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Abstract 

The polypeptide N-acetylgalactosaminyl transferase (GalNAc-T) enzyme family initiates O-linked 

mucin-type glycosylation. The family constitutes 20 isozymes in humans—an unusually large 

number—unique to O-glycosylation. GalNAc-Ts exhibit both redundancy and finely tuned 

specificity for a wide range of peptide substrates. In this work, we deciphered the sequence and 

structural motifs that determine the peptide substrate preferences for the GalNAc-T2 isoform. 

Our approach involved sampling and characterization of peptide–enzyme conformations 

obtained from Rosetta Monte Carlo-minimization–based flexible docking. We computationally 

scanned 19 amino acid residues at positions –1 and +1 of an eight-residue peptide substrate, 

which comprised a dataset of 361 (19x19) peptides with previously characterized experimental 
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GalNAc-T2 glycosylation efficiencies. The calculations recapitulated experimental specificity data, 

successfully discriminating between glycosylatable and non-glycosylatable peptides with an 

accuracy of 89% and a ROC-AUC score of 0.965. The glycosylatable peptide substrates viz. 

peptides with proline, serine, threonine, and alanine at the –1 position of the peptide 

preferentially exhibited cognate sequon-like conformations. The preference for specific residues 

at the −1 position of the peptide was regulated by enzyme residues R362, K363, Q364, H365 and 

W331, which modulate the pocket size and specific enzyme-peptide interactions. For the +1 

position of the peptide, enzyme residues K281 and K363 formed gating interactions with 

aromatics and glutamines at the +1 position of the peptide, leading to modes of peptide-binding 

sub-optimal for catalysis. Overall, our work revealed enzyme features that lead to the finely 

tuned specificity observed for a broad range of peptide substrates for the GalNAc-T2 enzyme. 

We anticipate that the key sequence and structural motifs can be extended to analyze 

specificities of other isoforms of the GalNAc-T family and can be used to guide design of variants 

with tailored specificity. 

Introduction 

In higher organisms, O-linked N-acetylgalactosamine (GalNAc) glycosylation (or mucin-type 

glycosylation) is an abundant and essential post-translational modification. This type of 

glycosylation is initiated by a family of glycosyltransferases (GTs) known as polypeptide N-

acetylgalactosaminyltransferases or GalNAc-Ts (also referred to as GALNTs). These enzymes 

transfer a GalNAc sugar from a donor uridine di-phosphate (UDP) nucleotide to the hydroxyl 

group of a threonine or serine residue of an acceptor peptide. This transfer is the first committed 

step of mucin-type O-glycosylation, and these enzymes, therefore, define the sites of O-

glycosylation. The resulting O-linked GalNAc is further extended to one of the four common core 

structures, which can be subsequently extended to give mature linear or branched glycans.1,2 

Aberrant O-glycosylation is a well-known marker of many cancers and has also been linked to 

developmental and metabolic disorders.3,4  

In humans, the GalNAc-T family constitutes 20 isozymes. The unusually large number of isoforms 

for glycosylation is unique to O-glycosylation, and the multiplicity is conserved in mammalian 
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evolution, suggesting that cell or tissue specific isoforms have specialized functions.5 The 

isoforms exhibit specific substrate preferences that vary with isoenzyme surface charge, prior 

neighboring long-range and short-range glycosylation patterns and the sequence of the acceptor 

peptide substrate. Over the last two decades, the peptide substrate preferences for a large 

number of isoforms have been established by in vitro studies.6–8  The peptide substrate is 

characterized by a sequence motif (or sequon), Thr/Ser–Pro–X–Pro (T/SPXP), where T/S is the 

site of glycosylation (position 0). This sequon is the only conserved consensus motif modified by 

all isoforms except T7 and T10. The proline at the +3 position of the sequon is supported by a 

conserved structural motif, viz., the “proline pocket” in the enzyme’s peptide binding groove in 

all isoforms that bind the T/SPXP motif.9–11 For the remaining positions in the sequon, most 

isoforms exhibit overlapping yet selective preferences for different amino acid residues. For 

example, at the −1 position with respect to the glycosylation site, T1 favors aromatics12 and T12 

prefers bulky non-polar residues;13 whereas T2 exhibits very little to no activity for these amino 

acids and instead prefers threonine, proline, alanine, and serine. Yet both T1 and T2 glycosylate 

the sequon TTP12 (with threonine at −1 and proline at +1 positions). These observations have led 

to the hypothesis that GalNAc-Ts exhibit both redundancy and finely tuned specificity for a wide 

range of peptide substrates. 

While there is ample experimental data on the peptide substrate specificities of various isoforms, 

the molecular basis for observed peptide substrate specificities is not well understood. 

Computational work, so far, has been focused on understanding the mechanism of sugar 

transfer,14,15 conformational changes in the flexible loop in the catalytic domain,16 and the effect 

of the flexible linker connecting the catalytic and lectin domains.11 None of the computational 

studies so far have examined the amino acid preferences at different positions on the peptide. 

Computational studies can pinpoint key positions and structural motifs on an isoform that 

contribute to peptide substrate specificity. These sequence and structural motifs can be studied 

across isoforms to reveal more general patterns, to modulate enzyme specificity, and to gain 

insight into the consequences of enzyme and substrate mutations implicated in aberrant 

glycosylation, (e.g., colorectal cancer associated mutations of GalNAc-T1217) paving the way for 

rational design of specific drugs/inhibitors. 
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In this work, we seek to understand the sequence and structural motifs that determine the 

peptide substrate preferences for the GalNAc-T2 isoform. Our immediate goal is to recapitulate 

experimentally determined specificity in terms of glycosylation efficiency for sequon variations 

at positions −1 and +1 (19 amino acids tested for each position), as reported by Kightlinger et 

al.,12 and to understand which structural motifs best explain experimentally observed trends. To 

recapitulate experimentally observed specificities for a large dataset, we need an efficient, high-

throughput computational method that can capture the key mechanisms of enzymatic catalysis.  

Enzymatic catalysis relies primarily on selective transition state stabilization, ground state 

(reactants) destabilization, dynamics, and active-site gating.18,19 In practice, these effects occur 

at different length- and time- scales and therefore cannot be accurately captured by a single 

method. Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been 

able to recapitulate catalytic proficiency for many enzymes such as Kemp eliminases20 or 

xylase[cite Mayes] as they are well-suited to characterize the transition state. QM/MM 

simulations, however, are not suitable to capture binding or dynamics over longer timescales and 

are prohibitively expensive for a larger dataset. Other factors that determine the stability of the 

transition state are electrostatic- and shape- complementarity at the peptide-enzyme interface. 

