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The human brain prioritises relevant sensory information to perform different tasks. Enhancement of task-
relevant information requires flexible allocation of attentional resources, but it is still a mystery how this is
operationalised in the brain. We investigated how attentional mechanisms operate in situations where multiple
stimuli are presented in the same location and at the same time. In two experiments, participants performed a
challenging two-back task on different types of visual stimuli that were presented simultaneously and
superimposed over each other. Using electroencephalography and multivariate decoding, we analysed the
effect of attention on the neural coding of each individual stimulus. Whole brain neural responses contained
considerable information about both the attended and unattended stimuli, even though they were presented
simultaneously and represented in overlapping receptive fields. As expected, attention enhanced stimulus-
related information contained in the neural responses, but this enhancement was evident earlier for stimuli
that were presented at smaller sizes. Our results show that early neural responses to stimuli in fast-changing
displays contain remarkable detail about the sensory environment but are also modulated by attention in a

manner dependent on perceptual characteristics of the relevant stimuli. Stimuli, code, and data for this study

can be found at https://osf.io/7zhwp/.
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To efficiently perform a task, our brains continuously prioritise and select relevant information from a constant
stream of sensory input. All sensory input is automatically and unconsciously processed, but the depth of
processing varies depending on the task and input characteristics (Grootswagers et al., 2019a; King et al., 2016;
Mohsenzadeh et al., 2018; Robinson et al., 2019; Rossion et al., 2015; Rousselet et al., 2002). At what stage in
the response is task-relevant information prioritised? Neurophysiological methods such as
electroencephalography (EEG) and magnetoencephalography (MEG) have offered insight into the time-scales
at which selective attention operates in the human brain. For example, a stimulus that is presented in an
attended location evokes a stronger neural response around 100ms (e.g., Mangun, 1995; Mangun et al., 1993).
Similarly, when a certain feature of a stimulus is attended, the neural coding of this feature is enhanced
(Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2000), with enhancements for basic features (e.g.,
colour) starting as eatly as 100ms (e.g., Zhang and Luck, 2009). Feature-selective attention, however, has been
found to influence later stages of processing, after 300ms (Goddard et al., BioRxiv). In a sequence of stimuli,
temporal selection of task-relevant target stimuli is reported around 270ms (Kranczioch et al., 2005, 2003; Marti
and Dehaene, 2017; Sergent et al., 2005; Tang et al., 2019). A question that has received considerably less focus
is how these mechanisms interact in situations where multiple stimuli are presented in the same location and at
the same time. Determining the stages of processing affected by attention in these situations is important for

understanding selective attention as a whole, and for constructing an overarching theory of attention.

Studying neural responses to simultaneously presented stimuli is difficult, as the stimulus-specific signals are
overlapping. One solution is to display stimuli at different presentation rates and analyse neural responses in
the matching frequency bands (e.g., Ding et al., 2006; Miller et al., 20006), but this approach does not allow
studying the underlying temporal dynamics. Another approach is to use multivariate decoding methods, which
have recently provided new opportunities to study attentional effects on information at the individual stimulus
level (e.g., Alilovi¢ et al., 2019; Goddard et al., 2019; Marti and Dehaene, 2017; Smout et al., 2019). These
methods also allow to decode the overlapping neural signals evoked by stimuli presented close in time (e.g,,
Grootswagers et al., 2019a; Marti and Dehaene, 2017; Robinson et al., 2019), even when these stimuli are not

task-relevant (Grootswagers et al.,, 2019b; Marti and Dehaene, 2017; Robinson et al., 2019). Multivariate
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decoding methods can therefore be used to disentangle information from simultaneously presented stimuli and

investigate the temporal dynamics of attentional mechanisms operating on the stimuli.

