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Abstract 1 

Advances in microscopy, microfluidics and optogenetics enable single-cell monitoring and 2 

environmental regulation and offer the means to control cellular phenotypes. The development 3 

of such systems is challenging and often results in bespoke setups that hinder reproducibility. To 4 

address this, we introduce Cheetah – a flexible computational toolkit that simplifies the integration 5 

of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an 6 

image segmentation system based on the versatile U-Net convolutional neural network. This is 7 

supplemented with functionality to robustly count, characterise and control cells over time. We 8 

demonstrate Cheetah’s core capabilities by analysing long-term bacterial and mammalian cell 9 

growth and by dynamically controlling protein expression in mammalian cells. In all cases, 10 

Cheetah’s segmentation accuracy exceeds that of a commonly used thresholding-based method, 11 

allowing for more accurate control signals to be generated. Availability of this easy-to-use 12 

platform will make control engineering techniques more accessible and offer new ways to probe 13 

and manipulate living cells.  14 
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Introduction 15 

Modern automated microscopy techniques enable researchers to collect vast amounts of single-16 

cell imaging data at high temporal resolutions. This has resulted in time-lapse microscopy 17 

becoming the go to method for studying cellular dynamics, enabling the quantification of 18 

processes such as stochastic fluctuations during gene expression 1–3, emerging oscillatory 19 

patterns in protein concentrations 4, lineage selection 5,6, and many more 7.  20 

To make sense of microscopy images, segmentation is performed whereby an image is 21 

broken up into regions corresponding to specific features of interest (e.g. cells and the 22 

background). Image segmentation allows for the accurate quantification of cellular phenotypes 23 

encoded by visual cues (e.g. fluorescence) by ensuring only those pixels corresponding to a cell 24 

are considered. A range of segmentation algorithms have been proposed to automatically 25 

analyse images of various organisms and tissues 3,8–11. The most common of these are 26 

thresholding 12 and seeded watershed 13 methods, which are available in many scientific image 27 

processing toolkits. Commercial software packages also implement this type of functionality, 28 

enabling both automated image acquisition and analysis (e.g. NIS-Elements, Nikon). While these 29 

proprietary systems are user-friendly requiring no programming skills to be used, they are often 30 

difficult to tailor for specific needs and cannot be easily extended to new forms of analysis. 31 

More recently, deep learning-based approaches to image segmentation have emerged 32 

7,14–17. Compared to the more common thresholding-based approaches 12, deep learning methods 33 

tend to require more significant computational resources when running on traditional computer 34 

architectures, and often require the time-consuming manual step of generating large numbers of 35 

classified images for training. However, once trained deep learning methods are generally more 36 

robust to varying image quality and provide comparable 18 or superior segmentation accuracy 17 37 

to thresholding-based methods. 38 

The accuracy and robustness of a segmentation method are particularly important for 39 

online applications. For example, where an environment is dynamically controlled during an 40 

experiment in response to changes in cell state. Real-time image analysis and segmentation 41 

allows for the implementation of external feedback control 19,20. Typically, in such an experiment 42 

a combined microfluidic and microscopy platform is used to allow for images of single cells to be 43 

continually captured and analysed, with changes immediately processed. The state of the cells 44 

is generally signalled by the expression of a fluorescence protein that can be dynamically 45 

monitored and used as input to a control algorithm. The comparison of this cellular signal to the 46 

desired reference in silico allows a control signal to be generated by computer software that can 47 

be used to alter the cellular environment and perturb the cellular state in the required way (closing 48 

the loop). Generally, these experiments require the cells to be genetically engineered to transmit 49 

their state using fluorescence and respond to specific environmental stimuli in a prescribed way. 50 

This combination of computational, physical, and genetic aspects has resulted in this type of 51 
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approach being termed external cybergenetic control and has been successfully applied for gene 52 

expression regulation in yeast 21–24, bacteria 25 and mammalian cells 26. Such external feedback 53 

control can also be implemented using optogenetics 2,27 and in combination with flow cytometry 54 

for online measurement of the control output 28. When compared to embedded cellular controllers 55 

(where both the controlled process and the controller are implemented within the cell using 56 

synthetic regulatory networks), external controllers benefit from requiring only minimal cellular 57 

modification, placing little burden on a cell; also, a single control platform can be used for the 58 

automatic regulation of different cellular processes across cellular species (e.g. gene expression 59 

