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Abstract 28 

Transcriptomes from sponges are important resources for studying the stress responses of these 29 

ecologically important filter feeders, the interactions between sponges and their symbionts, and the 30 

evolutionary history of metazoans. Here, we generated reference transcriptomes for two common and 31 

cosmopolitan Indo-Pacific sponge species: Carteriospongia foliascens and Cliona orientalis. We also created 32 

a reference transcriptome for the primary symbiont of C. orientalis – Gerakladium endoclionum. To ensure 33 

a full repertoire of transcripts were included, clones of each sponge species were exposed to a range of 34 

individual stressors: decreased salinity, elevated temperature, elevated suspended sediment 35 

concentrations, sediment deposition and light attenuation. RNA extracted from all treatments was pooled 36 

for each species, using equal concentrations from each clone. Sequencing of pooled RNA yielded 409 and 37 

418 million raw reads for C. foliascens and C. orientalis holobionts (host and symbionts), respectively. Reads 38 

underwent quality trimming before assembly with Trinity. Assemblies were filtered into sponge-specific or, 39 

for G. endoclionum, symbiont-specific assemblies.  Assemblies for C. foliascens, C. orientalis, and G. 40 

endoclionum contained 67,304, 82,895, and 28,670 contigs, respectively. Contigs represented 15,248-41 

37,344 isogroups (~genes) per assembly, and N50s ranged 1,672-4,355 bp. Gene ortholog analysis verified a 42 

high level of completeness and quality for sponge-specific transcriptomes, with an average 93% of core 43 

EuKaryotic Orthologous Groups (KOGs) and 98% of single-copy metazoan core gene orthologs identified. 44 

The G. endoclionum assembly was partial with only 56% of core KOGs and 32% of single-copy eukaryotic 45 

core gene orthologs identified. These reference transcriptomes are a valuable resource for future 46 

molecular research aimed at assessing sponge stress responses. 47 
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Data Description 50 

Sponges, phylum Porifera, represent one of the oldest lineages of multicellular animals [1], hence 51 

investigating the transcriptomes of different sponge species can provide insight into the evolution of 52 

metazoans and their gene expression profiles. Furthermore, sponges have an uncertain future in the face of 53 

global climate change [2,3] as well as local stressors including coastal development, altered hydrological 54 

processes, and increased runoff of nutrients, pesticides and sediments [4–7]. Transcriptomic analysis of 55 

sponges that have been exposed to different environmental conditions would improve our understanding 56 

of the sponge molecular stress response pathways and enhance our ability to effectively manage these 57 

ecologically important filter feeders. Although there are approximately 9,000 described sponge species [8], 58 

to date only ~35 species have published transcriptomes [9-25] and only ~10 have published genomes 59 

[10,16,26–29].  60 

In this study, we assembled the transcriptomes of two common and widely distributed Indo-pacific sponge 61 

species – Carteriospongia foliascens and Cliona orientalis. Both are emerging model species that have been 62 

extensively used to study the physiological and ecological effects of environmental stressors on sponges 63 

[30–37]. C. foliascens and C. orientalis are only the second members of their respective orders 64 

(Dictyoceratida and Clionaida) to have a reference transcriptome sequenced. Whilst both C. foliascens and 65 

C. orientalis host diverse populations of bacterial symbionts, e.g. [32], C. orientalis additionally hosts an 66 

abundant population of eukaryotic Symbiodiniaceae, Gerakladium endoclionum [38,39], which comprises 67 

up to 96% of its algal symbiont community [37]. We used sequences generated from the C. orientalis 68 

holobiont, i.e. host and symbiont, to construct a partial reference transcriptome for Gerakladium 69 

endoclionum. Matching host and symbiont transcriptomes provide a valuable tool to understand the 70 

holobiont response to changing environmental conditions and determine the cause-effect pathways for 71 

declining host health with environmental change. These data contribute substantially to available poriferan 72 

genetic resources and advance the development of these two sponge species as model systems for field 73 

and laboratory studies. 74 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.06.26.156463doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.156463
http://creativecommons.org/licenses/by/4.0/


Methods 75 

Samples and sequencing 76 

Samples of C. foliascens and C. orientalis were collected in May 2015 from Fantome Is. (S 18°41.028C E 146° 77 