We conducted two experiments to investigate the effect of attention on the representations of simultaneously
presented objects and letters. Participants were shown images of objects overlaid with alphabet letters, or vice
versa, in rapid succession and performed a cognitively demanding 2-back task on either the object or the letters,
which required attending to one of the two simultaneously presented stimuli. We then performed a multivariate
decoding analysis on all non-target object and letter stimuli in the presentation streams and examined the
differences between the two task conditions. In both experiments, we found that we could decode all stimuli
regardless of whether they were attended, but that attention enhanced the coding of the relevant stimulus
(object versus letter). In Experiment 1, with small letters overlaid on larger objects, attentional enhancement
emerged around 220ms post-stimulus onset for objects, but for letters the difference started earlier, at 100ms
post-stimulus onset. In a second experiment, we exchanged the position of the stimuli on the display (i.e., letters
overlaid with objects) and found that the timing difference reversed accordingly. Our results show how early
neural responses to simultaneously presented stimuli are modulated by certain aspects of the stimulus (e.g., size

of attended stimulus) as well as our current task and attentional focus.
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Figure 1. Stimuli and design. A) Stimuli were 16 segmented objects spanning four categories (birds, fish,
boats, planes) and two superordinate categories (animals and vehicles). Stimuli were presented in sequences at
2.5Hz (200ms on, 200ms off) and in each sequence, participants performed a two-back task on either the
objects or on the letters. B) In the object task, participants responded with a button press when an object image
was the same as the second-to-last image (two-back), while ignoring the letters. C) In the letter task, participants
ignored the object images and responded on a two-back letter repeat. D, E) In the second experiment, the
position of the letter and objects were swapped while keeping all other details the same.
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We performed two experiments that investigated the effect of attention on the representations of non-target

stimuli during rapid serial visual presentation streams. Unless stated otherwise, the description of the methods

below applies to both experiments. Stimuli, code, and data for this study can be found at https://osf.io /7zhwp

Stimuli & Design

Stimuli consisted of 16 visual objects and 16 uppercase letters (ABCDEFGJKLQRTUVY). The visual objects
were coloured segmented objects obtained from www.pngimg.com spanning four categories (birds, fish, boats,
and planes) with 4 images in each category. The categories could also be assigned to a two-way superordinate
organisation (i.e., animals versus vehicles). In Experiment 1, we superimposed one of 16 uppercase letters
(approx. 0.8 degrees visual angle) in white font on a black circular background (Figure 1B&C) on top of the
visual object stimuli (approx. 3.3 degrees visual angle). In Experiment 2, we superimposed the visual object
stimuli (approx. 1.7 degrees visual angle) on one of the 16 uppercase letters (approx. 3.3 degrees visual angle)
in white font on a black circular background (Figure 1D&E). Stimuli were presented in sequences of 36 (two
repeats of each stimulus plus two two-back targets) for 200ms each, followed by a blank screen for 200ms. In
other words, using a 2.5Hz presentation rate and a 50% duty-cycle. In alternating sequences of stimuli,
participants were instructed to attend the objects or the letters and perform a cognitively demanding two-back
task. Participants pressed a button whenever the stimulus they were attending to (object or letter) was the same

as the stimulus that appeared two images beforehand.

We constructed 48 sequences of 32 simultaneous object and letter combinations. A sequence of stimuli was
constructed by concatenating two sets of random permutations of 16 items (representing the stimuli), with the
constraint that there were no repeats amongst the middle 8 items. We selected two random positions for target
placement, one in the first half of each sequence and one in the second half of each sequence and inserted a
target before and after the chosen positions, thus creating two-back repeats. The targets were never the same
as the nearest three stimuli. Each stimulus was a target equally often. The order of stimuli in each sequence was

mirror-copied, so that the order of objects and letters had matching properties while having targets in different
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positions. The 48 sequences were then presented twice in the experiment in random order (96 sequences in
total), once for the object task, and once for the letter task. The task condition of the first sequence was

counterbalanced across participants, and the conditions alternated every sequence.

