertical orientation.

702



703


# 704 Extended Data Fig. 2: Development of colour patterns in *D. rerio* and *D.*

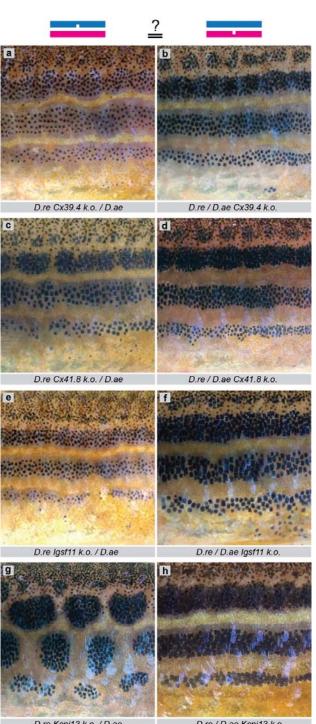
- 705 *aesculapii*.
- a, *D. rerio* fish at stage PR. Iridophores (arrowhead) emerge along the horizontal
- 707 myoseptum (asterisk) to form the first light stripe. **b**, *D* aesculapii fish at stage PR. **c**,
- 708 D. rerio at stage SP. The first light stripe is flanked dorsally and ventrally by dark
- stripes d, *D. aesculapii* at stage SP. Iridophores emerge in a scattered fashion. e, *D.*
- 710 rerio at stage J++. Light stripes are covered by compact xanthophores f, D.
- 711 aesculapii at stage J++. Melanophores and xanthophores broadly intermix. g, D.
- 712 rerio at stage JA. h, D. aesculapii at stage JA. Melanophores and xanthophores sort
- 713 out loosely into vertical bars of low contrast; no dense iridophores are visible
- between the dark bars. a-d: incident light illumination to highlight iridophores, e-h:
- 715 bright field illumination to visualise xanthophores and melanophores. Staging
- 716 according to<sup>2</sup>. PB (pectoral fin bud, 7.2 mm SL). SP (squamation posterior, 9.5 mm

- 717 SL). J++ (juvenile posterior, 16 mm SL). JA (juvenile-adult, >16 mm SL). Scale bars
- 718 correspond to 250 µm.
- 719



721




## 722 Extended Data Fig. 3: Mutant phenotypes in *D. rerio* and *D. aesculapii* of genes

### 723 required for heterotypic interactions.

- 724 **a**, *D. rerio* (*D.re*) *Cx39.4* knock-out (k.o.) mutant<sup>3</sup>. **b**, *D. aesculapii* (*D.ae*) *Cx39.4* k.o.
- 725 mutant. **c**, *D.re Cx41.8* mutant<sup>4,5</sup>. **d**, *D.ae Cx41.8* k.o. mutant. **e**, *D.re lgsf11* k.o.

- mutant<sup>6</sup>. **f**, *D.* ae Igsf11 mutant. **g**, *D.* rerio Kcnj13 k.o. mutant<sup>3,4,7</sup>. **h**, *D.* ae Kcnj13
- k.o. mutant. i, Interspecific hybrids between D.re Cx41.8 and D.ae Cx41.8 mutants. j,
- 728 Interspecific hybrids between D.re Kcnj13 and D.ae Kcnj13 mutants. In all cases,
- 729 loss-of function (k.o.) alleles were created using CRISPR/Cas9 gene editing.





732

D.re Kcnj13 k.o. / D.ae

D.re / D.ae Kcnj13 k.o.

### 733 Extended Data Fig. 4: Reciprocal heterozygosity tests identify Kcnj13

- 734 evolution.
- 735 Interspecific heterozygous hybrids carrying a mutant allele (nicked bar) from either
- 736 parental species (blue: D. rerio, D.re, or magenta: D. aesculapii, D.ae) in an
- 737 otherwise identical genetic background. In the cases of **a/b**, *Cx39.4*, **c/d**, *Cx41.8* and

- 738 e/f, *Igsf11* both hybrids show identical phenotypes. In the case of g/h, *Kcnj13*, the
- 739 two hybrids show different phenotypes: Interrupted stripes and spots in those
- 740 carrying the mutant allele from *D. rerio* (g) and a striped pattern in those carrying the
- 741 mutant allele from *D. aesculapii* (h).
- 742
- 743
- 744