Electrostatic complementarity can be captured by various computational techniques (e.g., Monte 

Carlo (MC) or molecular dynamics (MD)-based methods with Poisson-Boltzmann electrostatics 

or other continuum electrostatics models) at different length-scales. Other effects are 

determined by the thermodynamics of the enzyme-peptide interactions. To achieve a lower free 

energy of activation,18,21 the enzyme must stabilize the transition state selectively relative to the 

reactants. Additionally, if the product is too stable in the enzyme’s active site, product release 

becomes the catalytic rate-limiting step. This thermodynamic description demands the use of 

methods that capture multiple states (reactants, products and transition states).22,23 

Furthermore, dynamics is important in many catalytic mechanisms, from small vibrations that 

lead to rate-promoting motions24 to large conformational changes and rearrangements in the 

molecular structure.25 Active site gating is another important mechanism for catalysis by which 

key residues outside the active site regulate access to the active site.26,27 These thermodynamic 

and kinetic effects, primarily in the nanosecond to microsecond timescales, can be captured 
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faithfully by MD simulations though such simulations can be computationally prohibitive for 

comparing a large number of substrates. An alternative to MD simulations are Monte Carlo-

minimization28 (MCM) approaches, which are computationally faster and can be reliably used to 

determine thermodynamically stable native-like states. 

Rosetta-based MCM computational protocols, notably, pepspec,29 sequence-tolerance30,31 and 

MFPred32 have previously been used for predicting the sequence profiles of peptides recognized 

by various multi-specific protein recognition domains (PRDs) such as PDZ, SH2, SH3, kinases, and 

proteases. All protocols rely on MCM sampling and aim to approximate the stabilization of the 

substrate-bound state or transition state in the enzyme’s peptide binding groove. The transition 

state is approximated by known cognate sequon conformations in the enzyme’s active site (based 

on crystal structures and/or homology modeling) with additional constraints to preserve 

important structural motifs pertaining to the transition state, when available. In the absence of 

constraints, this approach is equivalent to evaluating the stabilization of the substrate-bound 

state.33 MCM allows for faster sampling facilitating the scanning of a large number of amino acid 

residues at multiple positions of the peptide substrate. All three protocols achieve impressive 

accuracy in predicting experimentally observed profiles for many PRDs. However, since all three 

methods are developed with the broad goal of predicting sequence specificity profiles for a range 

of PRDs, the accuracy of prediction may not be sufficient to pinpoint subtle differences in 

specificity for a specific target of interest. For example, the sequence-tolerance protocol pre-

calculates the interactions between all interacting residues ignoring changes in conformation of 

the peptide in the protein’s binding pocket. All three methods are inferior at predicting specificity 

for HIV−1 protease, which has a relaxed specificity profile and a preference for small hydrophobic 

residues, similar to GalNAc-T2. Additionally, all three protocols employ limited backbone 

sampling, prohibiting the free conformational sampling of the peptide in the binding groove. For 

the more targeted goal of designing a peptide inhibitor to discriminate between two similar PDZ 

domains, Zheng et al.34 employ extensive conformational sampling using the full-fledged 

flexpepdock protocol35 along with the CLASSY method to achieve a solution with desired 

specificity and affinity goals. Similarly, Pethe et al.36 were able to obtain significantly improved 

prediction accuracies for proteases (including HIV−1 protease) compared to previous methods 
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(MFPred, sequence tolerance and pepspec) by employing machine learning and a discriminatory 

score based on geometric features, interface score terms from Rosetta and electrostatic score 

terms from Amber. In another work, Pethe et al.37 used supervised learning on experimentally 

obtained deep-sequencing data and information from structure-based models to chart the 

specificity landscape of 3.2 million substrate variants of the viral protease HCV.  

Here, we sought to understand specificity determinants for a specific isoform of the GalNAc-T 

family and to pinpoint sequence and structural motifs in the enzyme that explain fine-tuning of 

specificity. To this end, we developed a customized Rosetta-based protocol38,39 that allowed us 

to model structures of all 361 peptide sequons (19×19) with the GalNAc-T2 enzyme and 

computationally determine the sequon preference for the GalNAc-T2 isoform. Our protocol was 

similar in spirit to earlier protocols in that it docks the peptide substrate into the enzyme’s active 

site. However, unlike pepspec,29 sequence-tolerance30,31 and MFPred32 and similar to the 

protocol of Zheng et al.,34 we allowed fully flexible peptide sampling (as opposed to limited or no 

backbone sampling) followed by clustering and analysis of the sampled low energy decoys. Our 

strategy relied on characterizing the peptide binding to the enzyme with a range of structural 

features at the interface as a function of the amino acid residues at the +1 and −1 positions. Using 

our methodology, we were able to identify features that recapitulated high-quality experimental 

specificity data for GalNAc-T2.  Extensive peptide backbone sampling revealed that the peptide 

binding groove of GalNAc-T2 stabilized multiple competing conformations/states – some leading 

to efficient glycosylation and others hampering it. Furthermore, multiple stable states suggested 

that kinetics might play an important role in determining specificity and the possibility of fine-

tuning specificity by modulating the relative stability of these states to discriminate between 

peptide substrates for an isoform and across isoforms. Overall, our work reveals key residues on 

the enzyme that determine peptide substrate preferences at various sequon positions.  

 

Results 

Clustering of low interaction energy decoys reveals that peptides exhibit multiple competing 

low-energy conformations  
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We studied all 361 (19x19) sequons obtained by scanning 19 amino acids (all amino acids except 

cysteine) at positions −1 and +1 with respect to the modified threonine (Thr0). The experimentally 

determined glycosylation efficiencies for all of these sequons was determined by Kightlinger et 

al.12 and replotted in Figure 1A. For each sequon, we started with the co-crystal structure of the 

peptide and UDP-sugar bound to the enzyme (pdb ids: 4d0z and 2ffu, respectively).16 We mutated 

the residues at the −1 and +1 position of the peptide to the target sequon and repacked and 

minimized the nearby side chains to obtain a starting enzyme-peptide configuration for the target 

sequon. We then subjected this starting structure to MCM sampling of rigid-body displacements 

and peptide torsion angles in two stages - a low-resolution centroid stage with simulated 

annealing followed by a high-resolution all-atom stage to generate 2,000 structures (decoys) per 

sequon (see Methods). We used the shorthand notation XN for amino acid ‘X’ (denoted by 1-

letter code) and sequon position ‘N’ and a sequon with the shorthand notation X−1TX+1. For 

example, P−1 denotes amino acid proline at the −1 position, M+1 denotes a methionine at the +1 

position and P−1TM+1 denotes a sequon or peptide with P−1 and M+1. For brevity, we also refer to 

peptides or sequons containing residue X at position N as “XN peptides” or “XN sequons” 

respectively. 

Preliminary analysis of the decoys showed that many peptides exhibited multiple stable states 

with comparable energies of interaction (interaction energy) between the peptide and enzyme. 