EEG recordings and preprocessing

Participants in Experiment 1 were 20 adults (9 female, 11 male; mean age 24.45 years; age range 19-41 years; all
right-handed). Participants in Experiment 2 were 20 adults (17 female, 3 male; mean age 22.45 years; age range
19-36 years; 1 left-handed). All participants reported normal or corrected-to-normal vision and were recruited
from the University of Sydney in return for payment or course credit. The study was approved by the University
of Sydney ethics committee and informed consent was obtained from all participants. During EEG setup,
participants practiced on example sequences of the two-back task. Continuous EEG data were recorded from
064 electrodes arranged according to the international standard 10-10 system for electrode placement (Jasper,
1958; Oostenveld and Praamstra, 2001) using a BrainVision ActiChamp system, digitized at a 1000-Hz sample
rate. Scalp electrodes were referenced online to Cz. We used the same preprocessing pipeline as earlier work
that applied MVPA to rapid serial visual processing paradigms (Grootswagers et al., 2019a, 2019b; Robinson
et al., 2019). Preprocessing was performed offline using EEGIlab (Delorme and Makeig, 2004). Data were
filtered using a Hamming windowed FIR filter with 0.1Hz highpass and 100Hz lowpass filters, re-referenced
to an average reference, and were downsampled to 250Hz. No further preprocessing steps were applied, and
the channel voltages at each time point were used for the remainder of the analysis. Epochs were created for
each stimulus presentation ranging from [-100 to 1000ms]| relative to stimulus onset. Target epochs (task-

relevant two-back events) were excluded from the analysis.

Decoding analysis

To assess the representations of attended and unattended stimuli in the neural signal, we applied an MVPA
decoding pipeline (Grootswagers et al., 2017) to the EEG channel voltages. The decoding analyses were
implemented in CoOSMoMVPA (Oosterhof et al., 2016). A regularised linear discriminant analysis classifier was

used in combination with an exemplar-by-sequence-cross-validation approach. Decoding was performed within
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subject, and the subject-averaged results were analysed at the group level. This pipeline was applied to each
stimulus in the sequence to investigate object representations in fast sequences under different task
requirements. For all sequences, we decoded the 16 different object images, and the 16 different letters. We
averaged over all pairwise decoding accuracies (i.e., bird 1 vs fish 1, bird 1 vs boat 4, bird 1 vs plane 1 etc.),
such that chance-level was 50%. The analysis was performed separately for sequences from the two conditions
(object task and letter task), resulting in a total of four time-varying decoding series of data per participant. For
these analyses, we used a leave-one-sequence-out cross-validation scheme, where all epochs from one sequence

were used as test set. We report the mean cross-validated decoding accuracies.

To determine the effect of attention on higher-level image processing, we also decoded the category (bird, fish,
boat, plane) and animacy (animal versus vehicle) of the visual objects. For these categorical contrasts, we used
an image-by-sequence-cross-validation scheme so that identical images were not part of both training and test
set (Carlson et al., 2013; Grootswagers et al., 2019a, 2017). This was implemented by holding out one image
from each category in one sequence as test data and training the classifier on the remaining images from the
remaining sequences. This was repeated for all possible held-out pairs and held out sequences. The analyses

were performed separately for the object and letter conditions.

Exploratory channel-searchlight

We performed an exploratory channel-searchlight analysis to further investigate which features (channels) of
the EEG signal were driving the classification accuracies. For each EEG channel, a local cluster was constructed
by taking the closest four neighbouring channels, and the decoding analyses were performed on the signal of
only these channels. The decoding accuracies were stored at the centre channel of the cluster. This resulted in

a time-by-channel map of decoding for each of the contrasts, and for each subject.