21,22, cell growth 28, cytosol-nuclear protein translocation 29).  60 

In terms of software, while control algorithms such as proportional integral, model 61 

predictive control and zero average dynamics are versatile enough to be used in many contexts30, 62 

an online segmentation algorithm usually needs to be tailored given the cell type and the image 63 

acquisition settings. For example, if using a thresholding-based approach, various parameters in 64 

the segmentation code must be adjusted by trial-and-error before running a closed-loop control 65 

experiment. Furthermore, these settings must not significantly change during an experiment (e.g. 66 

due to a loss of focus), otherwise accuracy will be compromised. If the online measurements 67 

deviate from the real state of the cells, the overall control experiments will fail as inputs become 68 

calibrated to a miscalculated control error. 69 

In this work, we aim to address these difficulties by developing a computational toolkit 70 

called Cheetah to help simplify external cybergenetic control applications. We demonstrate its 71 

core functionality and flexibility by both post-processing time-lapse data for bacterial and 72 

mammalian cell growth in a microfluidic chip and external feedback control of gene expression 73 

in mammalian cells. We demonstrate Cheetah’s increased robustness compared to the widely 74 

used Otsu thresholding-based method 12,31 and show how poor segmentation can lead to 75 

miscomputed control error and the possible failure of an experiment. Cheetah has a broad range 76 

of potential applications from post-experiment image analysis to robust real-time feedback 77 

control. Access to these capabilities in an easy-to-use package will help simplifying the 78 

integration of control engineering techniques into cell imaging platforms and offer new ways of 79 

robustly regulating the behaviour of living cells. 80 

 81 

Results 82 

The Cheetah computational toolkit 83 

Cheetah is a Python package designed to support closed-loop control in cybergenetic 84 

applications (i.e. systems that combine computational and genetic elements). It combines real-85 

time image segmentation using the U-Net convolutional neural network (CNN) 15,32 with image 86 

analysis and cellular control algorithms. U-Net was chosen for segmentation because it has been 87 

proven reliable for a wide range of applications in systems and synthetic biology 15,33,34. Cheetah 88 
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implements U-Net using Keras and to avoid overfitting, regularization can be customised to use 89 

either batch normalisation or a dropout rate (all examples in this work use batch normalisation). 90 

Cheetah is composed of four modules (Figure 1). The first module supports the 91 

generation of training data for the U-Net model. Creation of training data can be laborious, 92 

therefore a ‘DataAugmentor’ class is provided to allow for a few labelled training images to be 93 

resampled and manipulated, generating a large augmented set of training images. This works by 94 

sampling subregions of manually labelled images and then randomly applies image rotations, 95 

vertical and horizontal flips, scaling and shearing operations, and adjustments to the image 96 

histogram to simulate varying illumination levels. The use of these augmented training sets allows 97 

an accurate segmentation model to be trained using a far smaller number of manually labelled 98 

images 15.  99 

The second module is focused on the segmentation of images into various classes (e.g., 100 

class 1 = background, class 2 = cell). This functionality is defined within the ‘Segmenter’ class, 101 

which also includes functions to train the built-in U-Net model, to save and load the parameters 102 

for previously trained models, and to use a model for predicting the class of each pixel in a new 103 

image or image stack.  104 

The third module takes segmented images as an input and can apply a range of common 105 

analyses. These include the extraction of pixel intensity histograms for a particular segmentation 106 

class (e.g. the intensity of all pixels within cells), the ability to classify and label separate cells, 107 

and to track cells across a time-series of images (provided movement is limited between frames).  108 

Finally, the fourth module allows for the implementation of user-defined feedback control 109 

algorithms. These are implemented by extending the ‘ControlAlgorithm’ class, which includes 110 

placeholder functions for initialising the control setup and an execution loop that continually 111 

processes images and generates a control output that will be used to actuate the experimental 112 

setup. Built-in functions for Relay, Proportional–Integral (PI) and Proportional–Integral–113 

Derivative (PID) control are provided as examples. 114 

 115 

Robust image segmentation and analysis of bacteria and mammalian cells 116 

To demonstrate the core functionality of Cheetah, we made use of an integrated microfluidics 117 

and imaging platform that we have previously used for external feedback control of engineered 118 

bacterial and mammalian cells 29 (Methods). Previous time-lapse videos were collated and 119 

analysed using Cheetah and comparisons made to the same analyses performed using the 120 

common Otsu thresholding-based segmentation method. 121 

We began by post-processing an open-loop time-lapse experiment of Escherichia coli 122 

cells containing a genetic construct which uses an orthogonal σ/anti-σ pair to regulate expression 123 

of a green fluorescent protein (gfp) gene 35 (Methods). The experiment consisted of cells being 124 

grown in a microfluidic device designed for long-term bacterial culture 36 (Figure 2A) and images 125 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.06.25.171751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171751
http://creativecommons.org/licenses/by/4.0/


