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Abstract 7 

The human brain prioritises relevant sensory information to perform different tasks. Enhancement of task-8 

relevant information requires flexible allocation of attentional resources, but it is still a mystery how this is 9 

operationalised in the brain. We investigated how attentional mechanisms operate in situations where multiple 10 

stimuli are presented in the same location and at the same time. In two experiments, participants performed a 11 

challenging two-back task on different types of visual stimuli that were presented simultaneously and 12 

superimposed over each other. Using electroencephalography and multivariate decoding, we analysed the 13 

effect of attention on the neural coding of each individual stimulus. Whole brain neural responses contained 14 

considerable information about both the attended and unattended stimuli, even though they were presented 15 

simultaneously and represented in overlapping receptive fields. As expected, attention enhanced stimulus-16 

related information contained in the neural responses, but this enhancement was evident earlier for stimuli 17 

that were presented at smaller sizes. Our results show that early neural responses to stimuli in fast-changing 18 

displays contain remarkable detail about the sensory environment but are also modulated by attention in a 19 

manner dependent on perceptual characteristics of the relevant stimuli. Stimuli, code, and data for this study 20 

can be found at https://osf.io/7zhwp/. 21 
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Introduction 22 

To efficiently perform a task, our brains continuously prioritise and select relevant information from a constant 23 

stream of sensory input. All sensory input is automatically and unconsciously processed, but the depth of 24 

processing varies depending on the task and input characteristics (Grootswagers et al., 2019a; King et al., 2016; 25 

Mohsenzadeh et al., 2018; Robinson et al., 2019; Rossion et al., 2015; Rousselet et al., 2002). At what stage in 26 

the response is task-relevant information prioritised? Neurophysiological methods such as 27 

electroencephalography (EEG) and magnetoencephalography (MEG) have offered insight into the time-scales 28 

at which selective attention operates in the human brain. For example, a stimulus that is presented in an 29 

attended location evokes a stronger neural response around 100ms (e.g., Mangun, 1995; Mangun et al., 1993). 30 

Similarly, when a certain feature of a stimulus is attended, the neural coding of this feature is enhanced 31 

(Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2006), with enhancements for basic features (e.g., 32 

colour) starting as early as 100ms (e.g., Zhang and Luck, 2009). Feature-selective attention, however, has been 33 

found to influence later stages of processing, after 300ms (Goddard et al., BioRxiv). In a sequence of stimuli, 34 

temporal selection of task-relevant target stimuli is reported around 270ms (Kranczioch et al., 2005, 2003; Marti 35 

and Dehaene, 2017; Sergent et al., 2005; Tang et al., 2019). A question that has received considerably less focus 36 

is how these mechanisms interact in situations where multiple stimuli are presented in the same location and at 37 

the same time. Determining the stages of processing affected by attention in these situations is important for 38 

understanding selective attention as a whole, and for constructing an overarching theory of attention. 39 

Studying neural responses to simultaneously presented stimuli is difficult, as the stimulus-specific signals are 40 

overlapping. One solution is to display stimuli at different presentation rates and analyse neural responses in 41 

the matching frequency bands (e.g., Ding et al., 2006; Müller et al., 2006), but this approach does not allow 42 

studying the underlying temporal dynamics. Another approach is to use multivariate decoding methods, which 43 

have recently provided new opportunities to study attentional effects on information at the individual stimulus 44 

level (e.g., Alilović et al., 2019; Goddard et al., 2019; Marti and Dehaene, 2017; Smout et al., 2019). These 45 

methods also allow to decode the overlapping neural signals evoked by stimuli presented close in time (e.g., 46 

Grootswagers et al., 2019a; Marti and Dehaene, 2017; Robinson et al., 2019), even when these stimuli are not 47 

task-relevant (Grootswagers et al., 2019b; Marti and Dehaene, 2017; Robinson et al., 2019). Multivariate 48 
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decoding methods can therefore be used to disentangle information from simultaneously presented stimuli and 49 

investigate the temporal dynamics of attentional mechanisms operating on the stimuli.  50 