In Figure 1B, we show funnel plots for four randomly chosen sequons obtained from MCM 

sampling of the peptide substrate with the respective sequons in the enzyme’s peptide-binding 

groove. For all four sequons in Figure 1B, we observed multiple clusters of low interaction energy 

decoys, or “funnels.” For example, for sequon T−1TQ+1, we observed two distinct funnels at 

RMSDpeptide (the root mean square deviation of Cα carbons of the peptide backbone with respect 

to the peptide in the crystal structure) values of about ~ 0.65 Å and 1.25 Å with comparable 

lowest interaction energies. Overall, 57% (205/361) of the sequons exhibited two significant 

clusters. 39/205 (19.0%) and 81/205 (39.5%) sequons exhibited lowest energy states for each 

cluster within 0.5 and 1.0 Rosetta energy units (or REUs) respectively, of each other, underscoring 

the importance of considering both states (SI Figure 1).    
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To characterize multiple low-energy conformations and to construct a more complete picture of 

the landscape of structural conformations sampled by the peptide substrate in the enzyme cavity, 

we developed the computational flow summarized in Figure 1C. For each sequon, we selected 

the top-10%-scoring decoys (by interaction energy) from MCM sampling and then clustered them 

using three features. The first feature, RMSDpeptide, characterized decoys on the basis of the 

similarity of the peptide backbone conformation and position of the peptide in the crystal 

structure. Next, the distance between the hydroxyl group of T0 and the anomeric carbon (C1) on 

the sugar tracked the distance for the new glycosidic linkage.   Finally, the distance between the 

amide group of T0 on the peptide and the oxygen of the β-phosphate group of UDP (Oβ-PO4) was 

a reaction coordinate characterizing a transition-state-stabilizing hydrogen bond between the 

backbone amide of T0 and UDP.14  
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Figure 1. Computational workflow to determine glycosylation efficiency of glycosyltransferase 
GalNAc-T2 for peptide substrates obtained by scanning 19 amino acid residues (all except 
cysteine) at positions −1 and +1 of the acceptor peptide. (A) Experimentally determined 
glycosylation efficiencies (efficiency data replotted from Kightlinger et al.12). (B) Funnel plots from 
MCM sampling for four sequons. Each point represents one structural model, or “decoy,” at its 
corresponding RMSD from the reference structure and the interaction energy calculated by 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.25.171371doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171371
http://creativecommons.org/licenses/by-nd/4.0/


10 

Rosetta. (C) Steps in the computational workflow to characterize enzyme–peptide interactions 
for a representative sequon, T−1TQ+1, with T at the −1 position and Q at the +1 position. 

 

 

Figure 2. Characterization of the lowest-energy representative conformation for the top two 
clusters in Rosetta runs (top and bottom). (A) Interaction energy. (B) Normalized cluster size. (C) 
RMSDpeptide. (D)  𝑑HB of the largest and second-largest clusters characterized by the lowest 
interaction energy decoy for each cluster.  
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Figure 3. Lowest energy decoys belonging to the largest and second largest clusters for all 
sequons colored by (A) the residue at the −1 position of the sequon and (B) the residue at the +1 
position of the sequon.  

 

We characterized the lowest-energy decoy for the largest and second-largest clusters obtained 

for each sequon and plotted heatmaps to show the distribution of the lowest interaction energy 

(Figure 2A), normalized cluster size (Figure 2B) , RMSDpeptide (Figure 2C) and dHB (Figure 2D) for all 

361 sequons (see also SI Figure 2A). We also characterized the clusters by the decoy representing 

the center of the cluster, the average over all decoys with interaction energies within 1 REU and 

the average over the five decoys in the cluster with the lowest interaction energies.  All strategies 

resulted in similar heatmaps (SI Figure 3) and hence, going forward, we represented a cluster by 

the lowest energy decoy belonging to that cluster.  

Horizontal stripes emerging across the RMSDpeptide and dHB heatmaps (Figure 2C-D) suggested 

that sequons with the same amino acid at the −1 position (horizontal axis) exhibited similar 

RMSDpeptide and dHB values. To probe whether the low-energy conformations exhibited by various 

peptides depends on the identity of the residue in a position-specific manner, we plotted the 

RMSDpeptide and dHB of the lowest energy decoy for the two largest clusters for each sequon 
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colored by the amino acid residue at the −1 (Figure 3A) and +1 (Figure 3B) positions. It is apparent 

in Figure 3A that sequons with the same amino acid residue at the −1 position, especially A, G, T, 

P, S and V, were grouped or clustered together. The clustering or grouping suggests that sequons 

with the same amino acid at the −1 position exhibited similar conformations or low-energy states. 

Similar grouping was not observed for sequons with the same residue at the +1 position (Figure 

3B). This high-level analysis of low-energy conformations for the entire dataset suggested that 

the −1 position plays a dominant role in determining the low-energy conformation(s) exhibited 

by a sequon and that the +1 position contributed in a secondary capacity.   

In the following sections, we present hypotheses to explain how each position (−1, +1) 

contributed in a characteristic manner to determine the low-energy conformations exhibited by 

a sequon and how these conformations, in turn, related to experimentally determined 

specificities. We characterized the low-energy conformations by a selected set of relevant 

features. To compare our predictions with experiments, we employed logistic regression and, 

unless otherwise indicated, we labeled all sequons with experimental glycosylation efficiencies 

greater than 10% (efficiency threshold) as glycosylatable and those with efficiencies less than 

10% as un-glycosylatable, in line with previous work32. In SI Table 1, we have tabulated the area-

under the curve (AUC) of the receiver operating curve (ROC) for a range of features and efficiency 

thresholds.  
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Figure 4. Substrate specificity based on TS stabilizing hydrogen bond criterion with dHB < 4 Å. (A) 
Heatmaps of (left panel) dHB distances of the lowest-interaction-energy decoy belonging to a 
cluster with the cluster centroid satisying the criterion and (right panel) fraction of decoys (Nd) 
satisfying criterion. (B) Binary glycosylatibility predicted correctly (grey) and incorrectly (coral 
red) by dHB based on the dHB < 4 Å criterion. (C) ROC curve for dHB distances and  Nd satisfying 
criterion. (D) Violinplot of distribution of dHB distances sampled by the top-scoring 10% decoys 
for four representative sequons (P−1TP+1, T−1TP+1, N−1TP+1 and R−1TP+1). (E) Lowest interaction 
energy decoys for four sequons (P−1TP+1, T−1TP+1, N−1TP+1 and R−1TP+1 – black boxes in the 
heatmap in (A).  (F) Pocket-like cavity formed by enzyme residues (pink surface) that contacts the 
amino acid at the −1 position on the peptide. dHB is calculated between the amide nitrogen (blue 
sphere) of T0 on peptide(aquamarine) and the Oβ-PO4 (red sphere) on UDP (orange). dHB is shown 
with double-ended yellow arrows. 
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Recapitulation of amino acid specificity trends for the −1 position 

Sampling of TS-critical hydrogen bond recapitulates specificity trends with a 92% discriminative 

capacity  

In QM/MM simulations of the glycosylation of the EA2 peptide by GalNAc-T2, Gomez et al. 

characterized a hydrogen bond between the backbone amide of Thr0 and the β-phosphate group 

on UDP 14. They proposed that the hydrogen bond stabilizes the transition state (TS) in “a general 

catalytic strategy used in peptide O-glycosylation by retaining glycosyltransferases”. Hence, our 

first hypothesis was that a criterion for successful glycosylation is the ability of a peptide to 

exhibit a low-energy conformation with dHB distances compatible with the proposed hydrogen 

bond. Thus, in Figure 4A, we show the heatmap of the of the lowest interaction energy decoys. 