Statistical inference

We assessed whether stimulus information was present in the EEG signal by comparing classification accuracies
to chance-level. To determine evidence for above chance decoding and evidence for differences in decoding

accuracies between conditions we computed Bayes factors (Dienes, 2011; Jeffreys, 1961; Rouder et al., 2009;
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Wagenmakers, 2007). For the alternative hypothesis of above-chance decoding, a JZS prior was used with
default scale factor 0.707 (Jeffreys, 1961; Rouder et al., 2009; Wetzels and Wagenmakers, 2012; Zellner and
Siow, 1980). The prior for the null hypothesis was set at chance level. We then calculated the Bayes factor (BF),
which is the probability of the data under the alternative hypothesis relative to the null hypothesis. For
visualisation, we thresholded BF > 10 as substantial evidence for the alternative hypothesis, and BF < 1/3 as
substantial evidence in favour of the null hypothesis (Jeffreys, 1961; Wetzels et al., 2011). In addition, we
computed frequentist statistics for decoding against chance, and for testing for non-zero differences in
decoding accuracies. At each time point, a Wilcoxon sign-rank test was performed for decoding accuracies
against chance (one-tailed), and for the difference between conditions (two-tailed). To correct for multiple
comparisons across time points, we computed FDR-adjusted p-values (Benjamini and Hochberg, 1995;

Yekutieli and Benjamini, 1999).
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Figure 2. Behavioural performance was similar between the object and letter tasks. A) Hit rate for all
subjects in Experiment 1 defined as the proportion of correctly identified 2-back events. B) Hit rate for all
subjects in Experiment 2. Bars show mean and standard error. Each dot represents the hit rate of one subject
in one condition (object or letter task). Overall, Bayes Factors (displayed above the x-axis) indicated evidence
for better performance on the letter tasks.
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We examined the temporal dynamics of visual processing for attended (task-relevant) versus unattended (task-
irrelevant) stimuli that were spatially and temporally overlapping. Participants performed a difficult two-back
target detection task on objects or letters simultaneously presented at fixation. Behavioural performance (Figure
2) was similar for detection of object (mean 0.51, SE 0.03) and letter (mean 0.54, SE 0.04) targets in Experiment
1 (Figure 2A) and higher for the letter (mean 0.65, SE 0.04) than the object (mean 0.57, SE 0.04) targets in
Experiment 2 (Figure 2B). Bayes Factors indicated weak evidence for no difference in performance between
task contexts in Experiment 1 (Figure 2A), and evidence for better performance on the letter task in Experiment

2 (Figure 2B).

To investigate the temporal dynamics of processing for attended and unattended stimuli, we decoded the object
images and letters in every sequence, separately for the object task and letter task sequences. Figure 3 shows
that objects and letters were decodable regardless of whether the stimulus was attended or not, but that
attention enhanced both object and letter processing. For objects, decodability was higher in the object task
(task-relevant) relative to the letter task (task-irrelevant), an effect that emerged after 200ms and remained until
around 600ms (Figure 3A). For letter decoding, performance was higher for the letter task than for the object
task from 100ms to approximately 600ms (Figure 3C). In Experiment 2, we exchanged the position of the
object and letters on the screen, so that the letters were presented larger and overlaid with a small object at
fixation. Here, attention similarly enhanced object and letter processing, but attention effects occurred at
different times. The attentional enhancement for objects emerged after 180ms and remained until
approximately 600ms (Figure 3B), and for letters occurred from 220ms to around 600ms (Figure 3D). To
combine the results from both experiments, Figure 4 shows the effect of attention (i.e., the differences between
decoding accuracies for attended and unattended) for objects and letters in both experiments. Combining the
results from both experiments (summarised in Figure 5) shows that the attention effect started earlier for the
smaller item in the display (i.e., letters in Experiment 1 and objects in Experiment 2). This suggests that
mechanisms for attentional enhancement are modulated by the relative retinal projection of the stimulus. The
exploratory channel searchlight for object decoding (Figure 4A) suggested that the stronger coding in the

attended condition was right-lateralised. Letter decoding channel searchlights (Figure 4B) showed a more left-
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lateralised difference in the attended condition. Together, these analyses suggest that attentional effects were
lateralised differently between objects and letters. The results presented in Figures 3 and 4 are summarised in

Figure 5.