We conducted two experiments to investigate the effect of attention on the representations of simultaneously 51 

presented objects and letters. Participants were shown images of objects overlaid with alphabet letters, or vice 52 

versa, in rapid succession and performed a cognitively demanding 2-back task on either the object or the letters, 53 

which required attending to one of the two simultaneously presented stimuli. We then performed a multivariate 54 

decoding analysis on all non-target object and letter stimuli in the presentation streams and examined the 55 

differences between the two task conditions. In both experiments, we found that we could decode all stimuli 56 

regardless of whether they were attended, but that attention enhanced the coding of the relevant stimulus 57 

(object versus letter). In Experiment 1, with small letters overlaid on larger objects, attentional enhancement 58 

emerged around 220ms post-stimulus onset for objects, but for letters the difference started earlier, at 100ms 59 

post-stimulus onset. In a second experiment, we exchanged the position of the stimuli on the display (i.e., letters 60 

overlaid with objects) and found that the timing difference reversed accordingly. Our results show how early 61 

neural responses to simultaneously presented stimuli are modulated by certain aspects of the stimulus (e.g., size 62 

of attended stimulus) as well as our current task and attentional focus. 63 
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 64 

Figure 1. Stimuli and design. A) Stimuli were 16 segmented objects spanning four categories (birds, fish, 65 
boats, planes) and two superordinate categories (animals and vehicles). Stimuli were presented in sequences at 66 
2.5Hz (200ms on, 200ms off) and in each sequence, participants performed a two-back task on either the 67 
objects or on the letters. B) In the object task, participants responded with a button press when an object image 68 
was the same as the second-to-last image (two-back), while ignoring the letters. C) In the letter task, participants 69 
ignored the object images and responded on a two-back letter repeat. D, E) In the second experiment, the 70 
position of the letter and objects were swapped while keeping all other details the same. 71 
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Methods 72 

We performed two experiments that investigated the effect of attention on the representations of non-target 73 

stimuli during rapid serial visual presentation streams. Unless stated otherwise, the description of the methods 74 

below applies to both experiments. Stimuli, code, and data for this study can be found at https://osf.io/7zhwp/ 75 

Stimuli & Design 76 

Stimuli consisted of 16 visual objects and 16 uppercase letters (ABCDEFGJKLQRTUVY). The visual objects 77 

were coloured segmented objects obtained from www.pngimg.com spanning four categories (birds, fish, boats, 78 

and planes) with 4 images in each category. The categories could also be assigned to a two-way superordinate 79 

organisation (i.e., animals versus vehicles). In Experiment 1, we superimposed one of 16 uppercase letters 80 

(approx. 0.8 degrees visual angle) in white font on a black circular background (Figure 1B&C) on top of the 81 

visual object stimuli (approx. 3.3 degrees visual angle). In Experiment 2, we superimposed the visual object 82 

stimuli (approx. 1.7 degrees visual angle) on one of the 16 uppercase letters (approx. 3.3 degrees visual angle) 83 

in white font on a black circular background (Figure 1D&E). Stimuli were presented in sequences of 36 (two 84 

repeats of each stimulus plus two two-back targets) for 200ms each, followed by a blank screen for 200ms. In 85 

other words, using a 2.5Hz presentation rate and a 50% duty-cycle. In alternating sequences of stimuli, 86 

participants were instructed to attend the objects or the letters and perform a cognitively demanding two-back 87 

task. Participants pressed a button whenever the stimulus they were attending to (object or letter) was the same 88 

as the stimulus that appeared two images beforehand. 89 

We constructed 48 sequences of 32 simultaneous object and letter combinations. A sequence of stimuli was 90 

constructed by concatenating two sets of random permutations of 16 items (representing the stimuli), with the 91 

constraint that there were no repeats amongst the middle 8 items. We selected two random positions for target 92 

placement, one in the first half of each sequence and one in the second half of each sequence and inserted a 93 

target before and after the chosen positions, thus creating two-back repeats. The targets were never the same 94 

as the nearest three stimuli. Each stimulus was a target equally often. The order of stimuli in each sequence was 95 

mirror-copied, so that the order of objects and letters had matching properties while having targets in different 96 
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positions. The 48 sequences were then presented twice in the experiment in random order (96 sequences in 97 

total), once for the object task, and once for the letter task. The task condition of the first sequence was 98 

counterbalanced across participants, and the conditions alternated every sequence. 99 