30.706) and Pelorus Is. (S 18°32.903' E 146° 29.172'), respectively, in the central Great Barrier Reef under 78 

permits G12/35236.1 and G13/35758.1. As C. orientalis is a bioeroding sponge that encrusts and erodes 79 

coral skeletons, five C. orientalis cores (~5 cm in diameter) were collected using an air-drill from a single 80 

individual, i.e. cloned, growing on a dead colony of Porites sp. An individual of C. foliascens was cut (cloned) 81 

into five pieces as in [32].  Sponges were healed and acclimated under natural light and flow-through 82 

seawater for 4 weeks before experiments were performed.   83 

In order to capture the full complement of gene expression within the reference transcriptomes, sponges 84 

were subjected to five different treatments at the Australian Institute of Marine Science (AIMS) National 85 

Sea Simulator: i) decreased salinity, ii) elevated temperature, iii) elevated suspended sediment 86 

concentrations (SSCs) and sediment deposition, iv) light attenuation and v) no stress control. Sponge clones 87 

were used across all treatments to control for genotype, i.e. one genotype was used per species. Two 88 

clones of each species were used for each treatment. In the salinity stress treatment, salinity was 89 

decreased from 35 to 22 parts per thousand (ppt) by gradually adding flow-through reverse osmosis (RO) 90 

water to the system. Salinity was held constant at 22 ppt for 2 d with flow-through seawater maintained at 91 

600 mL min-1. In the heat stress treatment, sponges were exposed to a constant temperature of 32.5˚C for 92 

1 d using methods described in [32]. In the sediment treatment, sponges were exposed to elevated SSCs at 93 

200 mg L-1 for 1 d as in [40,41], using sediments described therein. In the deposition experiment, 94 

sedimentation was approximately 40 mg cm
-2

, measured using SedPods [42] and sponges were left covered 95 

with sediment for 1 d. In the light attenuation treatment, sponges were kept in complete darkness for 2 d. 96 

Immediately after each treatment, a sample of sponge tissue (~1 cm
3
) was flash frozen in liquid nitrogen 97 

and stored at -80˚C [43] for RNA extraction and sequencing (RNA-seq). After exposure to the decreased 98 
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salinity and darkness treatments, Cliona orientalis was visibly bleached after 2 d, but C. foliascens did not 99 

exhibit any colour change. Sponges were not visibly affected, e.g. no bleaching or necrosis, by the sediment 100 

exposure or elevated seawater temperature. 101 

Approximately 50 mg of each sponge clone was excised and ground using a mortar and pestle. Grinding was 102 

performed under a thin layer of liquid nitrogen to limit RNA degradation. All tools were rinsed in ethanol 103 

followed by RNase Zap (Sigma-Aldrich, USA) to remove contamination and deactivate RNA degrading 104 

enzymes. Total RNA was isolated using the Zymo ZR RNA miniprep kit (Zymo Research, USA), with in-105 

column DNAse digestion, according to the manufacturer’s protocol. Total RNA was subsequently cleaned 106 

using the Zymo RNA Clean and Concentrator kit (Zymo Research, USA), following the Manufacturer 107 

protocol. 108 

Total RNA quality was checked using gel electrophoresis and spectroscopy (NanoDrop 2000c 109 

Spectrophotometer, Thermo Fisher Scientific, USA), and quantified using a Quant-iT Ribogreen Assay 110 

(Thermo Fisher Scientific, USA). For each sponge species, the RNA from individual treatments was 111 

combined in equal amounts (740 ng for C. foliascens and 1,440 ng for C. orientalis) from all sponge clones, 112 

to a final total RNA concentration of  3.7 µg in 40 µl of Dnase and Rnase free water (93 ng µl-1)  for C. 113 

foliascens and 7.2 µg in 55 µl of Dnase and Rnase free water (160 ng µl
-1

) for C. orientalis. For C. foliascens 114 

and C. orientalis respectively, RNA had a ratio of absorbance at 260 nm to 280 nm (A260/A280) of 1.88 and 115 

2.02 and an A260/A230 ratio of 1.11 and 1.67. To isolate eukaryotic messenger RNA (mRNA), a TruSeq 116 