Applying a 4.0 Å threshold to the 19×19 grid of sequons (Figure 4B) split the sequons into those 

that do not meet this condition (i.e., > 4.0 Å,) and those that exhibited a representative low-

energy conformation compatible with hydrogen bonding between the peptide and UDP. 

When compared with experimental results (Figure 1A), this criterion discriminated well 

between substrate peptides and non-substrates of the enzyme (Figures 4B). A ROC analysis 

(Figure 4C) showed that the dHB based-criterion had an AUC value of 0.922, meaning that this 

metric had a 92.2% chance of correctly distinguishing the glycosylatable sequons from the non-

glycosylatable sequons. If instead of dHB threshold we used the fraction of the of decoys that 

satisfied the dHB criterion, the AUC was 0.908. 

Amino acid residues with larger side chains are excluded from “−1 pocket” of the enzyme 

To understand the structural basis for the observed dHB trends, we considered specific sequons 

and the lowest-energy conformations sampled by them. First, we note that in Figure 4A, peptides 

preferentially exhibited low-energy, highly populated states (higher fraction of decoys) with dHB 

distances compatible with hydrogen-bonding when amino acid residues with smaller side chains 

such as proline, alanine, glycine, serine, or threonine were present at the −1 position. In Figure 

4D, we show the dHB distances sampled by top 10% low-energy decoys for four representative 

sequons – P−1TP+1, T−1TP+1, N−1TP+1 and R−1TP+1. Sequons with P−1 and T−1 preferentially sampled 

conformations with dHB < 4.0 Å, whereas those with N−1 or R−1 preferentially sampled higher dHB 

distances. In Figure 3D, we show the structures of the lowest energy conformation (largest 
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cluster) for sequons with P-, T−1, N−1 and R−1. We observed that the sequons P−1 or T−1 fit in the 

pocket-like cavity in the enzyme’s peptide binding groove (Figure 4E, top panel) whereas, 

sequons with N−1 or R−1 were excluded from this cavity due to steric hinderance thereby resulting 

in larger distances (Figure 4E, bottom panel). See SI Figure 4 for lowest-energy conformations 

and dHB distances for D−1 peptides as aspartate is a similar size range as amino acid residues 

threonine and proline. Hence, the structural basis for peptides to preferentially sample low-

energy conformations compatible with sampling of the proposed TS stabilizing hydrogen bond 

was the relative size of the side chain of the amino acid at the −1 position and the “−1 pocket” on 

the enzyme (highlighted in Figure 4F; discussed in more detail in subsequent sections).  

Notably, sequon N−1TP+1 (Also V−1TP+1; SI Figure 4) exhibited two significant clusters (Figure 2A, 

Figure 4A), the smaller one (normalized cluster size ~ 10%) exhibiting distances compatible with 

hydrogen bonding (Figure 4A [right panel]) and the larger one (normalized cluster size ~ 90%) 

with comparable interaction energy exhibiting larger distances. Experimentally this sequon was 

non-glycosylatable. This points to the importance of the TS-stabilizing hydrogen bond for efficient 

peptide glycosylation. 

Characterization of the dHB distance correlated with undetectable glycosylation in experimental 

assays for sequons with larger amino acid residues, as peptides/sequons with larger amino acids 

did not meet the hydrogen-bonding criteria and assumed conformations at distances farther 

from the UDP-GalNAc donor, making the reaction less likely. However, using dHB as the sole 

criteria for specificity incorrectly classified G−1.  (Figure 4C; blue arrow). Since dHB generated some 

false positives, especially G−1 peptides, the ability of the peptide to assume conformations 

amenable to the formation of the TS-stabilizing hydrogen bonding may be a necessary but not 

sufficient condition to determine specificity.  
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Figure 5. Substrate specificity based on RMSDpeptide < 1.0 Å criterion. Joint and marginal 
probability densities of Top 10%(200/2000) sequons for all peptides with fixed amino acids. (A) 
G−1 and B) P−1  and all amino acid residues at X+1; Top 1% (20/2000) decoys per sequon shown as 
points where darker color indicates lower interaction energy. (C) Lowest interaction energy 
decoy for representative sequons P−1TP+1 (white; RMSDpeptide < 1.0 Å ) superposed with that for 
G−1TP+1 (aquamarine; RMSDpeptide > 1.0 Å) in the enzyme’s peptide binding groove. (D) Joint and 
marginal probability densities of Top 10%(200/2000) sequons for all peptides with fixed amino 
acids A−1, S−1, T−1 and all amino acid residues at X+1; Top 1% (20/2000) decoys per sequon shown 
as points where darker color indicates lower interaction energy. (E) Heatmap of RMSDpeptide (left 
panel) of the lowest energy decoy per sequon, fraction of decoys (Nr) satisfying RMSD criterion 
(right panel) for RMSDpeptide < 1.0 Å. (F) Binary glycosylatibility predicted correctly (grey) and 
incorrectly (coral red) by Nr based on the RMSDpeptide < 1.0 Å criterion at a True Positive Rate 
of 1.0. (G) ROC curve for RMSDpeptide (magenta) and Nr(grey) satisfying RMSDpeptide < 1.0 Å. “GTX-
like” state is marked with a black arrrow and “PTX-state” is marked with a red arrow; the blue-
arrow indicates a third state distinct from PTX- and GTX-like states.   
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G−1 results in distinct low-energy states characterized by higher RMSDpeptide values 

To probe why G−1 peptides may be unglycosylatable even though they satisfy the metric, we 

examined the joint distribution of the RMSDpeptide and dHB sampled by top 10% of decoys for all 

(i.e., averaged over all 19 amino acid at the +1 position) G−1 and P−1  peptides (see SI Figures 5-9 

for plots of all 19 sequons for G−1 and P−1.). While G−1 peptides exhibited two low-energy states 

(Figure 5A), P−1 peptides primarily exhibited a single, low RMSDpeptide state (Figure 5B). We refer 

to the low RMSDpeptide state (RMSDpeptide < 1.0 Å and < 4.0 Å) as the PTX-like state and to the 

higher RMSDpeptide (RMSDpeptide ≥ 1.0 Å and  < 4.0 Å) state as the GTX-like state.  