EEG recordings and preprocessing 100 

Participants in Experiment 1 were 20 adults (9 female, 11 male; mean age 24.45 years; age range 19-41 years; all 101 

right-handed). Participants in Experiment 2 were 20 adults (17 female, 3 male; mean age 22.45 years; age range 102 

19-36 years; 1 left-handed). All participants reported normal or corrected-to-normal vision and were recruited 103 

from the University of Sydney in return for payment or course credit. The study was approved by the University 104 

of Sydney ethics committee and informed consent was obtained from all participants. During EEG setup, 105 

participants practiced on example sequences of the two-back task. Continuous EEG data were recorded from 106 

64 electrodes arranged according to the international standard 10–10 system for electrode placement (Jasper, 107 

1958; Oostenveld and Praamstra, 2001) using a BrainVision ActiChamp system, digitized at a 1000-Hz sample 108 

rate. Scalp electrodes were referenced online to Cz. We used the same preprocessing pipeline as earlier work 109 

that applied MVPA to rapid serial visual processing paradigms (Grootswagers et al., 2019a, 2019b; Robinson 110 

et al., 2019). Preprocessing was performed offline using EEGlab (Delorme and Makeig, 2004). Data were 111 

filtered using a Hamming windowed FIR filter with 0.1Hz highpass and 100Hz lowpass filters, re-referenced 112 

to an average reference, and were downsampled to 250Hz. No further preprocessing steps were applied, and 113 

the channel voltages at each time point were used for the remainder of the analysis. Epochs were created for 114 

each stimulus presentation ranging from [-100 to 1000ms] relative to stimulus onset. Target epochs (task-115 

relevant two-back events) were excluded from the analysis. 116 

Decoding analysis 117 

To assess the representations of attended and unattended stimuli in the neural signal, we applied an MVPA 118 

decoding pipeline (Grootswagers et al., 2017) to the EEG channel voltages. The decoding analyses were 119 

implemented in CoSMoMVPA (Oosterhof et al., 2016). A regularised linear discriminant analysis classifier was 120 

used in combination with an exemplar-by-sequence-cross-validation approach. Decoding was performed within 121 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.172643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172643


 
7 

subject, and the subject-averaged results were analysed at the group level. This pipeline was applied to each 122 

stimulus in the sequence to investigate object representations in fast sequences under different task 123 

requirements. For all sequences, we decoded the 16 different object images, and the 16 different letters. We 124 

averaged over all pairwise decoding accuracies (i.e., bird 1 vs fish 1, bird 1 vs boat 4, bird 1 vs plane 1 etc.), 125 

such that chance-level was 50%. The analysis was performed separately for sequences from the two conditions 126 

(object task and letter task), resulting in a total of four time-varying decoding series of data per participant. For 127 

these analyses, we used a leave-one-sequence-out cross-validation scheme, where all epochs from one sequence 128 

were used as test set. We report the mean cross-validated decoding accuracies. 129 

To determine the effect of attention on higher-level image processing, we also decoded the category (bird, fish, 130 

boat, plane) and animacy (animal versus vehicle) of the visual objects. For these categorical contrasts, we used 131 

an image-by-sequence-cross-validation scheme so that identical images were not part of both training and test 132 

set (Carlson et al., 2013; Grootswagers et al., 2019a, 2017). This was implemented by holding out one image 133 

from each category in one sequence as test data and training the classifier on the remaining images from the 134 

remaining sequences. This was repeated for all possible held-out pairs and held out sequences. The analyses 135 

were performed separately for the object and letter conditions. 136 

Exploratory channel-searchlight  137 

We performed an exploratory channel-searchlight analysis to further investigate which features (channels) of 138 

the EEG signal were driving the classification accuracies. For each EEG channel, a local cluster was constructed 139 

by taking the closest four neighbouring channels, and the decoding analyses were performed on the signal of 140 

only these channels. The decoding accuracies were stored at the centre channel of the cluster. This resulted in 141 

a time-by-channel map of decoding for each of the contrasts, and for each subject. 142 

