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SUMMARY 

How white matter pathway integrity and neural co-activation patterns in the brain relate 

to complex cognitive functions remains a mystery in neuroscience. Here, we integrate 

neuroimaging, connectomics, and machine learning approaches to explore how 

multimodal brain connectivity relates to cognition. Specifically, we evaluate whether 

integrating functional and structural connectivity improves prediction of individual 

crystallised and fluid abilities in 415 unrelated healthy young adults from the Human 

Connectome Project. Our primary results are two-fold. First, we demonstrate that 

integrating functional and structural information – at both a model input or output level – 

significantly outperforms functional or structural connectivity alone to predict individual 

verbal/language skills and fluid reasoning/executive function. Second, we show that 

distinct pairwise functional and structural connections are important for these predictions. 

In a secondary analysis, we find that structural connectivity derived from deterministic 

tractography is significantly better than structural connectivity derived from probabilistic 

tractography to predict individual cognitive abilities.  
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INTRODUCTION 

Tens of billions of neurons interconnect in the human brain. Direct and indirect structural 

white matter connections between these neurons facilitate the flow of functional activation 

between distinct brain regions. Together, these functional and structural connections give 

rise to human behaviour and cognition. Insight into multimodal neural correlates of 

cognitive abilities in the healthy brain provides an important foundation with which to 

delineate age-, injury-, and disease- related changes in cognitive functioning. 

Furthermore, a thorough understanding of specific functional and structural connections 

that are associated with cognition can guide the investigation of causality, and possible, 

the development of targeted neuromodulatory treatments for cognitive dysfunction.  

Functional connectivity (FC) represents temporal dependency patterns between regional 

blood-oxygenation-level dependent (BOLD) activity in functional magnetic resonance 

imaging (fMRI) time series, and structural connectivity (SC) represents the integrity of 

inter-regional white matter pathways estimated from diffusion MRI (dMRI). FC and SC 

have individually been linked to cognitive functioning and used to predict cognitive 

measures (Song et al., 2009, Song et al., 2008, Pamplona et al., 2015, Klein et al., 2016, 

Moeller et al., 2015, Willmes et al., 2014, Matejko et al., 2013, Seeley et al., 2007, van 

den Heuvel et al., 2009, Zimmermann et al., 2018, He et al., 2020, Kong et al., 2018, Li 

et al., 2019, Liégeois et al., 2019, Bassett et al., 2011, Menon and Uddin, 2010, Uddin et 

al., 2011, Kelly et al., 2008). Although neural function and structure are inexorably linked, 

most studies analyse their contribution to behaviour independently. FC is associated with 

performance variability in executive control (Seeley et al., 2007) and intellectual 

performance (van den Heuvel et al., 2009), and can successfully predict a range of 
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cognitive measures (He et al., 2020, Kong et al., 2018, Li et al., 2019). Moreover, 

morphometric similarity networks capturing neuroanatomical properties from structural 

and diffusion images (fractional anisotropy, mean diffusivity, magnetisation transfer, grey 

matter volume, surface area, cortical thickness, intrinsic curvature, mean curvature, 

curved index, and folding index) can explain variability in general intellectual functioning 

(Seidlitz et al., 2018), and structural connectivity can accurately predict fluid abilities 

(Zimmermann et al., 2018). FC and SC seem to independently contribute to cognition 

(Zimmermann et al., 2018), but no work has yet investigated whether integrating FC and 

SC can increase cognitive prediction accuracy above and beyond what is obtained by 

either modality alone. Here, we sought to integrate FC and SC (Amico and Goñi, 2018) 

to reveal how both modalities contribute to  predicting cognition.  

Most studies to date have focused on using resting-state FC to predict behavioural and 

cognitive measures (He et al., 2020, Kong et al., 2018, Li et al., 2019). Kong et al. (Kong 

et al., 2018) used spatial topography of cortical functional networks to predict behaviour. 

Li et al. (Li et al., 2019) found global signal regressed resting-state FC improves 

behavioural prediction. He at al. (He et al., 2020) showed that machine learning and deep 

learning methods are equally effective in predicting behavioural, cognitive, and 

demographic measures from resting-state FC. However, these studies have not 

addressed whether SC can provide additional explained variance in cognition.  

In the most similar study to date, Zimmerman et al. (Zimmermann et al., 2018) studied 

multi-dimensional connectome-cognition relationships in 609 genetically unrelated 

subjects from the Human Connectome Project (Van Essen et al., 2013). They generated 

three main components from eleven cognitive measures and used partial least squares 
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analyses to identify four latent variables that describe the connectome-cognition 

relationships: two captured FC-cognition associations and two captured SC-cognition 

associations (Zimmermann et al., 2018). They found functional and structural connections 

uniquely map onto cognitive functions, including working memory, executive function, 

cognitive flexibility, processing speed, fluid intelligence, episodic memory, and 

attention/inhibitory control (Zimmermann et al., 2018). They identified a large set of 

distributed interhemispheric functional connections spanning bilateral frontal, parietal, 

temporal, and subcortical regions, and a limited set of short-range intrahemispheric 

structural connections within bilateral parietal, temporal and subcortical regions that 

distinctively map onto cognitive function (Zimmermann et al., 2018). While this study 

addressed the relationship between SC and cognition, it analysed the functional and 

structural relationships to cognition independently.  