 
6 

(including fluorescence) were acquired every 5 minutes over a 24-hour period (Methods). Before 126 

Cheetah could be used for analysis, it was necessary to train the system to be able to detect the 127 

bacteria in our experiment. This was done by manually annotating only 2 large images (512 × 128 

512 pixels) containing 329 cells in total, with each pixel labelled as either ‘background’, ‘cell 129 

border’, or ‘cell interior’. These training images were augmented using Cheetah’s DataAugmentor 130 

class to create a final set of 60 smaller annotated images (256 × 256 pixels). Using this set of 131 

images allowed for a 99.5% segmentation accuracy to be reached after training (Methods). Once 132 

trained, Cheetah segmentation masks were generated and used to calculate the number of cells 133 

and average GFP fluorescence per cell (Figures 2B, 2C). These results were compared to 134 

similar analyses using segmentation masks generated using an Otsu-thresholding based 135 

approach that we 29 and others 21,22 have previously implemented in a similar experimental setup 136 

(Supplementary Movie 1; Methods).  137 

There were several clear differences between the two segmentation methods. First, 138 

Cheetah gave more robust segmentation results, being able to accurately isolate the bacterial 139 

cells from their environment (Figure 2B). This differed from the Otsu segmentation method, 140 

which struggled due to the edges of the microfluidic chamber and noise within the empty chamber 141 

that generated high-contrast features. This resulted in the walls and empty regions of the 142 

chamber being classified as cells, and caused a large reduction in GFP fluorescence per cell for 143 

the Otsu method at the start of the experiment, when only a few cells were present (Figure 2B). 144 

As the experiment progressed, the impact of these misclassified regions was reduced as the 145 

majority of the image was covered in cells and so their impact was negligible. Furthermore, the 146 

Otsu method struggled to precisely distinguish individual cells, showing a visibly lower cell count 147 

once the chamber was filled with bacteria (Figure 2C). In contrast, Cheetah was not affected by 148 

any of these aspects and provided robust and reliable estimates of cell number and fluorescence 149 

per cell (Figure 2C) for the entire duration of the experiment. It should be noted that the significant 150 

difference of ~2600 arbitrary units (a.u.) in GFP fluorescence per cell at the beginning of the 151 

experiment between the methods would be a major problem for estimating a control signal, 152 

potentially causing large unwanted perturbations to the cells if used in an external feedback 153 

control system. 154 

Bacterial cells generally have a simple and fairly consistent morphology across a 155 

population, which simplifies their classification. A more challenging problem is the analysis of 156 

mammalian cells whose shape can significantly vary over time. To assess Cheetah’s ability to 157 

handle these more complex cell types, we tested its ability to accurately isolate and characterise 158 

mouse embryonic stem cells (mESCs). Unlike in the bacterial example, mammalian cells can 159 

often die during an experiment, causing quantification of fluorescence to be influenced by these 160 

inactive cells. Ideally, dead cells should be excluded when calculating average fluorescence 161 

values, but often are not due to difficulties distinguishing each type with standard methods. 162 
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Fortunately, this capability can be easily enabled in Cheetah due to the underlying U-Net 163 

segmentation model allowing for additional label types. Therefore, to analyse mammalian cells 164 

using Cheetah, we manually annotated 34 large images (1280 × 1056 pixels) containing 314 165 

clones in total, with each pixel labelled as either ‘background’, ‘cell border’, ‘alive cell interior’, or 166 

‘dead cell interior’ based on human knowledge regarding the generally smaller, disconnected 167 

and spherical shape of dead cells within a microfluidic chamber. Again, the DataAugmentor class 168 

was used to generate a final set of 536 smaller annotated images (512 × 512 pixels) which 169 

enabled Cheetah to reach a segmentation accuracy of 98% after training (Methods). 170 

Next, we tested Cheetah using images from a 29-hour open-loop time-lapse experiment 171 

where engineered mESCs were grown in a microfluidic chamber that enabled long-term imaging 172 