Statistical inference 143 

We assessed whether stimulus information was present in the EEG signal by comparing classification accuracies 144 

to chance-level. To determine evidence for above chance decoding and evidence for differences in decoding 145 

accuracies between conditions we computed Bayes factors (Dienes, 2011; Jeffreys, 1961; Rouder et al., 2009; 146 
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Wagenmakers, 2007). For the alternative hypothesis of above-chance decoding, a JZS prior was used with 147 

default scale factor 0.707 (Jeffreys, 1961; Rouder et al., 2009; Wetzels and Wagenmakers, 2012; Zellner and 148 

Siow, 1980). The prior for the null hypothesis was set at chance level. We then calculated the Bayes factor (BF), 149 

which is the probability of the data under the alternative hypothesis relative to the null hypothesis. For 150 

visualisation, we thresholded BF > 10 as substantial evidence for the alternative hypothesis, and BF < 1/3 as 151 

substantial evidence in favour of the null hypothesis (Jeffreys, 1961; Wetzels et al., 2011). In addition, we 152 

computed frequentist statistics for decoding against chance, and for testing for non-zero differences in 153 

decoding accuracies. At each time point, a Wilcoxon sign-rank test was performed for decoding accuracies 154 

against chance (one-tailed), and for the difference between conditions (two-tailed). To correct for multiple 155 

comparisons across time points, we computed FDR-adjusted p-values (Benjamini and Hochberg, 1995; 156 

Yekutieli and Benjamini, 1999). 157 

 158 

Figure 2. Behavioural performance was similar between the object and letter tasks. A) Hit rate for all 159 
subjects in Experiment 1 defined as the proportion of correctly identified 2-back events. B) Hit rate for all 160 
subjects in Experiment 2. Bars show mean and standard error. Each dot represents the hit rate of one subject 161 
in one condition (object or letter task). Overall, Bayes Factors (displayed above the x-axis) indicated evidence 162 
for better performance on the letter tasks. 163 

  164 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.172643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.172643


 
9 

Results 165 

We examined the temporal dynamics of visual processing for attended (task-relevant) versus unattended (task-166 

irrelevant) stimuli that were spatially and temporally overlapping. Participants performed a difficult two-back 167 

target detection task on objects or letters simultaneously presented at fixation. Behavioural performance (Figure 168 

2) was similar for detection of object (mean 0.51, SE 0.03) and letter (mean 0.54, SE 0.04) targets in Experiment 169 

1 (Figure 2A) and higher for the letter (mean 0.65, SE 0.04) than the object (mean 0.57, SE 0.04) targets in 170 

Experiment 2 (Figure 2B). Bayes Factors indicated weak evidence for no difference in performance between 171 

task contexts in Experiment 1 (Figure 2A), and evidence for better performance on the letter task in Experiment 172 

2 (Figure 2B). 173 

To investigate the temporal dynamics of processing for attended and unattended stimuli, we decoded the object 174 

images and letters in every sequence, separately for the object task and letter task sequences. Figure 3 shows 175 

that objects and letters were decodable regardless of whether the stimulus was attended or not, but that 176 

attention enhanced both object and letter processing. For objects, decodability was higher in the object task 177 