Amico and Goñi (Amico and Goñi, 2018) have simultaneously studied changes in 

functional and structural connectivity patterns across tasks and resting-state. Their results 

showed that combining functional and structural connectivity into a “hybrid” connectivity, 

they were able to extract meaningful information and capture individual differences 

(Amico and Goñi, 2018). However, the relationship between this “hybrid” connectivity and 

cognitive functioning has not yet been explored.  

White matter pathways comprise neural circuits involving cortical and subcortical brain 

regions. Tractography can be used to estimate these pathways from dMRI. Two main 

classes of tractography algorithms, deterministic and probabilistic, differ in how they 

sample fibre directions for streamline propagation. Whether structural connectivity 
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derived from deterministic or probabilistic tractography is better at predicting individual 

cognitive measures has not yet been established. 

Here, we study whether integrating SC and FC improves cognitive predictions in a subset 

of 415 healthy young adults from the Human Connectome Project (Van Essen et al., 

2013) dataset. The primary goals of this study are twofold. First, we evaluate whether 

integrating functional and structural connectivity, at either a model input or output level, 

improves the prediction of individual crystallised and fluid cognitive abilities when 

compared to functional and structural connectivity alone. Second, we quantify the 

pairwise functional and structural connections that contribute the most to the prediction 

of crystallised and fluid abilities. As a secondary analysis, we compare whether structural 

connectivity derived from deterministic or probabilistic tractography is superior at 

predicting individual cognitive abilities.   
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METHODS 

Our experimental workflow is shown in Figure 1. The data that support the findings of this 

study are openly available as part of the Human Connectome Project at 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-

data-release (Van Essen et al., 2013). The codes generated during this study are 

available on GitHub (https://github.com/elvisha/CognitivePredictions).  

Dataset 

We used publicly-available high resolution, preprocessed magnetic resonance imaging 

(MRI) data from the Human Connectome Project – Young Adult S1200 (Van Essen et al., 

2013)  in this study. HCP MRI data were acquired on a Siemens Skyra 3T scanner at 

Washington University in St. Louis. HCP scanning included T1-weighted and T2-weighted 

anatomical images (0.7mm isotropic), functional MRI (2.0mm isotropic, TR/TE = 

720/33.1ms, 8x multiband acceleration), and diffusion MRI (1.25mm isotropic, TR/TE =  

5520/89.5ms, 3x multiband acceleration, b=1000,2000,3000, 90 directions/shell). 

Functional and diffusion MRI were collected with both left-right and right-left phase 

encoding. We examined resting-state functional MRI (rfMRI) time series and diffusion  

MRI (dMRI) from 415 unrelated healthy adults (213 males; ages 22- 37). This subset of 

the HCP dataset were those subjects that had four complete rfMRI runs, a dMRI scan 

and crystallised and fluid cognitive scores.  

Parcellation 

As part of the HCP preprocessing workflow (Glasser et al., 2013) , FreeSurfer’s recon-all 

pipeline (Dale et al., 1999, Fischl et al., 2001, Fischl et al., 2008, Fischl et al., 2002, Fischl 

et al., 1999a, Fischl et al., 1999b, Segonne et al., 2005) was optimised for the high-
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resolution HCP anatomical data. The 68 region Desikan-Killiany gyral atlas (aparc.annot, 

34 cortical regions per hemisphere) was combined with the 18 bilateral subcortical 

structures (aseg.mgz, excluding brainstem) to produce an 86 region whole brain 

anatomical parcellation for each subject (Desikan et al., 2006, Fischl et al., 2002). We 

parcellated the brain into these 86 regions to generate both the functional and structural 

connectomes as described below to maintain consistency and enable comparisons 

between the two.   

Functional Connectome (FC) Extraction 

Each subject underwent four gradient-echo EPI rfMRI runs of ~15 min each over two 

sessions. The data consisted of 1200 volumes per rfMRI for a total of 4800 volumes for 

each subject over the four runs. The minimal preprocessing pipeline performed by the 

HCP consortium included motion and distortion correction, registration to subject anatomy 

and standard MNI space, and automated removal of noise artefacts by independent 

components analysis(Glasser et al., 2013, Griffanti et al., 2014, Salimi-Khorshidi et al., 

2014). We regressed the global signal and its temporal derivative from each rfMRI time 

series and computed the zero lag Pearson correlation to derive the FC for each scan. For 

each subject, we averaged FC across the four scans to get a single mean FC, which we 

then Fisher’s z-transformed. We used the vectorised upper triangular of this FC to predict 

cognition.  

Structural Connectome (SC) Extraction 

The HCP minimally preprocessed diffusion data have been processed to correct for 

motion, EPI and eddy-current distortion, and registered to subject T1 anatomy (Glasser 

et al., 2013). We then used MRtrix3 to estimate a voxel-wise multi-shell, multi-tissue 
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constrained spherical deconvolution (CSD) model and then compute whole brain 

tractography for each HCP subject (Jeurissen et al., 2014). We computed separate 

whole-brain tractograms using both probabilistic (iFOD2 (Tournier et al., 2010) with 

anatomically constrained tractography – ACT (Smith et al., 2012)) and deterministic 

(SD_STREAM (Tournier et al., 2012)) tractography algorithms. Each method produced 5 

million streamlines per subject, using dynamic seeding, and computed streamline weights 

to reduce known biases in tractography algorithms and better match the whole brain 

weighted tractogram to diffusion properties of the observed data (SIFT2, (Smith et al., 

2015)). We parcellated the tractograms to produce ROI-volume normalized pairwise SC 

matrices, where each pairwise connection is the sum of the SIFT2 weights of streamlines 

connecting those regions, divided by the sum of the grey matter volume of those regions. 