To assess the effect of attention on higher-level processes, we also performed object category decoding (e.g.,
bird versus fish) and animacy decoding (animals versus vehicles). For both contrasts, decodable information
was evident in the neural signal when objects were both attended and unattended, but there was more
information when they were attended. Figure 6 shows that animacy and category decoding were higher for the
object task compared with the letter task. Animacy (animal versus vehicle) was more decodable during the
object task than the letter task from approximately 450-550ms in Experiment 1 (Figure 6A) and around 300ms
in Experiment 2 (Figure 6B). In both Experiments, object category (e.g., bird versus fish) was more decodable
from approximately 200ms (Figure 6C-D). These results show attentional enhancement for the more abstract
categorical object information when the stimulus was relevant for the current task, but with differential effects

of attention depending on the size of the stimuli.

10


https://doi.org/10.1101/2020.06.25.172643

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172643; this version posted June 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A Experiment 1 - Decoding object B Experiment 2 - Decoding object
0.62 0.62
—— report object (attended) - —— report object (attended)
o 0.6 |ENg = @000 e report letter (unattended) o 0.6 000 e report letter (unattended)
[9) 1)
© 0.58 ©0.58
=] 3
0o 0o
8 0.56 8 0.56
2 2
5 0.54 5 0.54
3 3
8 0.52 8 0.52
0.5 0.5 A
0 200 400 600 800 0 200 400 600 800
p< 0.05{ ¢ o ° ()
BF > 10 & gitended ®_ e L)
BF <1/3 - oo - .
p < 0.05 ¢ ® ° omsem ¢ o
BF > 10 emse e» ¢ nattended LI
BF < 1/3 { ssmme esmn - - s ee» ® ° oanme
p< 0.05 LX) - L XX ) . .
BF > 10 e difference L) . [ L)
BF < 1/3 eumene ¢ csme oamm omes - o — © e» ¢ e o amene © om
0 200 400 600 800 0 200 400 600 800
time (ms) time (ms)
C Experiment 1 - Decoding letter D Experiment 2 - Decoding letter
053 e e report object (unattended) < _| report object (unattended)
- RIS ———report letter (attended) - ——— report letter (attended)
8 8
5 0.52 5 0.52
Q Q
Q Q
© ©
2051 2051
ks} ks}
o o
3 3
o 05 O 0.5 5
0.49 0.49
0 200 400 600 800 0 200 400 600 800
p< 0.05{e oo o ® ¢ am» ® e ® ®eam o
BF > 10 (XX . attended (X
BF < 1/3 {» sssmemes e 00 oo — e ®
p< 0.05 o ommm © ° [ o o ®ooe o
BF > 10 © emm o unattended oo oo .
BF <1/3 ° ®® - X )
p< 0.05 O @moamm o ®o o o .
BF > 10 - . - e we difference L) o oo o o
BF <1/3 XX LX) o o ® e o0
0 200 400 600 800 0 200 400 600 800
time (ms) time (ms)

Figure 3. Different effects of attention on decoding performance for objects and letters. Plots show
decoding performance over time for object decoding (A&B) and letter decoding (C&D). Different lines in each
plot show decoding accuracy during different tasks over time relative to stimulus onset, with shaded areas
showing standard error across subjects (N = 20). Their time-varying topographies are shown below each plot,
averaged across 100ms time bins. Thresholded Bayes factors (BF) and p-values for above-chance decoding or
non-zero differences are displayed under each plot. For both objects and letters, decodability was higher when
they were task-relevant, but the respective time-courses of these differences varied.
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Figure 4. Aggregating the attention effect over the two experiments shows the interaction between
task and (relative) stimulus size. Plots shows the difference in decoding performance between task-relevant
and task-irrelevant object decoding (A) and letter decoding (B). Each line reflects the mean difference from
one of the two experiments relative to stimulus onset, with shaded areas showing standard error across subjects
(N = 20). Their time-varying topographies are shown below each plot, averaged across 50ms time bins.
Thresholded Bayes factors (BF) and p-values for above-chance decoding or non-zero differences are displayed
under each plot. Note that these are the same as the stats for the non-zero difference in Figure 3&4. For both
objects and letter stimuli, the onsets of the task-effect (relevant-irrelevant) were earlier when the stimulus was
smaller.
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Figure 5. Summary of main findings. The top row (A,B) shows the significant time points for each contrast.
The bottom row (C,D) shows the time of the peak (denoted by x) accompanied by the distribution of peak
times obtained by drawing 10,000 samplings from the subjects with replacement. Left columns (A,C) show
results for decoding against chance, and right columns (B,D) show the difference between attended and
unattended decoding.
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Figure 6. Effect of attention on higher level categorical object contrasts in Experiment 1 were similar
to individual object decoding. Plots show decoding performance over time for object animacy decoding (A)