(task-relevant) relative to the letter task (task-irrelevant), an effect that emerged after 200ms and remained until 178 

around 600ms (Figure 3A). For letter decoding, performance was higher for the letter task than for the object 179 

task from 100ms to approximately 600ms (Figure 3C). In Experiment 2, we exchanged the position of the 180 

object and letters on the screen, so that the letters were presented larger and overlaid with a small object at 181 

fixation. Here, attention similarly enhanced object and letter processing, but attention effects occurred at 182 

different times. The attentional enhancement for objects emerged after 180ms and remained until 183 

approximately 600ms (Figure 3B), and for letters occurred from 220ms to around 600ms (Figure 3D). To 184 

combine the results from both experiments, Figure 4 shows the effect of attention (i.e., the differences between 185 

decoding accuracies for attended and unattended) for objects and letters in both experiments. Combining the 186 

results from both experiments (summarised in Figure 5) shows that the attention effect started earlier for the 187 

smaller item in the display (i.e., letters in Experiment 1 and objects in Experiment 2). This suggests that 188 

mechanisms for attentional enhancement are modulated by the relative retinal projection of the stimulus. The 189 

exploratory channel searchlight for object decoding (Figure 4A) suggested that the stronger coding in the 190 

attended condition was right-lateralised. Letter decoding channel searchlights (Figure 4B) showed a more left-191 
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lateralised difference in the attended condition. Together, these analyses suggest that attentional effects were 192 

lateralised differently between objects and letters. The results presented in Figures 3 and 4 are summarised in 193 

Figure 5. 194 

To assess the effect of attention on higher-level processes, we also performed object category decoding (e.g., 195 

bird versus fish) and animacy decoding (animals versus vehicles). For both contrasts, decodable information 196 

was evident in the neural signal when objects were both attended and unattended, but there was more 197 

information when they were attended. Figure 6 shows that animacy and category decoding were higher for the 198 

object task compared with the letter task. Animacy (animal versus vehicle) was more decodable during the 199 

object task than the letter task from approximately 450-550ms in Experiment 1 (Figure 6A) and around 300ms 200 

in Experiment 2 (Figure 6B). In both Experiments, object category (e.g., bird versus fish) was more decodable 201 

from approximately 200ms (Figure 6C-D). These results show attentional enhancement for the more abstract 202 

categorical object information when the stimulus was relevant for the current task, but with differential effects 203 

of attention depending on the size of the stimuli. 204 
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 205 

Figure 3. Different effects of attention on decoding performance for objects and letters. Plots show 206 
decoding performance over time for object decoding (A&B) and letter decoding (C&D). Different lines in each 207 
plot show decoding accuracy during different tasks over time relative to stimulus onset, with shaded areas 208 
showing standard error across subjects (N = 20). Their time-varying topographies are shown below each plot, 209 
averaged across 100ms time bins. Thresholded Bayes factors (BF) and p-values for above-chance decoding or 210 
non-zero differences are displayed under each plot. For both objects and letters, decodability was higher when 211 
they were task-relevant, but the respective time-courses of these differences varied. 212 
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 213 

Figure 4. Aggregating the attention effect over the two experiments shows the interaction between 214 
task and (relative) stimulus size. Plots shows the difference in decoding performance between task-relevant 215 
and task-irrelevant object decoding (A) and letter decoding (B). Each line reflects the mean difference from 216 
one of the two experiments relative to stimulus onset, with shaded areas showing standard error across subjects 217 
(N = 20). Their time-varying topographies are shown below each plot, averaged across 50ms time bins. 218 
Thresholded Bayes factors (BF) and p-values for above-chance decoding or non-zero differences are displayed 219 
under each plot. Note that these are the same as the stats for the non-zero difference in Figure 3&4. For both 220 
objects and letter stimuli, the onsets of the task-effect (relevant-irrelevant) were earlier when the stimulus was 221 
smaller. 222 
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 223 

Figure 5. Summary of main findings. The top row (A,B) shows the significant time points for each contrast. 224 
The bottom row (C,D) shows the time of the peak (denoted by x) accompanied by the distribution of peak 225 
times obtained by drawing 10,000 samplings from the subjects with replacement. Left columns (A,C) show 226 
results for decoding against chance, and right columns (B,D) show the difference between attended and 227 
unattended decoding. 228 