We generated two SC matrices for each subject: one using deterministic tractography 

and another using probabilistic tractography. We resampled SC matrices independently 

to a Gaussian distribution (Honey et al., 2009): given N raw data values x1, …, xN, N 

random samples r1, …, rN, from a Gaussian distribution with a mean of 0.5 and a standard 

deviation of 0.1 were generated. We replaced the smallest raw data value with the 

smallest randomly sampled value and repeated until all raw data values were replaced. 

This produced a set of N resampled data values with a Gaussian distribution. We used 

the vectorised lower triangular of this Gaussian resampled SC to predict cognition.  

Hybrid Connectome (HC) 

We concatenated the upper triangular of the functional and the lower triangular of the 

structural connectivity matrices to generate HC (Amico and Goñi, 2018). We used the 

vectorised HC to predict cognition.  
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Cognition 

The NIH Toolbox Cognition Battery is an extensively validated battery of 

neuropsychological tasks (Carlozzi et al., 2017, Gershon et al., 2013, Heaton et al., 2014, 

Mungas et al., 2014, Tulsky et al., 2017, Weintraub et al., 2013, Weintraub et al., 2014, 

Zelazo et al., 2014) that assesses five cognitive domains: language, executive function, 

episodic memory, processing speed, and working memory through seven individual test 

instruments (Heaton et al., 2014). The specific tasks include Dimensional Change Card 

Sort Test (executive function – cognitive flexibility), Flanker Inhibitory Control and 

Attention Test (executive function – inhibitory control and attention), Picture Sequence 

Memory Test (episodic memory), Picture Vocabulary Test (language – vocabulary), Oral 

Reading Recognition Test (language – reading decoding), List Sorting Working Memory 

Test (working memory), and Pattern Comparison Processing Speed Test (processing 

speed) (Heaton et al., 2014). Three composite scores are derived from participants’ 

scores on the NIH Toolbox Cognitive Battery tasks: Crystallised Cognition Composite, 

Fluid Cognition Composite, and Total Cognition Composite (Heaton et al., 2014). The 

Crystallised Cognition Composite comprises the Picture Vocabulary and Oral Reading 

Recognition tests and assesses language and verbal skills. The Fluid Cognition 

Composite comprises scores on the Dimensional Change Card Sort, Flanker Inhibitory 

Control and Attention, Picture Sequence Memory, List Sorting Working Memory, and 

Pattern Comparison Processing Speed tests. It is a composite that broadly assesses 

processing speed, memory, and executive functioning. The Total Cognition Composite is 

the average of the Crystallised and Fluid Cognition Composites. We used the 

Crystallised, Fluid, and Total Cognition Composites in this study, rather than the individual 
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scores from the tasks, because they are likely to have a higher signal-to-noise ratio. 

Composite scores also tend to be more reliable/stable and are less susceptible to 

variability in individual tasks (Heaton et al., 2014). Lastly, by using the composite scores, 

we greatly reduce the number of models that need to be trained, thus reducing the number 

of multiple comparison.  

Prediction of Cognitive Performance 

We used three distinct inputs (FC, SC, and HC) to predict three distinct outputs 

(crystallised, fluid, and total cognition): a separate machine learning model was trained 

for each input/output combination. To evaluate whether SC derived from deterministic or 

probabilistic tractography is superior at predicting cognition, we trained two separate 

models for SC-based predictions. For each model, we split the data into training (80%) 

and testing (20%) splits. We fit a linear ridge regression model on Scikit-learn (Pedregosa 

et al., 2011) using the training subset and tuned the regularisation parameter with ten 

iterations of nested cross validation with five-fold inner and outer loops. We optimised the 

regularisation parameter in the inner loop and then used it to train each split in the outer 

loop. We took the median over the optimised hyperparameters from the ten iterations to 

generate a single final model. We trained this model and extracted feature weights from 

the training set and evaluated the model’s explained variance and prediction accuracy 

from the test set. We quantify prediction accuracy as the Pearson correlation between the 

true and predicted values (Li et al., 2019). We performed one hundred permutations of 

each model to generate a distribution of performance metrics while maintaining the 

distinct train/test splits consistent for all prediction models. We also trained Elastic Net, 

LASSO, and kernel ridge regression models to predict cognition, but results were inferior 
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to those from linear ridge regression models. Hence, we specifically report results from 

linear ridge regression. Finally, we generated an Ensemble Prediction (EP) for each test 

subject’s Crystallised, Fluid, and Total Cognition Composite by averaging the predictions 

from models trained independently on FC and SC (Khosla et al., 2019). For each cognitive 

score, we evaluated hold-out performance differences between the FC, SC, HC and EP 

models using a Kruskal-Wallis test. We corrected p-values for multiple comparisons using 

the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995)  to decrease the 

false discovery rate. To quantify the effect of tractography algorithm choice on the 

accuracy of cognitive prediction, we evaluated the difference in model performance 

metrics for all three cognitive scores using SC derived from deterministic versus 

probabilistic tractography using a Mann-Whitney U test.   