#### 745

746

| .re          | 1    | MPTTMTNTTAD-QKASCPLWVKPQRRRLVEKDGRSQTRGNTRGGSRETCFSALRDLWGTWLALR                                                                                           | 7  |  |  |  |
|--------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| L.00         |      | MAAKR-NED-RKASTPLIAL-RRRRLVTKDGHCTLRNTSHASAPAKGLLYLODIWSTLVDLRWRWVLLA                                                                                      | e  |  |  |  |
| .tr          |      | MVLQIRTDRDE-DTNSRSPKCTLLSP-CTHRLVTKDGHSMVKAGRMQGQGLTYLRDIWGLLLDMRWRWMMLA                                                                                   | 7  |  |  |  |
| .ca          | 1    | MRTEVIE-GNN-TKPTAPLLTQ-RYPRMVTKDGHSTLQIDGAQGKGLAYLKDAWGILMDMRWRWMMLV                                                                                       | e  |  |  |  |
| .fo          | 1    | MTTDTLE-SNN-TKSSAPLLSQ-RYLRLVTKDGHSTFHMAGAQGTGVSYLRDVWGILMDMRWRWMMLV                                                                                       | e  |  |  |  |
| .ga          |      | MRTDTTE-SNN-TKSSTPLLTQ-RYLRMVTKDGHSTFQMDGAQGQGLAYLRDAWGILMDMRWRWMMLV                                                                                       | 5  |  |  |  |
| .mu          |      | MD-SSN-CKVNAPLLSQ-RHRRMVTKDGHSTLQMDGAQ-RGLVYLRDAWGILMDMRWRWMMLV                                                                                            | 5  |  |  |  |
| .sa          | 1    | MD-SSN-CKVIAPLLSQ-RYRRMVTKDGHSTLQMDGAQ-RGLAYLRDAWGILMDMR                                                                                                   | Ę  |  |  |  |
| ons.         |      | * • • • • • • • • • • • • • • • • • • •                                                                                                                    |    |  |  |  |
|              |      | dL-F                                                                                                                                                       |    |  |  |  |
|              |      | M1 H5                                                                                                                                                      |    |  |  |  |
| .re          |      | FCGSFLLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPT                                                                                |    |  |  |  |
| .00          |      |                                                                                                                                                            |    |  |  |  |
| .tr          |      | FSASFLAHWLLFAVFWYLLAEMNGDLA-VDHDAPPENHTICVKYITSFTAAFSFSLETQLTIGYGTMFPSGDCPS                                                                                |    |  |  |  |
| .ca          |      | FSASFVLHWLVFAVLWYLLAEMNGDLE-IDHDSPPENHTICVKYITSFTAAFSFSLETQLTIGYGTMFPSGDCPS                                                                                |    |  |  |  |
| .fo          |      | FSASFLLHWLVFAVLWYLLADMNGDLE-LDHDAPPDNHTICVKYVTSFTAAFSFSLETQLTIGYGTMFPSGDCPS<br>FSASFVIHWLVFAVLWYVLAEMNGDLE-LDHDSPPDNHTICVKYITSFTAAFSFSLETQLTIGYGTMFPSGDCPS |    |  |  |  |
| .ga<br>1.mu  |      | FSASFVIRWLVFAVLWIVLAEMNGDLE-LDHDSPFDNHIICVKIIISFIAAFSFSLETQLIIGIGIMFFSGDCFS<br>FSASFVVHWLVFAVLWIVLAEMNGDLE-IDHDVPPENHTICVKHITSFTAAFSFSLETQLIIGIGIMFFSGDCFS |    |  |  |  |
| I.sa         |      | FSASFVVHWLVFAVLWIAVAAANGDLE-IDHDVFFEMTICVKHIISFIAAFSFSLETQLIGIGIMFFSGDCFS<br>FSASFVVHWLVFAVLWYVLAEMNGDLE-LDHDAPPENHTICVKYITSFTAAFSFSLETQLTGGGTMFFSGDCFS    |    |  |  |  |
| cons.        |      | *, ** <u>, ***,***,***,**</u> ,**,***,***,***,***,***                                                                                                      |    |  |  |  |
|              |      | ds→I ri→T                                                                                                                                                  |    |  |  |  |
|              | -    | A M2 dF-L G G/S N/T T A/S                                                                                                                                  |    |  |  |  |
| D.re         |      | NIALLALQMLLGLMLEAFITGAEVAKFSRPQKRCDGILFSPQAVVCEQKCOLMFRVCHQPQPLVDVSVSVL                                                                                    | 2  |  |  |  |
| L.0C         |      | AIALLAVQMLLGLMLEAIITGAFVAKIARPKKRAGTIKFSSSAVVGHHQGETCLMFRAANMRDSPLTEVRVSAIL                                                                                |    |  |  |  |
| .tr          |      | AIALLAVOMLLGLMLEAFITGVFVAKIARPKNRTPSIRFSRLAVVGSPEGKPCLMFOVANTRSSPLTMVKVSGIL                                                                                |    |  |  |  |
| A.ca         |      | AIALLAIQMVLGLMLEAFITGAFVAKIARPKNRALSIRFTYSAVVTHREGKPYLMFQVANTRPSPLTSVRISAVL                                                                                |    |  |  |  |
| G.fo         | 141  | AIALLAIQMLLGLMLEAFLTGAFVAKIARPKNRAHSIRFSRSAVVTHSEGKPQLMFQVANTRSSPLTNVQISAIL                                                                                | 21 |  |  |  |
| G.ga         | 135  | AIALLAIQMVLGLMLEAFITGAFVAKIARPKNRAFSIRFTRSAVVTHTEGKPYLMFQVANTRSSPLTSVQISAIL                                                                                | 20 |  |  |  |
| M.mu         |      | AIALLAIQMLLGLMLEAFITGAFVAKIARPKNRAFSIRFTDLAVVAHKDGKPNLIFQVANTRPSPLTNVRVSAVL                                                                                |    |  |  |  |
| H.sa         | 135  | AIALLAIQMLLGLMLEAFITGAFVAKIARPKNRAFSIRFTDTAVVAHMDGKPNLIFQVANTRPSPLTSVRVSAVL 20                                                                             |    |  |  |  |