and object category decoding (B). Different lines in each plot show decoding accuracy during different tasks

over time relative to stimulus onset, with shaded areas showing standard error across subjects (N = 20). Their

time-varying topographies are shown below each plot, averaged across 100ms time bins. Thresholded Bayes

factors (BF) and p-values for above-chance decoding or non-zero differences are displayed under each plot.
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In this study, we asked how attention modulates the representations of visual stimuli. Participants monitored
streams of letters overlaid on objects (Experiment 1) or objects overlaid on letters (Experiment 2) and
performed a 2-back target detection task on either the letters or the objects. Importantly, we did not analyse
the responses to the 2-back targets, but rather investigated how the spatial task context influenced the
representation of all other stimuli in the streams. Remarkably, we could decode all attended and unattended
stimuli in both experiments, even though they were spatially and temporally overlapping, but the dynamics of
the representations varied according to the task and the size of the stimuli. Overall, we found that attending to
objects enhanced the neural representations of objects and that attending to letters enhanced the neural
representations of letters. The time course of these attentional effects varied, however, such that the
enhancement of task-relevant information emerged after 200ms for large stimuli, but before 200ms for small
stimuli (Figure 5). Taken together, these findings show that task context selectively enhances the processing of

relevant visual stimuli, and that this enhancement is specific to the features of the stimuli being selected.

All stimuli in this study evoked distinct patterns of neural responses regardless of whether they were relevant
to the task at hand. That is, letters and objects were decodable in all conditions. This fits with our previous
work showing that task-irrelevant objects can be decoded from rapid streams (Grootswagers et al., 2019a;
Robinson et al., 2019), likely reflecting a degree of automaticity in visual processing and confirming that target
selection is not a requirement for stimulus processing. The current study extends these findings by showing
that two simultaneously presented visual objects are decodable even when one stimulus is much less prioritised
than the other due to task demands and stimulus size. Strikingly, the duration of above chance decoding was
much longer than the stimulus presentation time, and for objects, this was the case even when the stimulus was
not attended. For example, unattended object information was above chance for up to 900ms post stimulus-
onset in Experiment 1 (Figure 3A), and up to 600ms in Experiment 2, when the objects were smaller (Figure
3B). This shows that visual information was maintained in the system even though it was not task relevant and
it was presented in conjunction with a task-relevant stimulus. Thus, task-irrelevant information appeared to
reach higher levels of processing than just feature processing, even though it was not the subject of attention.

Indeed, category and animacy decoding (Figure 6) suggests that object stimuli were processed up to abstract
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levels in the visual hierarchy. In sum, all objects and letters were decodable even during fast-changing visual
input and even when they were not attended. Importantly, however, we found that attention enhanced the

distinctiveness (i.e., decodability) of the attended visual stimuli.