(Figure 2D). mESCs were modified to carry an inducible genetic construct that expressed an 173 

mCherry fluorescent protein (Methods). As before, we compared the performance of cell 174 

segmentation and average mCherry fluorescence of Cheetah versus an Otsu segmentation 175 

approach (Supplementary Movie 2). Similar to the bacterial results, the Otsu method 176 

misclassified the walls of the microfluidic chamber as cells and struggled to precisely isolate cell 177 

bodies within the chamber (Figure 2E). The Otsu method was also not able to distinguish 178 

between alive and dead cells, resulting in measurements that combined both categories. When 179 

compared to the more accurate results generated by Cheetah, the Otsu method led to a slightly 180 

lower estimation of average mCherry fluorescence (Figure 2F). Cheetah was able to classify 181 

alive and dead cells and although not perfect, its ability to remove even some dead cells helped 182 

to improve its estimate of alive cell mCherry fluorescence, which was found to be marginally 183 

higher than for dead cells (Figure 2F). 184 

 185 

External feedback control of protein expression in mammalian cells 186 

Having demonstrated the ability for Cheetah to robustly perform image analysis, we next 187 

attempted to validate its use for real-time external control of mammalian cells. Using the same 188 

engineered mESCs from the previous experiment, we employed an automated microscopy and 189 

fluidic control platform that allows for real-time live-cell imaging within microfluidic chips and the 190 

precise control of media and chemical inducers fed to the cells by the movement of motorised 191 

syringes (Figure 3A) 26. To allow for cells to be controlled by this system, mESCs carried a dual-192 

input genetic construct where an mCherry fluorescent protein fused to a destabilising-domain 193 

(DD) was under the control of a ‘Tet-On’ promoter (Figure 3B, Methods) 26. This allowed the 194 

mCherry reporter to be switched ‘on’ by the combined presence of doxycycline (Doxy) and 195 

trimethoprim (TMP). By varying the concentration of these chemicals using the experimental 196 

platform in response to the deviation between the current mCherry fluorescence of the cells and 197 

the desired reference value, closed-loop real-time control of the cells could be achieved. 198 
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 To test the effectiveness of Cheetah for external in silico feedback control, mESCs 199 

carrying the dual-input genetic construct were exposed overnight to high concentrations of Doxy 200 

(1 µg/mL) and TMP (100 mM) to cause strong mCherry expression. These cells were then 201 

seeded into a microfluidic chip placed on our control platform (Figure 3A) and a Relay control 202 

algorithm 26 was used to allow for set-point regulation of mCherry expression over a period of 24 203 

hours (Methods). In this case, we selected a desired reference average mCherry fluorescence 204 

of 10 arbitrary units (a.u.), which was half of the saturating mCherry fluorescence reached 205 

overnight. For closed-loop feedback control, images were streamed to Cheetah every 60 206 

minutes; each image was immediately segmented, and the mask generated for alive cells was 207 

used to estimate average mCherry fluorescence. This data was then fed to an external system 208 

to actuate the necessary control action (i.e. movement of the syringes and thus change in Dox 209 

and TMP concentration experienced by the cells) on the experimental platform. 210 

 Results from this experiment showed the ability for the platform to accurately control 211 

average mCherry fluorescence from the cells throughout the experiment (Figures 3C, 3D; 212 

Supplementary Movie 3). We manually annotated 4 frames of the time-lapse data at 0, 8, 16, 213 

and 24 hours and compared the average mCherry fluorescence calculated using these masks 214 

and those automatically generated by Cheetah. Close agreement was found for the alive and 215 

dead cells for most time points, with the only major deviation being for dead cells at 0 hours. 216 

Dead cells are often difficult to distinguish from living cells, so some differences, especially during 217 

seeding where cells are becoming accustomed to their new environment, would be expected 218 

(Figure 3E). 219 

For comparison, we ran the identical time-lapse imaging data offline through the Otsu 220 

segmentation method used in the previous section (Figure 3D; Supplementary Movie 3). 221 

Estimates of average mCherry fluorescence saw much lower levels due to misclassification of 222 

the chamber walls. Such incorrect estimation of fluorescence would have resulted in the mistaken 223 

triggering of the control input throughout the experiment.  224 

 225 

Discussion 226 

As our ability to create cybergenetic systems that combine computational, physical, and 227 

biological elements advances, the need for supporting software to coordinate and control these 228 

systems will grow. Cheetah is an attempt to simplify this process by providing an easy-to-use 229 

computational toolkit that while containing core functionality to speed up most projects, is also 230 

highly adaptable to new needs. Here, we have demonstrated Cheetah’s abilities to rapidly 231 

classify and segment two morphologically different cell types in two different microfluidic settings. 232 

We show that Cheetah can rapidly compute highly accurate image segmentation (99.5% and 233 