| cons.        |      | ******:**:*********:******************                                                                                                                     |    |  |  |  |
|              |      | 8 8                                                                                                                                                        |    |  |  |  |
| D.re         | 221  | YEERDDHELHQTALEFSIDNL-GSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTG                                                                                     | 28 |  |  |  |
| L.oc         |      | YQEREDQILHQTSVEFHLDRL-RGPECPFFIFPLTFYHPLTEYSPLYSVLCEGNPAHFELVVFLSATQEGTG                                                                                   |    |  |  |  |
| x.tr         | 220  | YQERGDGQIQQANVEFSLDSQASGAECPFFTFPLTYSHSLCSGSPLSVLLQRELLSSAGHLELVVCLSATQESSG                                                                                | 25 |  |  |  |
| A.ca         |      | YEEQENGQLHQTSVDFHLDSI-TSEECPFFIFPLTYYHSISPSSPLAILLQREAHRHFELVVFLSATQEGTG                                                                                   |    |  |  |  |
| G.fo         |      | YQEQESGQLHQTSIDFHLDSI-TAHEYPFFIFPLTYYHTITASSPLAALLQREAPPHFELVVFLSAVQEGTG                                                                                   |    |  |  |  |
| G.ga         |      | YQEQENGQLHQTSIDFHLDSI-TLDECPFFFFPLTYYHSIIPPSPLAALLQREAAHHFELVVFLSAVQEGTG                                                                                   |    |  |  |  |
| M.mu<br>H.sa |      | YQERENGELYQTSVDFHLDGI-SSEECPFFIFPLTYYHTISPSSPLATLLQHETPPHFELVVFLSAMQEGTG<br>YQERENGKLYGTSVDFHLDGI-SSDECPFFIFPTYYHSITPSSPLATLLQHENPSHFELVVFLSAMQEGTG        |    |  |  |  |
| cons.        | 209  | *:*: . : *: ::* :* . *:* ***: *:: :*: *:******:**:                                                                                                         | -  |  |  |  |
|              |      |                                                                                                                                                            |    |  |  |  |
|              |      | TIM R CY-X V/A Q                                                                                                                                           |    |  |  |  |
| ).re         |      | SGYHKRTSYLPDEIQYGYCFSKV SVHQNKTPNMR FDT PCPLTLANTHTTDTPDKEHVVVQLNGEGSDRV-                                                                                  |    |  |  |  |
| oc           |      | EGCQKRTSYVREEIQVDYHFASVLGLDPHGSYKVNTTNLNKVLPDPSHT-TLDGEKVFVIQINGDGNDGIG                                                                                    |    |  |  |  |
| (.tr         |      | EICQCRTSYLPSEILQGHRFAPCLTRRLEGGYRICMESFGRPLPELPQP-SHRQLYRTDLEVCANGQRGDTFQ 3                                                                                |    |  |  |  |
| A.ca         |      | ETCQRRTSYLPSEIILHHHFASMLVRGAKGEYQIKMENFDKTIPELPGA-DPKSSKRTDMEIRINGQHMDSFQ                                                                                  |    |  |  |  |
| G.fo         |      | ETCORRTSYLSSEILVYHRFASLLGHNAKGEYETKMENFDKTVPEFPAALDLKSPKRTDKEIRINGQHIDSFQ                                                                                  |    |  |  |  |
|              |      | EICORRTSYLPSEIMLYHRFAPVLARSAKGEYQIKMENFDKTIPELPAAADSMNPMRTAKEIRINGQHVDSFQ 3                                                                                |    |  |  |  |
|              |      | EICQRRTSYLPSEIMLHHRFAALMTRGSKGEYQVKMENFDKTVPEHPTPVVSKSPHRTDLDIHINGQSIDNFQ 3<br>EICQRRTSYLPSEIMLHHCFASLLTRGSKGEYQIKMENFDKTVPEFPTPLVSKSPNRTDLDIHINGQSIDNFQ 3 |    |  |  |  |
| ons.         | 200  | . : ****: .** : *:                                                                                                                                         |    |  |  |  |
|              | 3.53 |                                                                                                                                                            |    |  |  |  |
|              |      | E 362<br>G 360                                                                                                                                             |    |  |  |  |
|              |      | ICETGLGE 374                                                                                                                                               |    |  |  |  |
|              |      | ICETRLE 365                                                                                                                                                |    |  |  |  |
|              |      | LSETGLTK 366                                                                                                                                               |    |  |  |  |
|              |      | LSETGLTE 360                                                                                                                                               |    |  |  |  |
|              |      | IAETGLTE 360                                                                                                                                               |    |  |  |  |
|              |      | ISETGLTE 360                                                                                                                                               |    |  |  |  |
|              |      |                                                                                                                                                            |    |  |  |  |