 229 
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 230 

Figure 6. Effect of attention on higher level categorical object contrasts in Experiment 1 were similar 231 
to individual object decoding. Plots show decoding performance over time for object animacy decoding (A) 232 
and object category decoding (B). Different lines in each plot show decoding accuracy during different tasks 233 
over time relative to stimulus onset, with shaded areas showing standard error across subjects (N = 20). Their 234 
time-varying topographies are shown below each plot, averaged across 100ms time bins. Thresholded Bayes 235 
factors (BF) and p-values for above-chance decoding or non-zero differences are displayed under each plot. 236 
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Discussion 237 

In this study, we asked how attention modulates the representations of visual stimuli. Participants monitored 238 

streams of letters overlaid on objects (Experiment 1) or objects overlaid on letters (Experiment 2) and 239 

performed a 2-back target detection task on either the letters or the objects. Importantly, we did not analyse 240 

the responses to the 2-back targets, but rather investigated how the spatial task context influenced the 241 

representation of all other stimuli in the streams. Remarkably, we could decode all attended and unattended 242 

stimuli in both experiments, even though they were spatially and temporally overlapping, but the dynamics of 243 

the representations varied according to the task and the size of the stimuli. Overall, we found that attending to 244 

objects enhanced the neural representations of objects and that attending to letters enhanced the neural 245 

representations of letters. The time course of these attentional effects varied, however, such that the 246 

enhancement of task-relevant information emerged after 200ms for large stimuli, but before 200ms for small 247 

stimuli (Figure 5). Taken together, these findings show that task context selectively enhances the processing of 248 

relevant visual stimuli, and that this enhancement is specific to the features of the stimuli being selected.  249 

All stimuli in this study evoked distinct patterns of neural responses regardless of whether they were relevant 250 

to the task at hand. That is, letters and objects were decodable in all conditions. This fits with our previous 251 

work showing that task-irrelevant objects can be decoded from rapid streams (Grootswagers et al., 2019a; 252 

Robinson et al., 2019), likely reflecting a degree of automaticity in visual processing and confirming that target 253 

selection is not a requirement for stimulus processing. The current study extends these findings by showing 254 

that two simultaneously presented visual objects are decodable even when one stimulus is much less prioritised 255 

than the other due to task demands and stimulus size. Strikingly, the duration of above chance decoding was 256 

much longer than the stimulus presentation time, and for objects, this was the case even when the stimulus was 257 

not attended. For example, unattended object information was above chance for up to 900ms post stimulus-258 

onset in Experiment 1 (Figure 3A), and up to 600ms in Experiment 2, when the objects were smaller (Figure 259 

3B). This shows that visual information was maintained in the system even though it was not task relevant and 260 

it was presented in conjunction with a task-relevant stimulus. Thus, task-irrelevant information appeared to 261 

reach higher levels of processing than just feature processing, even though it was not the subject of attention. 262 

Indeed, category and animacy decoding (Figure 6) suggests that object stimuli were processed up to abstract 263 
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levels in the visual hierarchy. In sum, all objects and letters were decodable even during fast-changing visual 264 

input and even when they were not attended. Importantly, however, we found that attention enhanced the 265 

distinctiveness (i.e., decodability) of the attended visual stimuli. 266 

Attention affected both the strength and duration of evoked visual representations. For both letters and objects, 267 

decodability was higher and prolonged when they were task-relevant compared to when they were irrelevant. 268 

This is particularly striking because the letter and object tasks involved exactly the same sequences of images 269 

and analyses, so differences in decoding arise exclusively from the attentional focus imposed by the task that 270 

participants performed. Furthermore, it is important to note that target images (i.e., the two repeating stimuli) 271 

were not analysed, meaning that target selection and response processes were not contained within our results. 272 