98% for E. coli and mESCs, respectively) even when trained using only a small number of 234 

manually annotated images (2 and 34 images for E. coli and mESCs, respectively). Furthermore, 235 
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we demonstrate how these capabilities allow for accurate control signals to be generated for 236 

external feedback control applications. In particular, the ability for Cheetah to not only segment, 237 

but also classify cells as potentially ‘dead’ or ‘alive’ enables it to filter out non-viable cells and 238 

leads to improved accuracy, as compared to a commonly used Otsu thresholding-based method. 239 

In addition to segmentation and control algorithms, Cheetah also includes a wide range of built 240 

in analysis for labelling cells, tracking their position across frames and using this information to 241 

enable analysis of single-cell properties like fluorescence (see Supplementary Movie 4 for an 242 

example). Being able to automate the creation of analysis dashboards using these capabilities, 243 

will also help speed up the discovery of subtle behaviours in populations of cells and offer the 244 

means to reanalyse existing time lapse microscopy data in more depth. 245 

While the focus here has been on demonstrating the major functionality of Cheetah, we 246 

anticipate that to can be applied much more broadly for applications across the field of synthetic 247 

biology. For example, using it within custom-built platforms able to perform imaging and dynamic 248 

light patterning 27,28 to control single-cell and guide collective behaviours 37. Furthermore, the 249 

code provided in the toolkit can easily be refined, customised and extended to allow for new 250 

features to be implemented. As such, Cheetah is a public, open-source project hosted on GitHub 251 

and welcomes contributions from the wider community. 252 

Finally, we expect the deep learning methods that are central to Cheetah’s capabilities to 253 

play an increasingly important role in synthetic biology. In the context of external feedback 254 

control, the combination of deep learning-based label-free cell classification 38,39, online training 255 

approaches, model-free control strategies (e.g. reinforcement learning-based feedback control), 256 

and the availability of tunable genetic parts 26,35,40,41 could be instrumental in unlocking the 257 

potential for control engineering techniques in biology. This will open up new avenues to create 258 

reliable and robust synthetic biological systems, much like how control engineering has 259 

revolutionised other fields. 260 

 261 

Methods 262 

Cheetah training process 263 

Training of the U-Net convolutional neural network within Cheetah was performed using a Dell 264 

Precision 5530 laptop (Intel Core i7-8850H CPU, 16 GB RAM, and 512 GB NVMe SSD) running 265 

Windows 10, connected to a Sonnet eGFX Breakaway Box 550 hosting an NVIDIA Titan Xp GPU 266 

with 12 GB GDDR5X RAM. For all organisms, the full set of annotated images were randomly 267 

split with 70% used for training and the remaining 30% used for validation. 268 

 269 

Otsu thresholding-based segmentation algorithm 270 

The Otsu segmentation method is based on pixel intensity levels and relies on the definition of 271 

grey threshold values used to divide a grayscale image into its components creating a binary 272 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.06.25.171751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171751
http://creativecommons.org/licenses/by/4.0/


 
10 

mask 12. The simplest version of this algorithm allows for the identification of two-pixel classes, 273 

background and foreground, by using a single threshold level that aims to minimise the intra-274 

class variance. More sophisticated versions of the algorithm couple global thresholding, 275 

previously described, to local thresholding, which computes dividing grey-intensity levels on 276 

smaller patches of the same image in order to boost the algorithm accuracy. In this work, 277 

segmentation of bacteria was computed using the Otsu method with global and local 278 

thresholding. The algorithm distinguished the foreground (single bacterial cells) from the 279 

background in each image of the time-lapse experiment. The global thresholding calculated the 280 

global area where cells are located, and the local thresholding found the centres and edges to 281 

differentiate individual cells in a binary mask. The final mask contained the boundaries and 282 

interiors of every segmented cell. This mask was overlaid to the fluorescence image field to 283 

calculate the fluorescence as the sum of all pixels in the segmented area minus the background 284 

fluorescence value. The average fluorescence across the bacterial population was then 285 

calculated as the mean of the fluorescence exhibited by all the objects in the final mask. 286 

Mammalian cells fluorescence was computed as the average pixel intensity value of pre-masked 287 

fluorescent images to which an average background intensity was subtracted, to take into 288 

account possible oscillations of microscopy’s light intensity. Masked images were obtained using 289 

the global thresholding strategy. For further details and access to the code, we refer the reader 290 

to de Cesare et al.31 291 

 292 

Bacterial strains, media and cell culture 293 

Experiments with bacteria used a previously generated E. coli strain 35. Luria−Bertani (LB) 294 

medium (113002065, MP Biomedicals) supplemented with 50 µg/mL kanamycin (K4000, Sigma-295 