747 Extended Data Fig. 5: Kcnj13 sequence alignment of vertebrate orthologues.

748 Sequence alignment of Kcnj13 orthologues from different vertebrate species. The

two transmembrane domains (M1/M2) are shaded in light grey, the P-Loop (H5) in

dark grey. Dominant (d) or recessive (r) mutations are indicated for zebrafish<sup>3,4,7,8</sup>

- 751 (blue) and human<sup>9-13</sup> (purple). Positions that are different between *D. rerio* and
- 752 D. aesculapii (magenta), D. tinwini (yellow), D. choprae (cyan) and polymorphic
- 753 positions in *D. rerio* (dark grey) are highlighted. Kcnj13 sequences of *Danio rerio*
- 754 (zebrafish, NP\_001039014.1), Lepisosteus oculatus (spotted gar, XP\_006638004.1),
- 755 Xenopus tropicalis (tropical clawed frog, NP\_001096437.1), Anolis carolinensis
- 756 (green anole, XP\_016847621.1), Geospiza fortis (medium ground finch,
- 757 XP\_005430275.1), Gallus gallus (chicken, XP\_015132697.1), Mus musculus (house
- 758 mouse, NP\_001103697.1) and *Homo sapiens* (human, NP\_002233.2).

#### 760

|              |        | S/N daav/g                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| D.re         |        | MPTTMTNTTADQKASCPLMVKPORRRLVSKDGRSQTRGNTRGGSRETCFSALRDLWGTWLALRWWVLAFCGSF                                                                                                                                                                                                                                                                                                                                                                  | 75       |
| D.ae         |        | MPTTMTNTTADQKASCPLMVKP                                                                                                                                                                                                                                                                                                                                                                                                                     | 75       |
| D.ky<br>D.ni |        | MPTTMTNTTADQKASCPLMVKPKRRRLVSKDGRSQTRGNTRGGSRETCFSALRDLWGTWLALRWRWVVLAFCGSF<br>MPTTMTNTTADQKASCPLMVKPKRRRLVSKDGRSQTRGNTRGGSRETCFSALRDLWGTWLALRWRWVVLAFCGSF                                                                                                                                                                                                                                                                                 | 75<br>75 |
| D.ni<br>D.ti |        | MPTIMINITADQAASCPLMVKPARKKLVSKDGKSQIRGNIRGGSKETCFSALRDLWGIWLALKWKWVVLAFCGSF<br>MPTIMINITADQAASCPLMVKPQRRLVSKDGRSQIRGNIRGGSRETCFSALRDLWGIWLALKWKWVVLAFCGSF                                                                                                                                                                                                                                                                                  | 75       |
| D.al         |        | MPTIMINIIADQAASCPLHVRPQRRLVSRDGRSQIRGNIRGGSREICFSALRDLWGIWLALRWRWVVLAFCGSF<br>MPTIMINITADQAASCPLMVKPQRRLVSRDGRSQIRGNIRGGSREICFSALRDLWGIWLALRWRWVVLAFCGSF                                                                                                                                                                                                                                                                                   | 75       |
| D.ch         |        | MPTIMINITADQRASCPLMVRFQRRRLVSRDGRSQTRGNTRGGSRETCFSALRDLWGTWLALRWRWVVIAFCGSF<br>MPTIMINITADQRASCPLMAKPORRRLVSRDGRSQTRGNTRGGSRETCFSALRDLWGTWLALRWRWVVIAFCGSF                                                                                                                                                                                                                                                                                 | 75       |
| D.er         |        | MPTTMTNTPADOKASCPLMVKPQRRRLVSKDGRSQTRGSTRGGSRETCFSALRDLWGTWLALRWRWVVLAFCGSF                                                                                                                                                                                                                                                                                                                                                                | 75       |
| D.ma         |        | MPTTMTNTTADOKASCPLMVKPQRRRLVSKDGRSRTRGSTRGGSRETCFSALRDLWGTWLALRWRWVVLAFCGSF                                                                                                                                                                                                                                                                                                                                                                | 75       |
| cons.        | -      | ******** ******** ** ******************                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|              |        | $dL \rightarrow F$                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|              |        | dTM                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|              |        | M1 H5 rA-X                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| D.re         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETOLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ae         |        | $\label{eq:linear} LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGUNGGTAAFSFALETQLTIGYGTMYPNADCPTAIALLINGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUN$ |          |
| D.ky         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ni         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ti         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.al         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ch         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.er         |        | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ma         | 76     | LLHWLLFAVLWYLLARVNGDLDVLDHDSPPPGHVLCVKHVNGFTAAFSFALETQLTIGYGTMYPNADCPTAIALL                                                                                                                                                                                                                                                                                                                                                                | 150      |