Amino acid residues with smaller side chains are sub-optimal for −1 pocket of the enzyme 

In Figure 5C, we have superposed the PTX-like and the GTX-like states. In the GTX-like state, the 

backbone was “shifted up” with respect to that of the PTX-like state (Figure 5C; green arrow). For 

G−1 peptides, the small size of the glycine residue allowed multiple configurations in the −1 pocket 

of the enzyme, all of which still made the TS stabilizing hydrogen bond (i.e., < 4.0 Å). 

Consequently, we also observed the GTX-like state for A−1 and S−1 (shorter side chains) peptides 

(Figure 5D; black arrow) but not for T−1 peptides. Instead, T−1 peptides exhibited a third state 

(Figure 5D; blue arrow) which we discuss later. While the dHB metric explained why sequons with 

larger side chains at the −1 position were non-glycosylatable, the RMSDpeptide metric may explain 

why certain sequons with smaller side chains at the −1 position may not be suitable for 

glycosylation.  

RMSDpeptide metric improves sequon specificity predictions for G−1 peptides 

P−1 peptides, irrespective of the amino acid at the +1 position, experimentally exhibited high 

glycosylation efficiencies and also primarily exhibited the low RMSDpeptide, PTX-like state. This 

leads us to hypothesize that besides the TS stabilizing hydrogen bond (characterized by dHB), the 

second factor that determined the glycosylatability of a sequon was the precise positioning of 

the peptide in the enzyme’s peptide binding groove, i.e., how close the peptide backbone was, 

spatially and conformationally, to the cognate sequon peptide conformation in the crystal 

structure, as characterized by RMSDpeptide.  We postulated that the PTX-like state with RMSDpeptide 

< 1.0 Å lead to successful glycosylation (reactive state) whereas all other conformations or states 

with RMSDpeptide ≥  1.0 Å e.g. the GTX-like state did not lead to glycosylation (non-reactive). 
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Hence, we used the sampling of the PTX-like state by the top-scoring decoys, quantified by the 

RMSDpeptide of the lowest energy decoy of the largest cluster and the normalized size of the largest 

cluster, as the second criterion for successful glycosylation. This criterion improved prediction for 

sequons that exhibited low-energy conformations for the GTX-like state, (A−1TH+1, A−1TG+1, 

S−1TG+1, G−1TG+1, etc.), including G−1 peptides and was able to correctly classify many such 

peptides (G−1TL+1, G−1TG+1, G−1TA+1 etc.) as non-glycosylatable (Figure 5 E, F). When compared 

with experimental results, this criterion, based on the fraction of decoys that satisfy the criterion, 

gave an ROC AUC value of ~ 0.965 (Figure 5F). 

However, since both sequons that were glycosylatable (e.g. ATA, STA, TTQ) and non-

glycosylatable (e.g. GTA, ATH, TTY, STY) exhibited non-reactive states, the criterion based on 

RMSDpeptide was not sufficient to correctly classify all peptides, especially for sequons that 

exhibited both reactive and non-reactive states with similar interaction energies and/or similar 

fraction of decoys.  

 

Amino acid residue at the −1 position dictates the low-energy conformations and 

glycosylatibility for the majority of the sequons 
 

The analysis of the low-energy conformations characterized by dHB and RMSDpeptide lead to the 

following observations. For the majority of sequons, those with K−1, R−1, F−1, Y−1, W−1, D−1, E−1, Q−1, 

N−1, H−1, I−1, M−1, L−1, or V−1, the peptide primarily sampled non-reactive low-energy 

conformations with dHB > 4.0 Å and RMSDpeptide > 1.0 Å. For a small fraction of sequons (P−1 

peptides), the peptide primarily sampled a reactive, cognate-sequon like state (or PTX-like state) 

with dHB < 4.0 Å and RMSDpeptide <1.0 Å.  For both of these categories that primarily sample one 

state—either the non-reactive state or the reactive-state—the computational predictions based 

on either hypothesis (RMSDpeptide or dHB), agreed quite well with experimental data. These 

observations underscore the importance of the residue at the −1 position in determining the low-

energy conformations and, consequently, the glycosylatability for the majority of the sequons (~ 

15 x 19 = 285 out of 361 peptides). 
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Recapitulation of amino acid specificity trends for the +1 position 

 

For G−1, A−1, S−1, T−1 sequons (4 x 19 = 76 out of 361), the peptide sampled both reactive and non-

reactive states with comparable interaction energies. For many of these sequons, the 

computational predictions based on the effect of the −1 position did not accurately recapitulate 

experimental observations. Hence, for G−1, A−1, S−1, T−1, to recapitulate experimental 

glycosylation trends, we must consider the effect of the +1 position.  

 

Amino acid at the +1 position confers secondary effects that modulate effects of the −1 

position  

 

To investigate the effect of the +1 amino acid residue for G−1, A−1, S−1 and T−1 peptides, we 

considered the variation in sampling and interaction energy of the GTX-like state.  Figure 6A 

shows these fractions for a subset of sequons for which the +1 position was critical, i.e. G−1, A−1, 

S−1, and T−1. For T−1 peptides, no sequon exhibited the GTX-like state for a significant fraction of 

the decoys. For A−1, S−1 and G−1 peptides, G+1 and D+1 significantly increased the propensity to 

sample (indicated by a large fraction of decoys and low interaction energies) the GTX-like state. 

Furthermore, for A−1 peptides, H+1, K+1, R+1, and S+1 also resulted in a large fraction of decoys 

exhibiting the GTX-like state.  We summarize the changes in classification accuracy in SI Table 2 

and SI Figure 10B upon inclusion of a GTX-like state-based criterion. Hence, the +1 position, in 

these specific cases, enhanced the sampling of the non-reactive, GTX-like state, modulating the 

glycosylatability of a peptide in a capacity secondary to the −1 position. 
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Figure 6. Secondary effects of the amino acid at the +1 position on conformations sampled by 
the peptide (A) GTX-like state. (B) Joint and marginal probability densities of top 10%(200/2000) 
sequons for T−1TQ+1 (left panel) and lowest energy decoy for TTQ-like state for sequon T−1TQ+1 
state, where Q+1 position interacts with K281. (C) Joint and marginal probability densities of top 
10%(200/2000) sequons for T−1TD+1 (left panel) and lowest energy decoy for TTQ-like state for 
sequon T−1TD+1 state, where D+1 position interacts with K363. (D) TTQ-like state. Top 1% 
(20/2000) decoys per sequon shown as points in (B) and (C) where darker color indicates lower 
interaction energy. “TTX-like” state is marked with a black arrrow and “PTX-state” is marked with 
a red arrow. 