The difference we observed thus can mainly be attributed to attentional mechanisms. The enhancement of 273 

attended object information around 220ms is consistent with evidence of effects from the attentional blink and 274 

target selection literature, which has often reported differences in N2 and P300 ERP components (Kranczioch 275 

et al., 2007, 2003; Sergent et al., 2005). Target stimuli in rapid streams have been found to evoke stronger signals 276 

around 220ms (Marti and Dehaene, 2017). In these designs, however, it is difficult to distinguish between the 277 

effects of target-selection and the enhancement of task-relevant information. As all our analyses were 278 

performed on non-target stimuli, our results point towards a general enhancement of task-relevant stimuli at 279 

this time scale, even for images that are not selected for target-processing. This points towards a more general 280 

enhancement effect of task-relevant information occurring around 220ms that supports flexible task 281 

performance in many paradigms. 282 

Attentional enhancement of the letter stimuli followed a different trajectory to that of the objects, with an onset 283 

around 100ms for letters versus 220ms for objects in Experiment 1. This could be explained by the letters 284 

comprising a smaller part of the stimulus arrangement. Previous work has shown effects of eccentricity on 285 

neural responses (e.g., Eimer, 2000; Isik et al., 2014; Müller and Hübner, 2002), but our results could also be 286 

attributed to differences in spatial attention allocated to the letter versus image task. Indeed, when we exchanged 287 

the stimulus position in Experiment 2, we observed an earlier onset of the attentional effects on object 288 

decoding, but the effect for letters seemed to occur later. Channel searchlight analyses further suggested that 289 
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the attentional enhancement was more left lateralised for the letter task, and right lateralised for the object task. 290 

Letter processing is typically left lateralised (Cohen et al., 2003; Puce et al., 1996), whereas animate objects tend 291 

to evoke right hemisphere dominant responses (Bentin et al., 1996; Puce et al., 1996, 1995). The different 292 

spatio-temporal dynamics between the enhanced coding of relevant information between the object and letter 293 

tasks suggest that attentional enhancement effects are dependent on perceptual characteristics of the specific 294 

stimuli being processed.  295 

For objects and their conceptual category decoding, we found evidence for no attentional effect on the initial 296 

responses (until around 180ms). This is consistent with recent work that reported no evidence for attentional 297 

effects on early visual ERP components or decoding accuracies (Alilović et al., 2019; Baumgartner et al., 2018). 298 

In contrast, we did find attentional effects on decoding accuracy for the earliest responses to letters (Figure 299 

3C), which were more decodable throughout the epochs when task relevant. One explanation of this difference 300 

is that objects are automatically and unconsciously processed, but letters may require an active recruitment of 301 

their respective processing mechanisms. Alternatively, the object stimuli used here are visually much more 302 

distinct (different colours and shapes) than the letter stimuli which facilitates decoding of visual feature 303 

differences. 304 

In addition to the stronger decoding for attended images, our results also suggest that attended stimuli were 305 

decodable for longer relative to unattended stimuli. For example, above-chance letter decoding in the task-306 

irrelevant condition lasted roughly 100ms, while in the task-relevant condition, it lasted around 600ms. One 307 

possible explanation is that attention enhanced the processing of each individual stimulus so that each stimulus 308 

was processed up to a higher-level in the visual hierarchy. Alternatively, it could be a function of the task itself, 309 

as the two-back task required participants to remember the object for two subsequent presentations. Therefore, 310 

the prolonged decodability of attended stimuli could also reflect the requirement to hold the image in working 311 

memory. Future work could explore this idea further by manipulating the memory requirement, for example 312 

through changing the presentation speed of the streams, or by contrasting a one-back versus a two-back task. 313 

In conclusion, we found that attention enhances the representations of task-relevant visual stimuli, even when 314 

they were spatially and temporally overlapping with task-irrelevant stimuli, and even when the stimuli were not 315 
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selected as target. Our results suggest that attentional enhancement effects operate on the specific perceptual 316 

processing mechanisms of the stimulus, differing across stimulus type and size.  This points towards a multi-317 

stage implementation of information prioritisation that guides early perceptual processes, as well as later-stage 318 

mechanisms. 319 
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