Feature Importance 

We averaged feature weights obtained over the 100 permutations of the linear ridge 

regression models to get a mean feature weight. Feature weights from HC models were 

separated into their functional and structural components. We rescaled the feature 

weights while maintaining their signs (positive and negative) to generate pairwise feature 

importance. We computed regional positive and negative feature importance by taking 

the sum over that region’s pairwise positive and negative feature importances. We 

evaluated the correlations between pairwise feature weights obtained from FC, SC, and 

HC models to predict crystallised, fluid, and total cognitive scores. We corrected p-values 

corresponding to the correlations for multiple comparisons using the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995)  to decrease the false discovery rate. 
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Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Elvisha Dhamala (eld2024@med.cornell.edu).  

 

[Insert Figure 1] 
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RESULTS 

Prediction of Cognitive Performance 

FC, SC, HC, and EP explain 11.3% (prediction accuracy, r=0.34), 8.6% (r=0.31), 14.6% 

(r=0.39), and 12.5% (r=0.40) of the variance in crystallised cognition, respectively. FC, 

SC, HC, and EP explain 6.2% (r=0.25), 5.5% (r=0.24), 8.3% (r=0.29), and 7.9% (r=0.32) 

of the variance in fluid cognition, respectively. FC, SC, HC, and EP explain 11.3% 

(r=0.34), 11.5% (r=0.34), 14.7% (r=0.39), and 13.9% (r=0.41) of the variance in total 

cognition, respectively. We evaluated differences in explained variance and prediction 

accuracy between the models using FC, SC, HC, and EP to predict each of the cognitive 

scores. In terms of prediction accuracy, HC and EP significantly (p<0.05) outperform FC 

and SC alone to predict crystallised, fluid, and total cognitive abilities. In terms of 

explained variance: FC and EP significantly (p<0.05) outperform SC, and HC significantly 

(p<0.05) outperforms FC and SC alone to predict crystallised abilities; HC significantly 

(p<0.05) outperforms FC and SC alone, and EP significantly (p<0.05) outperforms SC 

alone to predict fluid abilities; HC and EP significantly (p<0.05) outperform FC and SC 

alone to predict total cognitive abilities. HC and EP models perform comparably (p>0.05) 

to predict crystallised, fluid, and total cognition. Figure 2 shows explained variance and 

prediction accuracy violin plots for models using FC, SC, HC, and EP to predict 

crystallised, fluid, and total cognition.  

[Insert Figure 2] 
 

Feature Importance and Regional Importance 

Distributed pairwise functional and structural connections are important to predict 

individual cognitive scores. Fronto-temporal and cortico-subcortical functional 
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connections and structural connections between cortical regions and the left caudate are 

important in predicting crystallised scores. In contrast, the feature importance scores for 

fluid cognition show an even more distributed set of cortical-subcortical functional 

connections and an even larger emphasis on structural connections out of the left 

caudate. To predict individual total cognition, a combination of the connections important 

to predict crystallised and fluid cognition are important. Pairwise functional and structural 

connections important to predict individual crystallised, fluid, and total cognition abilities 

are shown in Figure 3.  

[Insert Figure 3] 
 

Distinct functional and structural region-pair connections are important for predicting each 

of the cognitive scores. That is, for each cognitive score, there exists no correlation 

(p>0.05) between pairwise feature importances from models based on functional or 

structural connectivity. However, there exist significant correlations (p<0.05) between 

pairwise feature importances from models using functional connectivity to predict each of 

the three cognitive scores and structural connectivity to predict each of the three cognitive 

scores. Pairwise feature importances of functional connections from the functional and 

hybrid connectivity models and structural connections from the structural and hybrid 

connectivity models are significantly correlated (p<0.05) for each cognitive score. 

Correlations between pairwise feature importances are shown in Figure 4.  

[Insert Figure 4] 
 

Similar to the feature importance of the region-pair connections, different regions have 

overall importance in predicting individual cognitive scores. For each cognitive score, 
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there exists no correlation (p>0.05) between regional feature importances (calculated as 

sum of absolute pairwise connection feature importance for each region) from models 

using FC or SC. The SC of a large, distributed set of cortical regions in the bilateral frontal, 

parietal, temporal, and occipital cortices are important in predicting individual crystallised 

and fluid abilities; the FC of a smaller set of regions in the bilateral frontal, left temporal, 

and left subcortical cortices are important, see Figure 5. Regional positive and negative 

feature importance is shown in Supplementary Figure 1.  

[Insert Figure 5] 
 

Deterministic versus Probabilistic Tractography  

SC derived from deterministic tractography explains 8.6% (prediction accuracy, r=0.31), 

5.5% (r=0.25), and 11.5% (r=0.34) of the variance in crystallised, fluid, and total cognition, 

respectively, while SC derived from probabilistic tractography explains 5.0% (r=0.23), 

3.2% (r=0.18), and 6.2% (r=0.26), respectively. SC derived from deterministic 

tractography significantly outperforms SC derived from probabilistic tractography when 

predicting crystallised, fluid, and total cognition in terms of both explained variance and 

prediction accuracy. Explained variance and prediction accuracy violin plots to predict 

crystallised, fluid, and total cognition using SC derived from deterministic and probabilistic 

tractography are shown in Figure 6.  

[Insert Figure 6] 
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DISCUSSION 

In this study, we evaluated whether integrating functional and structural connectivity 

improves predictions of cognitive scores in 415 healthy young adults. Using whole brain 

resting-state functional connectivity, structural connectivity, hybrid function-structure 

connectivity, and ensemble predictions, we predicted individual crystallised, fluid, and 

total cognition. The conclusions of the study are three-fold. First, we demonstrate that 

integrating functional and structural connectivity information at both an input level, via 

hybrid connectivity, and an output level, via ensemble predictions, modestly but 

significantly outperforms functional and structural connectivity alone to predict individual 

crystallised, fluid, and total cognitive abilities. Second, we show that distinct functional 

and structural connections are important to predict crystallised, fluid, and total cognition. 