 

Residues glutamine, glutamate, aspartate and the aromatics at the +1 position interact with 

residues K363/K281 on the enzyme to form competing states 

 

To understand the variation in glycosylatability for T−1 peptides with the +1 position, we 

considered the sequons T−1TQ+1, T−1TF+1, T−1TY+1 and T−1TW. Experimentally, T−1TQ+1 was 

glycosylatable with ~20% activity, whereas T−1TF+1, T−1TY+1 and T−1TW were non-glycosylatable. 

All four sequons exhibited the PTX-like state (red arrow in Figure 6B and SI Figure 11). These 
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sequons additionally exhibited a second, low-energy state with RMSDpeptide > 1.0 and  > 4.0 Å 

(black arrow in Figure 6B and SI Figure 11). We designated this state the TTQ-like state since it 

was highly pronounced for the T−1TQ+1 sequon. In the TTQ-like state, the residue T−1 occupied the 

−1 pocket similar to the PTX-like and GTX-like states, while the residue Q+1 interacted with residue 

K281 on the enzyme, which lies at the rim of the peptide-binding groove (Figure 6B). The 

interaction between the residues Q+1 and K281 pulled the peptide backbone away from the 

catalysis site (Figure 6B), resulting in a non-reactive state that competed with the reactive PTX-

like state.  

We observed a similar interaction for residue D+1 (sequons T−1TD+1 and P−1TD+1), however, due to 

a shorter side chain compared to Q+1, it was in a better position to interact with K363 residue 

(Figure 6C, SI Figure 11). 

In Figure 6D, we show the sampling of the TTQ-like state for A−1, G−1, S−1, and T−1 peptides. The 

TTQ-like state was exhibited primarily by S−1 and T−1 peptides. F+1, Y+1, W+1, E+1, Q+1, H+1, and D+1 

exhibited highly stabilized TTQ-like states. We also observed the TTQ-like state for non-polar 

residues such as methionine and isoleucine at the +1 position, a result of non-polar interactions 

of the +1 side chain with the K281 side chain. 

To compare the stability of the PTX-like and TTQ-like states for sequons that exhibited both 

states, we computed the difference between the lowest-energy decoys for the two state (SI 

Figure 12C). For sequons T−1TD+1, T−1TW+1 and T−1TY+1, the lowest interaction energy of the TTQ-

like state was about 2 REU lower than that of the PTX-like state. For T−1TQ+1, the difference was 

small (−0.2 REU), and for T−1TE+1, the PTX-like state was more stable by 2.4 REU. The relative 

stabilization of the PTX-like state over the TTQ-like state as measured by interaction energy 

correlated with higher experimental glycosylation efficiencies for sequons T−1TQ+1 (~ 22%) and 

T−1TE+1 (~13%) compared to T−1TD+1 (3%) and T−1TX+1 (0%), where X was an aromatic residue.  

 

To quantify the interaction energy of different amino acid residues at the +1 position to specific 

residues on the enzyme, we computed the pairwise energies of interaction between the residue 

at the +1 position and the enzyme (SI Figure 13) and, as expected, found that the residues that 
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exhibit the TTQ-like state interact favorably with residues K281 or K363 on the enzyme. On the 

other hand, residues P+1 and A+1 did not interact with K281 or K363 residues on the enzyme. The 

lack of interaction with K281 or K363 residues on the enzyme suggested that sequons T−1TP+1, 

T−1TA+1, S−1TP+1 and S−1TA+1 had no propensity for the TTQ-like state and may explain the high 

glycosylation efficiencies observed for these sequons. We summarize the changes in classification 

accuracy in SI Table 2 and SI Figure 10C upon inclusion of a TTQ-like state-based criterion.  
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Figure 7. Characterization of enzyme–peptide interactions for top 10 decoys A−1, P−1, G−1, S−1, T−1 
peptides. (A) Median Sc. (B) Attractive component of the van der Waals (VdW) potential in Rosetta 
score function between the residue at the −1 position and H365 on the enzyme. (C) Distribution 
of median Sc values as a function of the residue at −1 position. (D) Distribution of median Sc values 
as a function of the residue at +1 position. (E) +1 pocket of at the enzyme peptide interface with 
H365 on the enzyme (pink) interacting with the proline at the −1 position on the peptide 
(aquamarine). (F) Residues 280, 281, 282 and 361 on the enzyme (pink) interacting with proline 
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at the +1 position on the peptide (aquamarine). (G) Residues 280, 281, 282 and 361 on the 
enzyme (pink) interacting with tryptophan at the +1 position on the peptide (aquamarine). (H) 
Multiple sequence alignment of isoform T2 with other isoforms for the residues at the enzyme-
peptide interface for +1 and −1 positions on the peptide. (I) Violinplots for RMSDpeptide 
distributions sampled for sequon GTA for isoform T2 (top) and a variant T2 (Q364R) (bottom). 
Residue numbering based on GalNAcT2 Uniprot entry Q10471. 

 

  

Characterization of the peptide-enzyme interface 

Shape complementarity and hydrogen bonding contribute to the finely tuned specificities at 

the −1 and +1 positions 

 

Our analysis so far focused on analyzing the landscape of low-energy conformations exhibited by 

the peptides and on recapitulating the experimentally observed specificity trends as a function 

of the amino acid at the −1 and +1 position of the sequon. In this process, we discovered the 

dominant modes of interaction between the peptide and the enzyme that possibly lead to various 

reactive (PTX-like state) and non-reactive (GTX-like and TTQ-like state) conformations. 

Comparison between experimental data and computational predictions also revealed that a 

majority of sequons that were glycosylatable exhibited a PTX-like conformation. In this section, 

we characterized the PTX-like state to decipher the structural basis for the variation of specificity 

within the subset of peptides that exhibited this state. 

First, we calculated the shape complementarity statistic,40 𝑆𝑐 , for the enzyme-peptide interface 

for all sequons for top 10 decoys (lowest interaction energies) that satisfied the RMSDpeptide < 1.0 

Å criterion (Figure 7A). We found that P−1 peptides exhibited the highest shape complementarity 

at the peptide-enzyme interface (Figure 7C). The P−1 residue packed against the planar interface 

formed by a histidine residue at position 365 on the enzyme (Figure 6E). We further characterized 

the residue-wise and pairwise interaction energies at the interface. The P−1 residue exhibited 

significantly higher attractive van der Waals energy (fa_atr in Rosetta) with H365 of the enzyme 

than any other residues at the −1 position (Figure 7B). The P−1 residue exhibited generally higher 
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attractive van der Waals energies with all enzyme residues at the interface (SI Figure 14). T−1, S−1, 

and A−1 residues exhibited energies (SI Figure 14, Figure 7B) and shape complementarities (Figure 

7A, C) that varied to a significant extent with the residue at the +1 position. This suggested that 

the +1 position may additionally contribute to anchoring the peptide in the binding cavity for 

these sequons.  