Aldrich), 100 µg/mL ampicillin (A9518, Sigma-Aldrich) and 25 µg/mL chloramphenicol (C0378, 296 

Sigma-Aldrich) was used for all bacterial cell culture and microfluidics experiments. For 297 

microfluidic experiments, a single colony was used to seed 5 mL of LB media with antibiotics and 298 

grown overnight (approximately 16 hours) at 37°C with shaking at 200 rpm. 300 µL of the 299 

overnight culture was used to seed 300 mL of fresh LB medium with antibiotics. This culture was 300 

grown to an optical density at 600 nm of 0.3. The culture was then centrifuged at 2200 × g for 15 301 

min and resuspended in 1.5 mL of fresh LB medium supplemented with 0.075% Tween-20 302 

(P1379, Sigma-Aldrich) and antibiotics before loading into the microfluidic device.  303 

 304 

Mammalian cell lines, media and culture 305 

Experiments with mammalian cells used a previously generated mouse Embryonic Stem Cell 306 

(mESC) line 26. Briefly, mESCs were subjected to two rounds of infection and drug-selection to 307 

stably express the transactivator (EF1a-rtTA, Neomycin) and the doxycycline-inducible vector 308 

(pLVX_TRE3GDDmCherry, Puromycin; Addgene plasmid #108679). Selected cells were 309 
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expanded and grown on gelatin-coated dishes in knockout Dulbecco’s modified Eagle’s medium 310 

(DMEM D5796, Sigma) supplemented with 15% fetal bovine serum (F7524, Sigma), 1 x 311 

nonessential amino acids (11140035, Thermo Fisher), 2 mM L-Glutamine (25030024, Thermo 312 

Fisher), 100 µM 2-mercaptoethanol (31350010, Thermo Fisher), 1 mM  Sodium Pyruvate 313 

(11360039, Thermo Fisher),  1 X Penicillin/Streptomycin (P4458, Sigma) and 1000 U/mL LIF 314 

(250-02, Peprotech). 315 

 316 

Microfluidic devices and loading 317 

For E. coli, the microfluidic device used was developed by Mondragón-Palomino and colleagues 318 

at the University of California, San Diego 36. A replica of the silicon mould was donated to our 319 

group. Soft lithography was used to form the microfluidic device which contains 48 trapping 320 

chambers and 6 inlet/outlet ports. Before each experiment, a wetting protocol was used to 321 

remove any air bubbles and debris from inside the device. The device was then mounted onto 322 

the stage of an inverted widefield fluorescence microscope, enclosed inside an incubation 323 

chamber set to 37°C (Pecon) and connected to fluidic lines. A cell loading protocol, trapping 324 

individual cells in the chambers of the device was performed via the C port. Ports W1 and W2 325 

were used as waste ports, the C port became a waste port once the experiment had begun. Ports 326 

B and I were connected to an actuation system for motorised control of syringes to deliver fresh 327 

media and inputs to the cells growing inside the device. The R port was used as a mixing port. 328 

The microscope (see below for details) was programmed to take phase contrast (PhC), green 329 

fluorescence and red fluorescence images of the cells growing inside three different trapping 330 

chambers every 5 minutes. Green fluorescence images were used for the detection of sfGFP 331 

and red fluorescence images were used for the detection of the sulforhodamine B dye (230162, 332 

Sigma-Aldrich), used to detect the correct flow of inputs. 333 

 For mESCs, microfluidic chip loading and imaging were performed as reported previously 334 

26. The microfluidic device we used was designed in the laboratory of Prof Jeff Hasty at the 335 

University California in San Diego. It consists of 5 ports for cell lading and media input/output, 33 336 

individual chambers for cell growth and imaging, and a channel for controlled flow perfusion 42. 337 

The chip was fulfilled with complete mESC media supplemented with 1 µg/mL Doxy (D9891, 338 

Sigma) and 100 nM TMP (T7883, Sigma) flowing from port 5 followed by port 1 before the cell 339 

loading. Cells from a sub-confluent petri dish (60 cm in diameter) were washed with sterile 340 