| cons.        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|              |        | R/H L/F                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|              |        | M2 IF-I G/S N/T A/S                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| D.re         | 151    | ALQMLLGLMLEAFITGAFVAKFSRPQKRCDGILFSPQAVVCEQKFQFCLMFRVCNLQPQPLVDVSVSHVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| D.ae         |        | ALQMLLGLMLEAFITGAFVAKFSRPQKRCGILFSPQAVVCEQKGQRCLMFRVCNLQPQPLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                 |          |
| D.kv         |        | ALOMLLGLMLEAF1TGAFVAKFSRPOKRCGG1LFSPOAVVCE0KG0RCLMFRVCNL0P0PLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ni         | 151    | ALOMLLGLMLEAFITGAFVAKFSRPOKRCGGILFSPOAVVCEOKGORCLMFRVCNLOPOPLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| D.ti         | 151    | ALQMLLGLMLEAFITGAFVAKFSRPQKRCGGILFSPQAVVCEQKGQRCLMFRVCNLQPQTLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| D.al         | 151    | ALQMLLGLMLEAFITGAFVAKFSRPQKRCGGILFSPQAVVCEQKGQRCLMFRVCNLQPQPLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| D.ch         | 151    | ALQMLLGLMLEAFITGAFVAKFSRPQKRCDGILFSPQAVVCEQKGQRCLMFRVCNLQPQPLVDVSVSAVLYEER                                                                                                                                                                                                                                                                                                                                                                 | 255      |
| D.er         | 151    | ALOMLLGLMLEAFITGAFVAKFSRPOKRCGGILFSPOAVVCEOKGORCLMFRVCNLOPOPLVDVSVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| D.ma         | 151    | ALQMLLGLMLEAFITGAFVAKFSRPQKRCGGILFSPQAVVCEQKGQRCLMFRVCNLQPQPLVDVTVSAVLYEERD                                                                                                                                                                                                                                                                                                                                                                | 225      |
| cons.        |        | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|              | 000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10000    |
| D.re         |        | DHELHQTALEFSIDSLGSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ae         |        | DHELHQTALEFSIDNLGSKSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ky         |        | DHELHQTALEFSIDNLGSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ni         |        | DHELHQTALEFSIDSLGSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                                                                                                |          |
| D.ti         |        | DHELHQTALEFSIDNLGSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                                                                                                |          |
| D.al<br>D.ch |        | DHELHQTALEFSTDNLGSRSCPLFLSPLTFFHPLSPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP<br>DHELHOTALEFSIDNLGSRSCPLFLSPLTFFHPLNPSTPFINNPSSQTHFELVVFLTATQESTGSGYHKRTSYLP                                                                                                                                                                                                                                                                                 |          |
| D.er         |        | DHELHOTALEFSIDNLGSRSCPLFLSPLIFFHPLNPSIPFINNPSSOTHFELVVFLINIGESIGSGIHRRISILF                                                                                                                                                                                                                                                                                                                                                                |          |
| D.er<br>D.ma |        | DHELHQIALEFSIDNLGSRSCPLFISFLIFFHPLNPSIFFINNFSSQIHFELVVFLVVQESTGSGIHTRISFLF<br>DHELHQIALEFSIDNLGSRSCPLFISFLTFHPLNPSIFFINNFSSQIHFELVVFLVVQESTGSGYHMRTSYLP                                                                                                                                                                                                                                                                                    |          |
| cons.        | 220    | ************ * * **********************                                                                                                                                                                                                                                                                                                                                                                                                    | 300      |
| 001101       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|              |        | T/M TY-X V/A                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| D.re         | 301    | DEIQYGYCFSKVUSVHQNKTPNMRUFDTUPCPLTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ae         | 301    | DEIQYGYCFSKVTSVHQNKTPNMRYFDTVPCPLTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ky         | 301    | DEIQYGYCFSKVTSVHQNKTPNMRYFDTVPCALTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ni         |        | DEIQYGYCFSKVTSVHQNKTPNMRYFDTVPCQLTLTNTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ti         |        | DEIQYGYCFSKVTSV <mark>R</mark> QNKTPNMRYFDTVPC <mark>Q</mark> LTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                           |          |
| D.al         |        | DEIQYGYCFSKVASVHQNKTPNMRYFDTVPCPLTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ch         |        | DEIQYGYCFSKVTSVHQNKTPNMRYFDTVPCPLTLANTHTTDTPDKEHVVVQLNGEGSDRVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.er         |        | DEIQYGYCFSKVTSVHQNKTPNMRYFDTVPCPMALSNTHTTDMPDKEHVVVQLNGEGSDHVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| D.ma         | 301    | DEIQYGYCFSKVMAVHQNKTPNMRYFDTVPCPLALSNTHTTDTPDKEHVVVQLNGEGSDHVE 362                                                                                                                                                                                                                                                                                                                                                                         |          |
| cons.        |        | ************ :*:***********************                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