For the +1 position, proline exhibited the highest shape complementarity (Figure 7D) in the “+1 

pocket” formed by three aromatics F280, W282 and F361 stabilized by favorable interactions 

between the partially positively charged proline ring and the partially negatively charged π faces 

of aromatic side chains (Figure 7F, SI Figure 15). Also, similar to the TTQ-like state, sequons with 

aromatics, glutamine, glutamate and non-polar residues other than alanine, proline and glycine 

at the +1 position interacted with K281 on the enzyme (Figure 7G).  

For T −1 and S−1 residues, the PTX-like state was additionally stabilized by a hydrogen bond 

between the hydroxyl side chain and the backbone carboxyl of the arginine residue (R362) on the 

enzyme (SI Figure 16).  

The shape complementarity and pairwise-energies point to a −1 pocket that was highly specific 

for the P−1 residue. This observation aligns well with the high experimental glycosylation 

efficiencies measured for P−1 peptides.  

Sequence motifs at the −1 pocket hint at modes of specificity modulation across isoforms T2, 

T14 and T16 

 

The −1 pocket on the enzyme plays an important role in screening for optimally-sized side chains 

at the −1 position of the sequon. This pocket is primarily formed by residues R362, K363, Q364, 

H365 and W331. These residues determine the size and chemical composition of the −1 pocket. 

The residues R362, K363, Q364, and H365 reside on the flexible, semi-conserved catalytic loop41 

of the enzyme. The flap-like loop can additionally contribute to the variability of the −1 pocket 

size across the GalNAc-T isoforms. The H365 residue is conserved in all three isoforms (T2, T14, 

T16) of the GalNAc-T family that show a strong preference for P−1 (Figure 7H). Residues K363 and 

Q364 reside at the point of entry for the −1 residue on the peptide. Variation of amino acid 
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residue at these positions could possibly allow for variation in the size of the amino acid preferred 

by an isoform at the −1 position of the sequon. For example, isoforms T14 and T16 which are 

evolutionary most proximal to the T2 isoform have residues lysine or arginine at position 364. 

Both isoforms, unlike the T2 isoform, preferred G−1; indicative of a −1 pocket suitable for smaller 

sidechains. In fact, when we repeated MCM sampling of the T2 isoform with the Q364R mutation, 

for the G−1 position, we observed a complete shift towards conformations with RMSDpeptide < 1.0 

Å (PTX-like state) and the elimination of the GTX-like state, suggesting a possible strategy for 

varying the peptide substrate preference of various isoforms (Figure 7I). 

 

Energy-based predictors incorrectly classify P−1 peptides as non-glycosylatable 

Energy is a commonly used metric in determining specificity of peptide substrates (eg. pepspec, 

sequence_tolerance and MFPred). In this work, we characterized each cluster by interaction 

energy and used it as the metric for choosing the “top N” decoys for further analysis. However, 

we find, for the purpose of prediction of specificity trends for the T2 enzyme, interaction energy, 

by itself, was a weaker predictor than other metrics (Table 1). The significantly lower AUC values 

based on interaction energy, compared to RMSDpeptide (0.959) and fraction of decoys (0.969), 

were due to the fact that P−1 and S−1 peptides bind the enzyme with significantly lower interaction 

energies than A−1, G−1 or T−1 peptides (Figure 2A).  

For comparison with other energy based approaches, we applied the MFPred method by 

Rubenstein et al.32 to obtain the specificity profile for GalNAc-T2 (SI Figure 17). We obtained an 

AUC score of 0.76 with this approach, which was significantly lower than the AUC scores obtained 

in this work (Table 1, SI Table 3). Notably, MFPred did not correctly classify P− or G−1 peptides 

though it accurately predicted the preference for T−1 and S−1 residues. The low classification 

accuracy of energy-based predictors suggested that the stability of the peptide-enzyme complex 

or the interaction-energy at the interface, by itself, was a weak indicator of efficient catalysis by 

GalNAcT-2. In fact, since selective stabilization of the transition state over the reactants is 

important for catalysis, the over-stabilization of the reactant state (indicated by higher 

interaction energies) may increase the free energy of activation (difference between the energy 
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of reactant and the transition state) thereby preventing the reaction from proceeding forward or 

slowing down the kinetics of reaction.   

 

Table 1. Summary of AUC scores for predictions based on features with a range of glycosylation 

efficiency thresholds below which a peptide is classified as non-glycosylatable 

 

Discussion 

In this work, we attempted to understand the structural basis for the peptide substrate 

preferences of the T2 isoform of the GalNAc-T family. We expect this work to be useful in 

Feature Experimental glycosylation 

efficiency 

threshold (%)  

AUC Score  

RMSDpeptide (largest cluster) 0.10 0.959 

dHB (largest cluster) 0.10 0.922 

RMSDsequon (largest cluster) 0.10 0.955 

Interaction Energy (largest cluster) 0.10 0.566 

RMSDpeptide (largest cluster) 0.55 0.967 

dHB (largest cluster) 0.55 0.954 

RMSDsequon (largest cluster) 0.55 0.977 

Fraction of decoys (dHB < 4.0 Å) 0.10 0.908 

Fraction of decoys (RMSDpeptide< 1.0 Å) 0.10 0.965 

Interaction Energy (dHB < 4.0 Å) 0.10 0.875 

Interaction Energy (RMSDpeptide< 1.0 Å) 0.10 0.908 

Shape Complementarity 0.10 0.853 

Shape Complementarity (RMSDpeptide< 1.0 Å) 0.10 0.924 

MFPred 0.10 0.760 
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understanding how the preference for different peptide substrates is modulated across the 20 

isozymes of this family.  

We used a flexible backbone protocol with MCM sampling which resulted in more than one low-

energy peptide conformation/state in the vicinity of the starting peptide conformation obtained 

from the crystal structure. Most existing protocols for determining peptide specificity of PBDs 

employed limited backbone sampling, generating ensembles close to the starting structures 

(pepspec, MFPred) and usually employing additional constraints to sample TS-like conformations. 

While these studies have been quite successful at predicting specificity trends, a wealth of 

information can be garnered from sampling the peptide landscape without imposed constraints. 

Our work benefitted from the availability of crystal structures for the peptide-enzyme complex 

but may be less accurate in the absence of crystal structures. Our approach also suffered from 

inaccuracies in the Rosetta energy function, the limitations of MCM sampling, and the use of 

implicit solvation models to name a few. We further note that an MD-based simulation, though 

computationally prohibitive for a large dataset, may be better suited for generating 

thermodynamically accurate ensembles and for characterizing the density of multiple stable 

states. 