Phosphate Buffered Saline (PBS  D8537, Sigma), trypsinised for 2-3 min at room temperature 341 

and centrifuged at 1000 rpm for 5 min. Pelleted cells were resuspended in 200 µL of complete 342 

mESC medium+Doxy/TMP and gently loaded from port 1 using a 2 mL syringe, while applying 343 

constant vacuum suction to ports 3 and 4. The vacuum enables cell trapping by facilitating air 344 

release from the chambers. The chip was kept for 24 hours in a tissue culture incubator (5% CO2, 345 

37°C) under constant Doxy/TMP perfusion to induce mCherry expression before the time-lapse. 346 
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The day after, the device was transferred on the widefield microscope and connected to the 347 

actuation system that consists of two motor-controlled syringes 348 

(http://biodynamics.ucsd.edu/dialawave/) connected to port 6 and 7. One syringe contains Doxy, 349 

TMP and 1 µM of Atto488 green fluorescent dye (41051-1MG-F, ThermoFisher), whereas the 350 

other only contains plain mESC media. Ports 1, 2 and 5 were connected to stating syringes to 351 

balance the flow of media from ports 6 and 7, ensuring constant perfusion and avoiding backflow. 352 

During the open-loop experiment (Figures 2E, 2F) mESCs were exposed to plain media for the 353 

entire duration of the time-lapse, whereas dynamic switching between plain and Doxy/TMP 354 

media was automatically controlled during the closed-loop experiment (Figures 3C, 3D) to reach 355 

and maintain a desired reference red fluorescence level. 356 

 357 

Live-cell imaging 358 

Time-lapse microscopy for both E. coli and mESCs were performed using a Leica DMi8 inverted 359 

microscope equipped with an environmental control chamber (PeCon) for long-term temperature 360 

control and CO2 enrichment where necessary. The Adaptive Focus Control (AFC) ensures focus 361 

is maintained during the entire time-course experiment. Imaging of E. coli cells was performed 362 

using a 100X objective every 5 min using an AndoriXON 897 ultra back-illuminated EMCCD (512 363 

× 512 pixel 16 µm pixels, 16-bit, 56 fps at full frame) in a temperature-controlled environment. 364 

Imaging of mESCs was performed using a 20X objective every 60 minutes in a temperature and 365 

CO2 controlled environment. The experimental set-up includes consecutive acquisition in three 366 

channels (phase contrast, green fluorescence and red fluorescence). 367 

 368 

Relay control algorithm 369 

The Relay Control algorithm provides at each timepoint a control action that aims to minimise the 370 

error signal (e, defined as the difference between a reference signal and the process output). 371 

Formally, the controller generates the following control input 372 

𝑢(𝑡) = &
𝑢!		𝑖𝑓	𝑒(𝑡) > 0
𝑢"		𝑖𝑓	𝑒(𝑡) ≤ 0                (1) 373 

to decrease the error. In our experiments, the control input u1 corresponds to providing cells 374 

culture media supplemented with Doxy/TMP, while u2 corresponds to providing cells with plain 375 

media. The algorithm also implements a 5% hysteresis interval around the set-point to avoid 376 

chattering in the control signal. 377 

 378 

General computational analysis and tools 379 

Computational analysis was performed by custom scripts run using Python 3.6.8 and the 380 

following packages: tensorflow 1.14.0, keras 2.2.4, scikit-learn 0.21.2, scikit-image 0.15.0, 381 

numpy 1.16.4 and matplotlib 3.1.1. Genetic designs are visualised using DNAplotlib 1.0 43,44 and 382 
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Synthetic Biology Open Language Visual (SBOL Visual) symbols 45. Figures were composed 383 

using Omnigraffle 7.16 and Affinity Designer 1.8.3. 384 

 385 

Data availability 386 

The Cheetah Python package, analysis code and data presented in this work are available from 387 

the project GitHub repository at: https://www.github.com/BiocomputeLab/cheetah. 388 
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Figures and captions 517 

 518 

Figure 1: Overview of the Cheetah computational toolkit. Structure of Cheetah’s core 519 

modules and their interactions (grey filled arrows and boxes). The modular nature of the toolkit 520 

allows elements to be used separately, e.g., enabling the use of the built-in segmentation 521 

functionality with external analysis and control systems (white pointed box). Control algorithms 522 

can either directly interface with the imaging and environmental control system or output their 523 

data to text files for use by the external system (i.e. an indirect interface).  524 

Cheetah Computational Toolkit

Training Built-in
Models

Segmentation &
Classi�cation (U-Net)

Microscopy
Images

Manual
Annotations

Analysis &
Statistics

Control
Algorithms !irect

Indirect
T"T

Imaging &
#n$ironmental

Control

%N&

Real-time feedback

Chemicals 'ight

f(x)