Lastly, we find that structural connectivity derived from deterministic tractography 

significantly outperforms structural connectivity derived from probabilistic tractography to 

predict individual cognitive scores.  

Prior studies have implemented machine (He et al., 2020, Kong et al., 2018, Li et al., 

2019) and deep learning (He et al., 2020) algorithms to predict behaviour and cognition 

in the Human Connectome Project dataset using functional connectivity. Li et al. reported 

cross-validated prediction accuracies ranging from approximately 0.1 to 0.4 to predict 

individual scores on the Dimensional Change Card Sort, Flanker Inhibitory Control and 

Attention, Picture Sequence Memory, Picture Vocabulary, Oral Reading Recognition, List 

Sorting Working Memory, and Pattern Comparison Processing Speed tasks using FC (Li 

et al., 2019). He et al. demonstrated that kernel regression, fully connected neural 

networks, and BrainNetCNN (Kawahara et al., 2017) achieve comparable prediction 
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accuracies when used to predict behavioural and cognitive measures using FC (He et al., 

2020). They reported prediction accuracies ranging from approximately 0.1 to 0.4 to 

predict individual scores on the Dimensional Change Card Sort, Flanker Inhibitory Control 

and Attention, Picture Sequence Memory, Picture Vocabulary, Oral Reading Recognition, 

List Sorting Working Memory, and Pattern Comparison Processing Speed tasks (He et 

al., 2020). While we do not predict scores on these individual tasks (as they are noisier 

and may be less reliable than the composites), these scores are used to derive the 

Crystallised, Fluid, and Total cognition composite.   

White matter pathways and neural co-activation patterns in the brain produce complex 

cognitive functions. While brain functional and structural connections are undeniably 

related, most studies analyse their independent contributions to behaviour. Here, we 

replicate prior findings that functional and structural connectivity can be used separately 

to predict crystallised and fluid cognition. More importantly, we demonstrate that 

integrating functional and structural connectivity significantly improves cognitive 

predictions. We show that while functional connectivity can predict the composite scores, 

structural connectivity can also predict the composite scores with comparable explained 

variance and prediction accuracy. We also demonstrate that integrating functional and 

structural connectivity at both an input level via hybrid connectivity and at an output level 

via ensembling significantly improves the explained variance and prediction accuracies. 

This suggests that functional and structural connectivity capture unique and 

complementary information, and when combined can help us better understand the 

neural correlates of cognition.  
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Zimmerman et al. examined how functional and structural connectivity independently map 

to cognition (Zimmermann et al., 2018); however, they did not integrate the two modalities 

to quantify and compare their joint contribution to cognitive scores. They report that a 

small number of distributed structural connections and a larger set of cortical and cortico-

subcortical functional connections show relationships with cognition and conclude that 

functional and structural connections uniquely map onto cognition (Zimmermann et al., 

2018). Our results support this conclusion: specifically, we found that structural and 

functional connections linking cortical areas in the frontal, temporal, parietal, and 

cingulate cortices with subcortical regions such as the caudate are strongly predictive of 

crystallised and fluid abilities. We quantify the lack of correlation between pairwise feature 

importance for functional and structural connections, and between regional feature 

importance from models using functional and structural connectivity to predict crystallised 

and fluid cognition. We also demonstrate that distinct functional and structural 

connections are important to predict crystallised and fluid cognition (described below). 

These results are in line with Zimmerman et al.’s (Zimmermann et al., 2018) findings that 

unique functional and structural connections and regions may underlie different aspects 

of cognitive function. We argue here that both functional and structural connections 

should be integrated to fully understand the neural correlates of cognition.  

Amico and Goni (Amico and Goñi, 2018) simultaneously studied functional and structural 

connectivity patterns related to changes in brain networks across seven tasks (gambling, 

relational, social, working memory, motor, language, emotion) and resting-state. The 

connICA methodology extracts robust functional connectivity patterns from a set of 

functional connectomes using independent component analysis (ICA) (Amico et al., 
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2017). This technique was extended to include both structural and functional 

connectomes by merging them into a “hybrid” matrix (Amico and Goñi, 2018). This hybrid 

connICA approach disentangled two task-dependent components: one encompassing 

within- and between- network connections of dorsal attentional and visual structures, as 

well as subcortical areas, and a second including connectivity between visual, 

frontoparietal, default mode, and subcortical networks (Amico and Goñi, 2018). Amico 

and Goni showed that by combining functional and structural connectivity, meaningful 

information can be extracted from heterogeneous brain networks while capturing 

individual differences (Amico and Goñi, 2018). In this study, we adopted a modified 

version of this approach to study the relationship between hybrid connectivity and 

cognitive functioning. We integrated functional and structural information at either the 

model input or output level. At the input level, we concatenated functional and structural 

connectivity to generate hybrid connectivity. At the output level, we averaged the 

predictions of the cognitive scores from models created separately using functional and 

structural connectivity to generate ensemble predictions. Prior work has shown that the 

use of ensemble predictions integrating information across parcellations in neuroimaging 

data can be used to improve sex (Dhamala et al., 2019) and disease (Khosla et al., 2019) 

classification. Here, we show that ensemble predictions integrating information about 

imaging modalities can also significantly improve prediction of cognitive abilities.  