Attention affected both the strength and duration of evoked visual representations. For both letters and objects,
decodability was higher and prolonged when they were task-relevant compared to when they were irrelevant.
This is particularly striking because the letter and object tasks involved exactly the same sequences of images
and analyses, so differences in decoding arise exclusively from the attentional focus imposed by the task that
participants performed. Furthermore, it is important to note that target images (i.e., the two repeating stimuli)
were not analysed, meaning that target selection and response processes were not contained within our results.
The difference we observed thus can mainly be attributed to attentional mechanisms. The enhancement of
attended object information around 220ms is consistent with evidence of effects from the attentional blink and
target selection literature, which has often reported differences in N2 and P300 ERP components (Kranczioch
etal.,, 2007, 2003; Sergent et al., 2005). Target stimuli in rapid streams have been found to evoke stronger signals
around 220ms (Marti and Dehaene, 2017). In these designs, however, it is difficult to distinguish between the
effects of target-selection and the enhancement of task-relevant information. As all our analyses were
performed on non-target stimuli, our results point towards a general enhancement of task-relevant stimuli at
this time scale, even for images that are not selected for target-processing. This points towards a more general
enhancement effect of task-relevant information occurring around 220ms that supports flexible task

performance in many paradigms.

Attentional enhancement of the letter stimuli followed a different trajectory to that of the objects, with an onset
around 100ms for letters versus 220ms for objects in Experiment 1. This could be explained by the letters
comprising a smaller part of the stimulus arrangement. Previous work has shown effects of eccentricity on
neural responses (e.g., Eimer, 2000; Isik et al., 2014; Miller and Hibner, 2002), but our results could also be
attributed to differences in spatial attention allocated to the letter versus image task. Indeed, when we exchanged
the stimulus position in Experiment 2, we observed an earlier onset of the attentional effects on object

decoding, but the effect for letters seemed to occur later. Channel searchlight analyses further suggested that
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the attentional enhancement was more left lateralised for the letter task, and right lateralised for the object task.
Letter processing is typically left lateralised (Cohen et al., 2003; Puce et al., 19906), whereas animate objects tend
to evoke right hemisphere dominant responses (Bentin et al., 1996; Puce et al., 1996, 1995). The different
spatio-temporal dynamics between the enhanced coding of relevant information between the object and letter
tasks suggest that attentional enhancement effects are dependent on perceptual characteristics of the specific

stimuli being processed.

For objects and their conceptual category decoding, we found evidence for no attentional effect on the initial
responses (until around 180ms). This is consistent with recent work that reported no evidence for attentional
effects on early visual ERP components or decoding accuracies (Alilovi¢ et al., 2019; Baumgartner et al., 2018).
In contrast, we did find attentional effects on decoding accuracy for the earliest responses to letters (Figure
3C), which were more decodable throughout the epochs when task relevant. One explanation of this difference
is that objects are automatically and unconsciously processed, but letters may require an active recruitment of
their respective processing mechanisms. Alternatively, the object stimuli used here are visually much more
distinct (different colours and shapes) than the letter stimuli which facilitates decoding of visual feature

differences.

In addition to the stronger decoding for attended images, our results also suggest that attended stimuli were
decodable for longer relative to unattended stimuli. For example, above-chance letter decoding in the task-
irrelevant condition lasted roughly 100ms, while in the task-relevant condition, it lasted around 600ms. One
possible explanation is that attention enhanced the processing of each individual stimulus so that each stimulus
was processed up to a higher-level in the visual hierarchy. Alternatively, it could be a function of the task itself,
as the two-back task required participants to remember the object for two subsequent presentations. Therefore,
the prolonged decodability of attended stimuli could also reflect the requirement to hold the image in working
memory. Future work could explore this idea further by manipulating the memory requirement, for example

through changing the presentation speed of the streams, or by contrasting a one-back versus a two-back task.

In conclusion, we found that attention enhances the representations of task-relevant visual stimuli, even when
they were spatially and temporally overlapping with task-irrelevant stimuli, and even when the stimuli were not
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selected as target. Our results suggest that attentional enhancement effects operate on the specific perceptual
processing mechanisms of the stimulus, differing across stimulus type and size. This points towards a multi-
stage implementation of information prioritisation that guides early perceptual processes, as well as later-stage

mechanisms.
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