Stranded mRNA-seq sample prep was performed prior to sequencing. The mRNA was sequenced across 117 

two lanes of Illumina HiSeq2500 at the Ramaciotti Centre for Genomics (University of New South Wales, 118 

Sydney, Australia) to generate 2 x 100 base pair (bp) paired-end (PE) rapid runs. 119 

Transcriptome assembly and annotation  120 

Sequencing produced 409 and 418 million raw reads for C. foliascens and C. orientalis, respectively (Table 121 

1). Reads were trimmed and assembled using publicly available scripts [44,45] and the protocol detailed in 122 
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[46]. Briefly, reads < 50 bp long were removed along with reads containing a homopolymer run of adenine 123 

(A) longer than 9 bases using fastx_toolkit [47], and only reads with a PHRED quality score >20 over 80% of 124 

the read were retained. TruSeq sequencing adapters and PCR duplicates were also removed [44]. The 125 

remaining filtered, high quality reads (32.5, 50.5 million paired reads and 2.9, 8.7 million unpaired reads for 126 

C. foliascens and C. orientalis, respectively) underwent de novo assembly into contigs using Trinity v 2.8.5 127 

[48]. Data processing and assembly was performed at AIMS in Townsville using a high-performance 128 

computer (HPC) and on ABACUS 2.0 at the Danish e-Infrastructure Cooperation (DeiC) National HPC Center.  129 

Following assembly, additional quality control was performed to ensure that only target transcripts, i.e. 130 

derived from C. foliascens, C. orientalis or G. endoclionum, were included in their respective reference 131 

transcriptomes [13,46]. First, contigs less than 400 bp were removed and ribosomal RNA (rRNA), 132 

mitochondrial RNA (mtRNA), Symbiodiniaceae, and other non-metazoan (e.g. bacteria) sequences were 133 

identified using a series of hierarchical BLAST [49] searches. Transcriptomes were further blasted (BLASTn) 134 

against the A. queenslandica rRNA database (SILVA: ACUQ01015651) [50], which was the most complete 135 

Poriferan rRNA database. Contigs with a bit-score >45 were removed, i.e. 9 and 10 sequences in C. 136 

foliascens and C. orientalis, respectively. This process was repeated using the A. queenslandica 137 

mitochondrial genome (NCBI: NC_008944.1 REF), resulting in 61 and 27 sequences being removed from the 138 

C. foliascens and C. orientalis assemblies respectively.  139 

Remaining contigs were blasted (BLASTx) against the most complete Poriferan (A. queenslandica, 140 

aqu2.1_Genes_proteins.fasta) [28,51] and Symbiodinium kawagutii 141 

(Symbiodinium_kawagutii.0819.final.gene.pep) [52] predicted proteomes and the NCBI nonredundant (nr) 142 

protein database (downloaded September 2019). In order to be included in a sponge-specific assembly, 143 

contigs had to return a more significant match (E value ≤ 10
-5

) to the A. queenslandica proteome compared 144 

to blast results from the S. kawagutii proteome and also match a metazoan sequence in the nr database or 145 

have no match in the nr database, as described in [13]. Sequences with no match to either proteome were 146 
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excluded from the final sponge assemblies [13], a stricter exclusion procedure than used in prior 147 

invertebrate transcriptome assemblies [46].  For the C. orientalis holobiont, sequences matching the S. 148 

kawagutii proteome more closely than the A. queenslandica proteome (E value ≤ 10-5) and matching to the 149 

phylum chromerida in the nr database (or having no match in the nr database) were included in the final G. 150 

endoclionum assembly. Although C. foliascens does not contain intracellular Symbiodiniaceae, the 151 

decontamination step was also performed in order to remove any potential algal contamination in the 152 

sample, resulting in only a few (1,520, 1% of total number of contigs) contaminating sequences being 153 

removed.  154 

Within each of the three transcriptomes, contigs were assigned to isogroups (~genes) and given gene 155 

names and gene ontologies (GO) [53] following the protocol previously described in [44,54]. Briefly, the 156 

transcriptomes underwent BLAST pairwise sequence comparison (BLASTx) to the UniProt Knowledgebase 157 