761

### 762 Extended Data Fig. 6: Sequence alignment of Kcnj13 orthologues from Danio

- 763 species.
- 764 Kcnj13 sequences from D. rerio (D.re), D. aesculapii (D.ae), D. kyathit (D.ky),
- 765 D. nigrofasciatus (D.ni), D. tinwini (D.ti), D. albolineatus (D.al), D. choprae (D.ch),
- 766 D. margaritatus (D.ma), D. erythromicron (D.er). Amino acids evolved between D.re
- and *D.ae* (magenta), *D.ti* (yellow) and *D.ch* (cyan). Dominant (d) or recessive (r)

- 768 mutations in *D.re Kcnj13*<sup>3,4,7,8</sup> (blue). Amino acid polymorphisms in *D.re* (dark grey).
- 769 Transmembrane domains (M1/M2) (light grey blocks) and the P-loop (H5) (dark grey
- 770 block).
- 771

#### 772 Figure References

- McCluskey, B. M. & Postlethwait, J. H. Phylogeny of zebrafish, a "model species," within Danio, a "model genus". *Mol Biol Evol* 32, 635-652, doi:10.1093/molbev/msu325 (2015).
- 2 Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E.
- Normal table of postembryonic zebrafish development: staging by externally
  visible anatomy of the living fish. *Developmental dynamics : an official publication of the American Association of Anatomists* 238, 2975-3015,
- 780 doi:10.1002/dvdy.22113 (2009).
- Irion, U. *et al.* Gap junctions composed of connexins 41.8 and 39.4 are
  essential for colour pattern formation in zebrafish. *Elife* 3, e05125,
  doi:10.7554/eLife.05125 (2014).
- Haffter, P. *et al.* Mutations affecting pigmentation and shape of the adult
  zebrafish. *Development genes and evolution* 206, 260-276, doi:DOI
  10.1007/s004270050051 (1996).
- Watanabe, M. *et al.* Spot pattern of leopard Danio is caused by mutation in
  the zebrafish connexin41.8 gene. *EMBO reports* 7, 893-897,
- 789 doi:10.1038/sj.embor.7400757 (2006).
- Eom, D. S. *et al.* Melanophore migration and survival during zebrafish adult
  pigment stripe development require the immunoglobulin superfamily adhesion
  molecule Igsf11. *PLoS genetics* 8, e1002899,
- 793 doi:10.1371/journal.pgen.1002899 (2012).
- 794 7 Iwashita, M. et al. Pigment pattern in jaguar/obelix zebrafish is caused by a
- 795 Kir7.1 mutation: implications for the regulation of melanosome movement.
- 796 *PLoS genetics* **2**, e197, doi:10.1371/journal.pgen.0020197 (2006).
- 797 8 Henke, K. *et al.* Genetic Screen for Postembryonic Development in the
- 798 Zebrafish (Danio rerio): Dominant Mutations Affecting Adult Form. *Genetics*
- 799 **207**, 609-623, doi:10.1534/genetics.117.300187 (2017).

| 800 | 9  | Hejtmancik, J. F. et al. Mutations in KCNJ13 cause autosomal-dominant                 |
|-----|----|---------------------------------------------------------------------------------------|
| 801 |    | snowflake vitreoretinal degeneration. Am J Hum Genet 82, 174-180,                     |
| 802 |    | doi:10.1016/j.ajhg.2007.08.002 (2008).                                                |
| 803 | 10 | Sergouniotis, P. I. et al. Recessive mutations in KCNJ13, encoding an                 |
| 804 |    | inwardly rectifying potassium channel subunit, cause leber congenital                 |
| 805 |    | amaurosis. Am J Hum Genet <b>89</b> , 183-190, doi:10.1016/j.ajhg.2011.06.002         |
| 806 |    | (2011).                                                                               |
| 807 | 11 | Khan, A. O., Bergmann, C., Neuhaus, C. & Bolz, H. J. A distinct vitreo-retinal        |
| 808 |    | dystrophy with early-onset cataract from recessive KCNJ13 mutations.                  |
| 809 |    | <i>Ophthalmic Genet</i> <b>36</b> , 79-84, doi:10.3109/13816810.2014.985846 (2015).   |
| 810 | 12 | Perez-Roustit, S. et al. Leber Congenital Amaurosis with Large Retinal                |
| 811 |    | Pigment Clumps Caused by Compound Heterozygous Mutations in Kcnj13.                   |
| 812 |    | Retin Cases Brief Rep 11, 221-226, doi:10.1097/ICB.0000000000000326                   |
| 813 |    | (2017).                                                                               |
| 814 | 13 | Toms, M. et al. Missense variants in the conserved transmembrane M2                   |
| 815 |    | protein domain of KCNJ13 associated with retinovascular changes in humans             |
| 816 |    | and zebrafish. <i>Exp Eye Res</i> <b>189</b> , 107852, doi:10.1016/j.exer.2019.107852 |
| 817 |    | (2019).                                                                               |
| 818 |    |                                                                                       |