Cattell and Horn’s two-component theory of intellectual development proposes a 

distinction between crystallised and fluid abilities in how they develop and transform 

throughout life (Cattell, 1967, Horn and Cattell, 1967, Horn and Cattell, 1966). Crystallised 

intelligence is the ability to use learned knowledge, experience, and skills, and fluid 
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intelligence is the ability to solve new problems using logic, encode new episodic 

memories, and adapt to novel situations in everyday life (Heaton et al., 2014). In the HCP 

dataset (Van Essen et al., 2013), the NIH Toolbox Cognition Battery was used to assess 

crystallised and fluid abilities. Crystallised abilities are influenced by education and 

cultural factor, and fluid abilities, while also dependent on educational and cultural factors, 

are more dependent on biological processes within neural structures that enable brain 

function (Cattell, 1967, Horn and Cattell, 1967, Horn and Cattell, 1966, Heaton et al., 

2014). Interestingly, in our results functional and structural connectivity patterns were less 

predictive of fluid abilities than of crystallised abilities. In the NIH Toolbox Cognition 

Battery, the Crystallised Cognition Composite reflects scores from tasks measuring 

vocabulary and reading decoding, while the Fluid Cognition Composite reflects scores 

from tasks measuring cognitive flexibility, inhibitory control and attention, episodic 

memory, working memory, and processing speed. The eloquent nature of the mapping 

between brain anatomy/physiology and language, including vocabulary and reading as 

measured by the Crystallised Cognition Composite, may explain the increase in prediction 

accuracy of those scores when compared to the Fluid Cognition Composite that may rely 

on several overlapping brain networks. Another possible explanation for the higher 

predictability of crystallised abilities (relative to fluid) lies in the impact of environment on 

the brain’s connectomes. Functional and structural connectivity have been shown to be 

related to learning and life experience (Tooley et al., 2019, Zatorre et al., 2012, Peng et 

al., 2018, Johansen-Berg et al., 2010). Hence, it is possible that the joint impact of 

environment on connectivity networks and crystallised abilities means it is easier to 

predict one from the other.  
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Many functional connections are negatively related to individual cognitive abilities as 

shown in Figure 3. These results align with those previously reported by Zimmerman et 

al. (Zimmermann et al., 2018): a large number of interhemispheric cortico-cortical 

connections negatively map onto an array of cognitive measures. Negative feature 

importance for functional connections can be interpreted in two ways: it can reflect an 

inverse relationship with positive functional correlations; or it can reflect a direct 

relationship with negative functional correlations. However, anticorrelations, or negative 

functional connections, account for a mere 6.0% of connections prior to global signal 

regression across all subjects (including only 1.8% < -0.05). Hence, it is unlikely that these 

anticorrelations strongly contribute to predictions of cognitive performance.  

Crystallised cognition, as measured by the NIH toolbox, mainly represents language 

(vocabulary and reading decoding) abilities. Here, we identify, unsurprisingly, that 

functional and structural connectivity with brain regions involved in language and auditory 

processing are especially important to predict crystallised cognition. Specifically, we find 

that connections involving the pars opercularis, which is part of Broca’s area, temporal 

pole, banks of the superior temporal sulcus, supramarginal, and superior temporal areas 

are important. Moreover, we also observe that regions in the frontal lobe responsible for 

higher order cognitive processes are important. Regions of the middle and superior 

prefrontal cortex are implicated in verbal working memory and retrieval of words from 

semantic memory (Nyberg et al., 2003, Lee et al., 2000), which may explain the 

importance of prefrontal regions in our models.  

Fluid cognition represents a wide range of cognitive processes: executive function 

(cognitive flexibility and inhibitory control and attention), episodic memory, working 
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memory, and processing speed. These processes each rely on distributed connections 

through the brain. In our results, we show that functional and structural connections 

important to predict fluid cognition are dispersed throughout the cortex and subcortex. As 

shown in Figures 3 and 5, cortico-subcortical connections involving the caudate, 

putamen, thalamus, and amygdala with regions of the frontal, parietal, and temporal lobes 

emerge as predictive of fluid cognition. The cortical regions implicated in fluid cognition 

comprise nodes of the frontoparietal network, dorsal attention network, cingulo-opercular 

task control network, and default mode network, all of which have been implicated in 

executive function (Reineberg et al., 2015, Spreng et al., 2010, Leech et al., 2011, 

Jaywant et al., 2020) and memory (Iidaka et al., 2006, Wallis et al., 2015, Dixon et al., 

2017). The frontoparietal, dorsal attention, and cingulo-opercular networks are frequently 

implicated in maintaining and updating information in mind, shifting attention, inhibiting 

distractions, and facilitating goal-directed behaviour (Spreng et al., 2010, Iidaka et al., 

2006, Wallis et al., 2015, Dixon et al., 2017). The default mode network underlies self-

referential thinking and future simulation and has been shown to be related to episodic 

memory (Fair et al., 2008, Sheline et al., 2009, Spreng and Grady, 2010). Connections 

between cortical regions and the hippocampus were also implicated in fluid cognition, 

likely because the composite measure includes tasks assessing episodic memory. More 

broadly, our findings suggest that more distributed functional connections are relevant to 

a heterogenous set of cognitive functions that underlie adaptive, goal-directed behaviour 

in novel situations (i.e. fluid cognition). In other words, if fluid cognition helps us plan and 

act in novel situations and solve problems, it is likely going to be dependent on a wide 

variety of cognitive skills (and brain regions) than acquired knowledge.  
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The caudate nucleus is fundamental to successful goal-directed action: it excites correct 

action schemas and selects appropriate sub-goals by evaluating action-outcomes (Grahn 

et al., 2008). Here, we observe that structural connections between the caudate and 

regions in frontal, parietal, occipital, and cingulate cortices are especially important to 

predict crystallised and fluid cognition. This finding is consistent with the known role of 

corticostriatal-thalamocortical loops in healthy executive function (Seger, 2009), and in 

neurologic disorders (Shepherd, 2013, Leisman et al., 2013) that result in executive 

dysfunction such as Parkinson’s disease (Zgaljardic et al., 2006) and Huntington’s 

disease (Rangel-Barajas and Rebec, 2016). 