( ) *
+
,

#-ternal Analysis
& Control System

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.06.25.171751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171751
http://creativecommons.org/licenses/by/4.0/


 
19 

 525 

Figure 2: Monitoring and analysis of bacteria and mammalian cells in microfluidic chips. 526 

(A) Schematic of the microfluidic chamber used for bacterial growth and imaging. A typical 527 

imaging area is shown by the dashed box and flow of nutrients is shown by the grey arrows. (B) 528 

Time-lapse images of Escherichia coli cells growing in the microfluidic chamber for phase 529 

contrast and GFP fluorescence, as well as segmentation masks for cells generated using the 530 

Otsu method and Cheetah (white regions denote cells). (C) Average GFP fluorescence of the 531 

cell segmentation mask and cell count over time calculated using either the Otsu or Cheetah 532 

segmentation masks. (D) Schematic of the microfluidic chamber used for mouse embryonic stem 533 

cells (mESCs) growth and imaging. A typical imaging area is shown by the dashed box and flow 534 

of nutrients is shown by the grey arrows. (E) Time-lapse images of mESCs growing in the 535 

microfluidic chamber for phase contrast and mCherry fluorescence, as well as segmentation 536 

masks for cells generated using the Otsu method and Cheetah (white regions denote cells). For 537 

Cheetah, separate masks are shown for living and dead cells. (F) Average mCherry fluorescence 538 

of the cell segmentation mask over time calculated using either the Otsu method or Cheetah.  539 
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 540 

Figure 3: Closed-loop control of protein expression in mammalian cells. (A) Schematic of 541 

the microfluidic system used for external closed-loop control. A desired reference cellular 542 

mCherry fluorescence of 10 arbitrary units (a.u.) is shown. (B) Overview of genetic construct 543 

used to control mCherry expression 26. Small molecules (TMP and Doxy) work in tandem to boost 544 

the expression level of mCherry. Regulation is due to a tetracycline transcriptional activator (tTA) 545 

and a destabilising domain (DD) which forms part of the mCherry reporter protein. (C) Time-lapse 546 

images of mouse embryonic stem cells (mESCs) growing in the system for phase contrast and 547 

mCherry fluorescence, as well as segmentation masks for cells generated using the Otsu 548 

method, Cheetah and manually annotated to give a ground truth (white regions denote cells). 549 

For Cheetah and the ground truth, separate masks are shown for living and dead cells. (D) 550 

Average mCherry fluorescence of the cell segmentation mask over time calculated using either 551 

the Otsu method or Cheetah. Red dotted line denotes the external reference that the controller 552 

aims to maintain (10 a.u.). Grey shaded regions show when the control signal triggered release 553 

of TMP and Doxy. Control signals were generated by using average mCherry fluorescence 554 

calculated using segmentation masks of alive cells from Cheetah. (E) Comparison of average 555 

mCherry fluorescence at specific time points during the experiment for segmentation masks 556 

generated by Cheetah and manually annotated (ground truth).  557 
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Supplementary Movie Captions 559 

Supplementary Movie 1: Open-loop experiment of bacterial cells. Otsu- and Cheetah-based 560 

segmentation results are shown, comparing the computed masks, cell number and GFP 561 

fluorescence over time. 562 

 563 

Supplementary Movie 2: Open-loop experiment of mouse embryonic stem cells. Otsu- and 564 

Cheetah-based segmentation results are shown, comparing the computed masks and mCherry 565 

fluorescence. Cheetah also classify cells as live and dead and provides fluorescent protein 566 

dynamics of each. 567 

 568 

Supplementary Movie 3: External feedback control experiment of mouse embryonic stem 569 

cells performed using Cheetah-based segmentation. Offline Otsu- and online Cheetah-based 570 

segmentation results are shown, comparing the computed masks cell number and mCherry 571 

fluorescence. The control input provided during the experiment and the set-point control 572 

reference are also shown. 573 

 574 

Supplementary Movie 4: Detailed analysis dashboard for bacteria growing in a 575 

microfluidic chip. Top two panels on the left show the phase contrast and GFP fluorescence 576 

images from the microscope. Top right panel shows detailed analysis of the phase contrast image 577 

with cells labelled by colour and a light grey bounding box and their centre of mass and major 578 

axis (i.e. orientation) denoted by a red circle and line, respectively. The bottom two panels show 579 

the time course of both cell count and single-cell GFP fluorescence (with the average shown as 580 

a solid line and ± the standard deviation depicted by the shaded area). 581 
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