### 819 Supplementary Information and Legends

820

### 821 Supplementary Tables

822 Table 1 | List of targeted genes.

| target               | CRISPR target sequence (5'-3') | genotyping    |
|----------------------|--------------------------------|---------------|
| D. aesculapii csf1ra | GGCCTTTAACCTGGTCGGTC           | T2143, T2144  |
| D. aesculapii cx39.4 | GGACTCACAGCCGGGCTGTT           | T2145, T2146  |
| D. aesculapii cx41.8 | GAACTTTCTAGAAGAAGTCC           | MP92, MP318   |
| D. aesculapii igsf11 | GCTGAAAGTACAGGGCAAGA           | MP330, MP 331 |
| D. aesculapii kcnj13 | TGCTGTATTATGGTACCTGC           | T963, T964    |
| D. aesculapii mitfa  | GGAGCGCTGGCTCCGGGTCC           | T2147, T2148  |
| D. aesculapii mpv17  | GGTGCTTTTCTGGGAATAAC           | T2149, T2150  |
| D. rerio igsf11      | GGACGCAATATAGGAGTGAT           | T1449, T1450  |
| D. rerio kcnj13 (1)  | GGCAAGCAGCGCGATGGCAG           | T2139, T2140  |
| D. rerio kcnj13 (2)  | GGCTGGCGCTACGGTGGCGG           | T963, T964    |

823

Table 2 | Primer pairs used for the generation of sgRNAs.

| target               | forward                | reverse                |
|----------------------|------------------------|------------------------|
| D. aesculapii csf1ra | AAACGACCGACCAGGTTAAAGG | TAGGCCTTTAACCTGGTCGGTC |
| D. aesculapii cx39.4 | AAACAACAGCCCGGCTGTGAGT | TAGGACTCACAGCCGGGCTGTT |
| D. aesculapii mitfa  | AAACGGACCCGGAGCCAGCGCT | TAGGAGCGCTGGCTCCGGGTCC |
| D. aesculapii mpv17  | AAACGTTATTCCCAGAAAAGCA | TAGGTGCTTTTCTGGGAATAAC |
| D. rerio csf1ra      | AAACGACCGACCAGGTTAAAGG | TAGGCCTTTAACCTGGTCGGTC |
| D. rerio igsf11      | AAACATCACTCCTATATTGCGT | TAGGACGCAATATAGGAGTGAT |
| D. rerio kcnj13 (1)  | AAACCCGCCACCGTAGCGCCAG | TAGGCTGGCGCTACGGTGGCGG |
| D. rerio kcnj13 (2)  | AAACCTGCCATCGCGCTGCTTG | TAGGCAAGCAGCGCGATGGCAG |

825

### 826 Table 3 | Primers used for genotyping.

| primer name | sequence (5'-3')        |  |
|-------------|-------------------------|--|
| MP318       | AGCTGTGCCCAGAACCAAGA    |  |
| MP330       | CCCCCATGCATTTTATTTGACCA |  |
| MP331       | CTGAATTCAGAAAGGAGGAGGT  |  |
| MP92        | CTCCCTTCCATTCACACTACC   |  |
| T963        | GAAACTATTCTTGCCGTGACTTG |  |
| T964        | TCAAACAAACCTGGGTGTGGAC  |  |

| T1449 | TCATCTACCAGAGTGGTCAG  |  |
|-------|-----------------------|--|
| T1450 | CCTAAACTTTTGCAGCACAG  |  |
| T2139 | TCAATGGAGACCTGGATGTC  |  |
| T2140 | TGGACCAAAGTGTGAAAGC   |  |
| T2143 | TGCCTGTGTTTATGTGTCG   |  |
| T2144 | AATGACCAAGAAGGATGAGC  |  |
| T2145 | GCCTCTAGGAACATGATTGG  |  |
| T2146 | GCTTCTCATTTCTAGCCCTC  |  |
| T2147 | GGCAACATTGGCGTTATCTC  |  |
| T2148 | TCTCACAGCATTCTGGCAC   |  |
| T2149 | CTGCCGTTTATATCTCCACAG |  |
| T2150 | GGCTGAAAATTGGCTGATTG  |  |
|       |                       |  |