In our results, we observe that many distributed cortical and subcortical regions are 

equally important when using SC to predict cognition, but only a few regions are important 

when using FC to predict cognition. Previous work (Jaywant et al., 2020) using a partial 

least squares regression approach to identify the relationship between inferred structural 

disconnection and cognitive inhibition observed that it was mostly structural connections 

that were important to predict cognition, with only two functional connections contributing 

additional unique variance. Our results here align with those findings; While functional 

and structural connections uniquely predict cognitive abilities, at a regional level there are 

more regions that are important for the prediction when using structural connectivity than 

when using functional connectivity. That is, there are a few regions whose functional 

connectivity profile as a whole largely outweigh the other regions’ contributions to 

prediction; however, this is not the case for regional structural connectivity profiles.  

Myelinated axons form short and long white matter pathways which comprise neural 

circuits involving cortical and subcortical regions of the brain. These pathways, the 
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communication highways of our brain, can be estimated from dMRI using tractography 

algorithms, which generally follow these three steps: 1) estimate voxel-wise local fibre 

orientations, 2) link local fibre orientations to generate streamline trajectories of white 

matter fibres, and 3) identify which grey matter regions the streamlines connect and 

generate a connectivity matrix (Sarwar et al., 2019). Two main classes of tractography 

algorithms, deterministic and probabilistic, differ in how they sample fibre directions for 

streamline propagation: fixed orientations direct streamlines in deterministic algorithms, 

while probabilistic algorithms estimate a distribution of fibre orientations at each voxel and 

a sample is randomly drawn from this distribution to direct the streamline propagation 

(Sarwar et al., 2019). Deterministic approaches cannot account for inherent uncertainty 

in fibre orientation estimates and are sensitive to the principal direction(s) estimated 

(Sarwar et al., 2019). Probabilistic approaches overcome this issue but are more 

computationally expensive (Sarwar et al., 2019). Prior work has found that probabilistic 

tractography more faithfully reconstructs connectome phantoms when fibre complexity 

exceeds that of in vivo diffusion MRI data, but falls short of deterministic tractography 

when mapping lower complexity phantoms, comparable to in vivo data, due to an 

abundance of false-positive connections (Sarwar et al., 2019). In this study, we find that 

structural connectivity derived from deterministic tractography significantly outperforms 

structural connectivity derived from probabilistic tractography to predict individual 

crystallised and fluid abilities.  
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Limitations 

Machine learning algorithms using neuroimaging data are prone to the curse of 

dimensionality. Voxel-wise imaging data, on the order of hundreds of thousands of 

features, and regional data can have hundreds or thousands of features. Here, we 

parcellate the brain into 86 regions: 34 cortical regions and 9 subcortical regions per 

hemisphere 30. When taking the upper or lower triangular of the pairwise functional and 

structural connectivity matrices, this leaves us with 3655 features. Dimensionality 

reduction through parcellation decreases noise, reduces computational cost, and enables 

more interpretable models, but loses valuable information captured in the voxel-wise data; 

Future work performing a voxel-wise analysis of the data can address this issue. 

In this study, we only used data from the Human Connectome Project. Although we 

exclusively evaluate our models on test sets not used to train the models and perform 

100 permutations of each model with unique train/test splits, the results we report here 

may not be generalisable to other datasets; Future work performing out-of-dataset 

evaluations can address this limitation.  

We show that many regions are equally important when using SC to predict cognition, but 

only a few regions are important when using FC to predict cognition. While interesting, 

these results may be due to the differences in distribution of FC and SC entries and the 

optimised model hyperparameters using FC and SC. We resampled the SC matrices 

using a Gaussian distribution with a mean of 0.5. Meanwhile, the FC matrices, which were 

global signal regressed and z-transformed, have a Gaussian distribution with a mean of 

0. Although the variables are normalised within the machine learning pipeline, these 

differences in FC and SC may underlie the observed differences in regional importance.  
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Age (Damoiseaux, 2017, Song et al., 2014), sex (Gong et al., 2011, Gur and Gur, 2017, 

Satterthwaite et al., 2015, Weis et al., 2019, Ingalhalikar et al., 2014, Jacobs and 

Goldstein, 2018, Jacobs et al., 2016), and environment/experience (Tooley et al., 2019, 