We find that for the T2 isoform, the −1 position on the peptide strongly determined the 

glycosylation efficiency. Residues R362, K363, Q364 and H365 on the catalytic loop and residue 

W331 on the enzyme formed the −1 pocket and selected for amino acids threonine, proline, 

serine, alanine or glycine at the −1 position. For sequons with residues that did not fit this pocket, 

the peptide was not able to form a hydrogen bond with UDP that has been proposed to stabilize 

the TS. We further found that this pocket was especially favorable for recognizing peptides with 

proline at the −1 position as demonstrated by high degree of shape complementarity irrespective 

of the amino acid at the +1 position and highly favorable interactions between H365 and proline. 

Hence, by modulating the size and other biophysical aspects of this pocket, the specificity for the 

−1 position can be potentially modulated. These structural and sequence features are especially 

relevant for specificity modulation across isoforms as the GalNAc-T family can glycosylate a wide 

range of amino acids at the −1 position.  
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We additionally found that residues K281 and K363 acted as gating residues and interacted with 

certain amino acid residues on the peptide, such as Q+1 and D+1, leading to low energy states that 

may compete with the reactive state. Hence, the specificity for the +1 position may be modulated 

by altering the lysine residues at positions 281 and 363 on the enzyme. Similar to the −1 position, 

such variation in specificity for the +1 position was already observed in the GalNAc-T family as 

certain isoforms were capable of efficiently glycosylating D+1.  

We have identified key structural motifs in this work that may be important for designing more 

promiscuous forms of the enzyme or tailored forms with specificities different from those seen 

in the 20 naturally occurring isoforms. Furthermore, since many members of the GalNAc-T family 

have been associated with various cancers, the sequence and structural motifs identified in this 

work may be used to decipher mutations that may cause aberrant glycosylation.   

 

Methods 

Starting structure for enzyme–peptide complex 

The starting structure of the enzyme–peptide complex was obtained from two crystal 

structures—the active conformation of the enzyme from the crystal structure of the complex 

(pdb id: 2ffu) and bound peptide (mEA2), manganese and UDP-GalNAc-5S from the crystal 

structure of the complex with the modified GalNAc (pdb id: 4d0z). The sugar is absent from the 

first structure, so we used the second structure for the non-hydrolyzed sugar still covalently 

bound to UDP. While the sugar bound to UDP in 4d0z has a modification (sulfur instead of oxygen 

in the ring), it aligns exactly (SI 12) with 2ffu with the additional sugar. To generate the starting 

structure for each sequon, we started from the crystal structure of the complex with the peptide 

A-2X−1T0X+1A+2P+3R+4C+5 from the work by Kightlinger et al. 12 (aligned to the mEA2 peptide) 

instead of the mEA2 peptide, were X is one of 19 amino acid residues (all amino acid residues 

except cysteine). Residues at positions −1 and +1 (denoted by Xs) were mutated to the target 

sequon for all 361 sequons studied in the work by Kightlinger et al.12 using MutateResidue mover 

followed by side chain repacking and minimization using the PackRotamersMover. No backbone 

motion is allowed at this stage.  
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Rosetta protocol for generating decoys 

The glycosylation protocol is based on the flexpepdock protocol42 with a few modifications. The 

foldtree includes a jump across the peptide–enzyme interface similar to a peptide or protein–

protein docking protocol. The protocol gives the option for an alternative foldtree that is 

centered on a user-specified residue on the peptide. This alternate foldtree allows the anchoring 

of glycosylated peptides at glycosylated positions for peptides with multiple glycosylated sites. 

We do not report any results for successive glycosylation of glycosylated peptides in this work. 

Additionally, the protocol supports the addition of constraints to preserve catalytic motifs in the 

active site. There are two main stages in the glycosylation protocol – 1) Low-resolution sampling 

with the centroid score 2) High-resolution refinement with the all-atom ref2015 score function. 

In the low-resolution phase, we use simulated annealing for enhanced sampling of the peptide. 

We vary the temperature from 2.0 to 0.6 in Rosetta temperature units (kT) over 30 Monte Carlo 

(MC) cycles. For each temperature cycle of simulated annealing, we use 50 inner MC cycles are 

used for perturbation followed by minimization in rigid body (across enzyme–peptide interface) 

and torsional(peptide) space. “Small” and “shear” movers from Rosetta are used for torsional 

sampling of the peptide 43.  We implemented rigid body perturbation with the 

RigidBodyPerturbMover. The final pose from the low-resolution stage is passed to the high-

resolution stage. In the high-resolution stage, the attractive and repulsive potential weights are 

ramped down and up respectively over 10 outer cycles. Similar to the low-resolution stage, we 

apply rigid body sampling across the enzyme–peptide interface and torsional sampling of the 

peptide backbone followed by minimization and Metropolis criterion. Additionally, both rigid 

body moves (30 cycles) and torsional moves (30 cycles) are accompanied by side chain repacking 

of the peptide side chains every cycle and the interface side chains every 3rd cycle by the packer43. 

We used the default distance of 8 Å to define the interface. The protocol allows user-specified 

interface distance. We found the interface distance of 8 Å to be computationally most efficient 

as the runs slow down with larger distances (e.g. 12 Å). Additionally, the run was terminated if 

the peptide moved more than a user-specified distance away from the enzyme–peptide interface 

(default 8 Å). The backbone of the enzyme is fixed throughout sampling. We generated 2000 
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decoys per sequon. Larger number of decoys (8000) were not found to be particularly 

advantageous.  

This protocol will be made available in the Rosetta suite as an application. See Supplementary 

Information for the steps to run the protocol. 

Clustering and analysis of decoys 

The top 10% decoys (200/2000) were clustered using the dbscan clustering algorithm44,45 in 

sklearn with parameters set to eps=0.3 (maximum distance between samples for one to be 

considered in the neighborhood of the other) and min_samples=10 (number of samples in the 

neighborhood of a point to be considered a core point). We also tested kmeans clustering but 

found dbscan clustering to be more robust at assigning clusters. 

Calculation of features 

We report two RMSD metrics in this work – RMSDpeptide and RMSDsequon. Both metrics are 

calculated over backbone Cα atoms only with respect to the backbone of the peptide in the 

starting structure. For RMSDpeptide, RMSD is calculated for all peptide positions. For RMSDsequon, 

RMSD is calculated for positions −1 to +3 (XTXAP). Shape Complementarity is calculated using the 

shape complementarity calculator in PyRosetta46 as described in Supplementary Information. 

The interaction energy at the enzyme–peptide interface is calculated as the difference between 

the ref2015 score for the bound complex and the ref2015 score for the enzyme (includes the 

UDP-sugar molecule) and the peptide, separated from the complex without repacking side 

chains. 

Specificity prediction with MFPred 

We follow the protocol outlined in the MFPred study.32 1) The starting structure is relaxed. 2) The 

lowest energy decoy from relax step is used as a starting structure for the FastRelax protocol for 

each sequon. 3) The lowest energy decoy for each sequon from the FastRelax protocol is  

processed by the GenMeanFieldMover.  
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