827

### 828 Table 4 | List of generated mutants.

| GGCTG |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

|                                      |                 | p.Gly65GlufsX22               |
|--------------------------------------|-----------------|-------------------------------|
| D. aesculapii Mpv17 <sup>t32ul</sup> | 4 bp deletion   | recessive,                    |
|                                      |                 | c.321_324delAATA              |
|                                      |                 | p.lle108LeufsX6               |
| D. rerio Igsf11 <sup>t35ul</sup>     | 17 bp deletion  | recessive,                    |
|                                      |                 | c.412_428delGTGATCGGCCTGACGGT |
|                                      |                 | p.IIe138AlafsX19              |
| D. rerio Kcnj13 <sup>at58ui</sup>    | 6 bp deletion   | dominant,                     |
|                                      |                 | c.190_195delTGGCGG            |
|                                      |                 | p.Trp64Arg65del               |
| D. rerio Kcnj13 <sup>t24ui</sup>     | 14 bp insertion | recessive,                    |
|                                      |                 | c.436_437insGATGGAAGATGCTT    |
|                                      |                 | p.Ala146GlyfsX28              |

### 829

#### 830 Supplementary Discussion

831 Kcni13 functions as a tetramer (Fig. 4d, e), where each subunit contributes two 832 transmembrane helices (M1 and M2, Extended Data Fig. 4) to the formation of the 833 channel pore and a short extracellular loop that folds back to form the pore lining ion 834 selectivity filter (P-loop or H5, Extended Data Fig. 4). The N- and C-termini of the 835 subunits reside in the cytoplasm, where they also contribute to the ion pore, but are 836 mainly involved in gating of the channel (reviewed in<sup>2</sup>). Four dominant Kcnj13 alleles 837 have been identified in D. rerio in several independent forward genetic screens 838 (Extended Data Fig. 4)<sup>3-5</sup>. All of them show broad stripes with irregular interruptions 839 when heterozygous (Fig. 2g) and strong pattern aberrations with fewer, wider and 840 interrupted dark stripes and some mixing of melanophores and xanthophores when 841 homozygous or trans-heterozygous. Three of them carry point mutations affecting 842 H5 or  $M2^{3,4,6}$ , one is the result of a C-terminal truncation (Extended Data Fig. 4)<sup>5</sup>. The point mutations lead to proteins that do not produce functional channels<sup>6</sup> and it 843 844 has been suggested that the dominant phenotype is caused by a dosage-dependent effect, i.e. haploinsufficiency<sup>7</sup>. To test this possibility we used the CRISPR/Cas9 845 846 system and generated a loss of function allele of Kcnj13 in D. rerio which is 847 recessive. The 14 base pair insertion near the end of the first coding exon leads to an early truncation of the protein. Homozygous mutants show a phenotype similar to 848 homozygous mutants for the dominant alleles (Fig. 2h)<sup>3-7</sup>. This shows that the 849 dominant alleles are dominant-negatives, where the mutant proteins inhibit the 850

- 851 function of the wild-type protein in heterozygotes. The generation of this recessive
- allele allowed us to perform the reciprocal heterozygosity test with *D. aesculapii* as
- 853 well as interspecific complementation with seven other *Danio* species<sup>8</sup>.
- 854

#### 855 **Supplementary Information References** 856 1 Ogino, S. et al. Standard mutation nomenclature in molecular diagnostics: 857 practical and educational challenges. J Mol Diagn 9, 1-6, 858 doi:10.2353/jmoldx.2007.060081 (2007). 859 2 Hibino, H. et al. Inwardly rectifying potassium channels: their structure, 860 function, and physiological roles. Physiol Rev 90, 291-366, 861 doi:10.1152/physrev.00021.2009 (2010). 862 3 Haffter, P. et al. Mutations affecting pigmentation and shape of the adult 863 zebrafish. Development genes and evolution 206, 260-276, doi:DOI 864 10.1007/s004270050051 (1996). 865 4 Irion, U. et al. Gap junctions composed of connexins 41.8 and 39.4 are 866 essential for colour pattern formation in zebrafish. Elife 3, e05125, 867 doi:10.7554/eLife.05125 (2014). 868 5 Henke, K. et al. Genetic Screen for Postembryonic Development in the 869 Zebrafish (Danio rerio): Dominant Mutations Affecting Adult Form. Genetics 870 207, 609-623, doi:10.1534/genetics.117.300187 (2017). 871 6 Iwashita, M. et al. Pigment pattern in jaguar/obelix zebrafish is caused by a 872 Kir7.1 mutation: implications for the regulation of melanosome movement. 873 PLoS genetics 2, e197, doi:10.1371/journal.pgen.0020197 (2006). 874 7 Maderspacher, F. & Nüsslein-Volhard, C. Formation of the adult pigment 875 pattern in zebrafish requires leopard and obelix dependent cell interactions. 876 Development **130**, 3447-3457 (2003). 877 8 Parichy, D. M. & Johnson, S. L. Zebrafish hybrids suggest genetic 878 mechanisms for pigment pattern diversification in Danio. Development genes 879 and evolution 211, 319-328 (2001).