Sripada et al., 2014) influence connectivity. Hence, it is likely that they, along with other 

demographic variables such as gender and ethnicity, may influence the relationship 

between connectomics and cognition (Jiang et al., 2020). Future work should examine 

how the relationship between connectomics and cognition varies based on 

demographics.  
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Conclusion 

Understanding neural correlates of cognition in healthy individuals is a critical first step 

towards understanding changes in cognitive functioning as a result of age, injury, and 

disease. Here, we integrate neuroimaging, connectomics, and machine learning 

approaches to explore how multimodal brain connectivity predicts individual crystallised 

and fluid abilities. We report three main findings. First, integrating functional and structural 

connectivity significantly outperforms the independent use of functional connectivity and 

structural connectivity to predict individual crystallised and fluid cognition. Second, distinct 

functional and structural connections are important to predict crystallised and fluid 

cognition. Third, structural connectivity derived from deterministic tractography 

significantly outperforms structural connectivity derived from probabilistic tractography to 

predict crystallised and fluid cognition. Taken together, this suggests the integration of 

multimodal connectivity is crucial to understand the neuroanatomical and 

neurophysiological correlates of cognition.  
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Figure Legends 

Figure 1: Workflow of Experiment 

First, we generated the functional, structural and hybrid connectivity matrices (1). We 

derived functional connectivity using zero-lag Pearson correlation of global signal 

regressed blood-oxygen-level-dependent (BOLD) functional MRI time series (1a) and 

Fisher’s z-transformed the upper triangular matrix. We derived structural connectivity 

using deterministic and probabilistic tractography from diffusion weighted MRI (1b) and 

Gaussian resampled the lower triangular matrix. We concatenated the upper triangular 

Fisher’s z-transformed functional connectivity and lower triangular Gaussian resampled 

structural connectivity matrices to generate hybrid connectivity (1c).  

Second, we obtained cognitive scores for all subjects (2). The NIH Toolbox Cognition 

Battery assesses five cognitive domains using seven tests. The Crystallised Cognition 

Composite reflects language (vocabulary, reading decoding). The Fluid Cognition 

Composite reflects executive function (cognitive flexibility, inhibitory control and 

attention), episodic memory, working memory, and processing speed. The Total 

Cognition Composite is the average of Crystallised and Fluid Cognition Composite 

scores.  

Third, we predicted each of the cognitive scores using each of the connectivity matrices 

(3) via linear ridge regression models. We first split the data into train (80%) and test 

(20%) subsets. We then performed ten iterations of nested cross validation with five-fold 

inner and five-fold outer loops on the train subset to optimise hyperparameters; we fit the 

final model using the median optimised hyperparameter. We performed 100 permutations 
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of each model to generate a distribution of performance metrics and feature importances 

using unique train/test splits.  

Fourth, we averaged predictions from the functional and structural connectivity models to 

generate an ensemble prediction for each test subject’s Crystallised, Fluid, and Total 

Cognition Composites. 

 

Figure 2: Model Performance Metrics from Prediction of Cognitive Performance 

Explained variance (left) and prediction accuracy (right) violin plots for models using 

functional connectivity, structural connectivity, hybrid connectivity, and ensemble 

predictions to predict crystallised, fluid, and total cognition. Structural connectivity, hybrid 

connectivity, and ensemble prediction models here used structural connectivity derived 

from deterministic tractography.  

Solid lines indicate the distribution of values, dashed lines indicate the median, and dotted 

lines indicate the interquartile range. 

Significant differences in model performance between the four connectivity inputs were 

evaluated for each of the cognitive scores using a Kruskal-Wallis test. * indicates 

significant differences (p < 0.05) after Benjamini-Hochberg correction for multiple 

comparisons.   

 

Figure 3: Pairwise Feature Importance 

Pairwise feature importance from models using functional connectivity (left) and structural 

connectivity (right) to predict Crystallised (top), Fluid (middle), and Total (bottom) 

Cognition Composites. The top 20% most important pairwise connections are shown.  
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Warm colours denote positive feature weights and cool colours denote negative feature 

weights. Nodes along the graph are organised based on lobes as per the colour map, 

and the right side of the graph corresponds to the right side of the brain.  

 

Figure 4: Correlation of Pairwise Feature Importance 

Correlation of pairwise functional and structural feature weights extracted from models 

using functional, structural, and hybrid connectivity to predict Crystallised, Fluid, and Total 

Cognition Composites.  

Pearson correlation for all significant correlations (p<0.05) after Benjamini-Hochberg 

correction for multiple comparisons are shown. Hotter colours indicate stronger 

correlation. Non-significant correlations are shown in white.  

 

Figure 5: Regional Feature Importance 

Regional feature importance from models using functional connectivity (left) and structural 

connectivity (right) to predict Crystallised (top), Fluid (middle), and Total (bottom) 

Cognition Composites.  

Relative regional importance is shown as per the colourmap. Lateral and medial views of 

the right (RH) and left (LH) hemispheres are shown.  

 

Figure 6: Deterministic versus Probabilistic Tractography 

Explained variance (left) and prediction accuracy (right) violin plots for structural 

connectivity derived from deterministic and probabilistic tractography to predict 

crystallised, fluid and total cognition.  
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Solid lines indicate the distribution of values, dashed lines indicate the median, and dotted 

lines indicate the interquartile range. 

Pairwise differences between models to predict each cognition composite using structural 

connectivity derived from deterministic and probabilistic tractography were evaluated 

using a Mann Whitney U Test. * indicates significant differences (p < 0.05) after 

Benjamini-Hochberg correction for multiple comparisons.  
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Figure 1: Workflow of Experiment 
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Figure 2: Model Performance Metrics from Prediction of Cognitive Performance 
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Figure 3: Pairwise Feature Importance 
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Figure 4: Correlation of Pairwise Feature Importance 
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Figure 5: Regional Feature Importance 
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Figure 6: Deterministic versus Probabilistic Tractography 
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