(UniprotKB/Swiss-Prot) database [55]. Significant BLASTx results (E value ≤ 10-4) were used by 158 

CDS_extractor_v2.pl [56] to extract and identify protein coding sequences. Functional annotations were 159 

assigned to isogroups based on orthologous comparisons to the eggNOG 4.5 database [57] using eggnog-160 

mapper [58]. Kyoto Encyclopedia of Genes and Genomes (KEGG) ids were also assigned to isogroups using 161 

the KEGG Automatic Annotation server (KAAS) [59]. The guanine-cytosine (GC) content of transcriptomes 162 

was calculated using the BBMap package (Joint Genome Institute, USA) [60].  Transcriptome completeness 163 

was assessed by Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis [61] on gVolante [62].  164 

Assembly evaluation and quality control 165 

The holobiont assemblies of C. foliascens and C. orientalis contained 225,126 (N50 = 1,284) and 146,510 166 

(N50 = 1,949) contigs greater than 400bp in length (Table 1). After data partitioning, 67,304 and 82,895 167 

contigs, for C. foliascens and C. orientalis respectively, were considered the ‘sponge-specific’ transcriptome 168 

assemblies. The partitioned G. endoclionum transcriptome isolated from the C. orientalis holobiont 169 

comprised 28,670 contigs (Table 1). The C. foliascens, C. orientalis, and G. endoclionum transcriptomes 170 
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contained 15,248, 37,344, and 21,566 isogroups, respectively, with mean lengths of 3,024 (N50 = 4,355), 171 

1,756 (N50 = 2,369), and 1,375 (N50 = 1,672) bp (Table 1). The number of isogroups identified in the C. 172 

foliascens and C. orientalis transcriptomes was comparable to previously published sponge transcriptomes 173 

which have reported ~11,000-60,000 expressed genes [15,23,63], although there is considerable variation 174 

across species. The G. endoclionum transcriptome, containing 28,670 isogroups was comparable in size to 175 

the previously published S. kawagutii genome (36,850 genes) [52] and previously published 176 

Symbiodiniaceae transcriptomes, ranging in size from 23,777-26,986 expressed genes [64]. The respective 177 

GC content of each assembly was 40.2, 45.5, and 59%, matching reported values for metazoans (35-55% 178 

[17,27,65]) and Symbiodiniaceae (45-65% [65]). For C. foliascens and C. orientalis, the percentage of genes 179 

assigned a name or GO terms was 64 and 77%, respectively (Table 1), also comparable to other sponge 180 

transcriptomes (30-70% [15]) and those of other non-model metazoans (25-62% [14,46]). In comparison to 181 

the annotated sponge transcriptomes, only 39% of G. endoclionum isogroups could be assigned function or 182 

GO term annotations, however this is consistent with functional annotation of other intracellular 183 

Symbiodiniaceae transcriptomes, where between 34-44% of genes were assigned GO terms [64]. The 184 

isogroups for C. foliascens, C. orientalis, and G. endoclionum were assigned 3,641, 5,339 and 2,191 unique 185 

KEGG annotations respectively.  186 

The representative transcriptomes for C. foliascens and C. orientalis are considered largely complete based 187 

on BUSCO analysis (92.8% and 94.2% complete, respectively) and the representation of nearly all core 188 

eukaryotic Orthologous Groups (KOGs) (97.9% and 98.7% respectively) (Table 1). BUSCO analysis of the 189 

transcriptome of G. endoclionum was 32.3% complete and 56% of core KOGs were identified (Table 1). A 190 

reduced BUSCO completeness in transcriptomes isolated from intracellular Symbiodiniaceae in corals (33-191 

42%) has been previously reported [66].  The current G. endoclionum transcriptome contained 86% more 192 

isogroups than the Symbiodiniaceae transcripts identified within the transcriptome assembly of the closely 193 

related sponge holobiont, Cliona varians [17]. C. varians also hosts a congeneric intracellular 194 
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photosymbiont, Gerakladium spongiolum [38]. Therefore, the current transcriptome for G. endoclionum 195 

was considered useful for future studies, at least for conditions in hospite.  196 

Table 1. Assembly statistics for the de novo transcriptomes.  197 

 Carteriospongia foliascens 
holobiont 

Cliona orientalis  
holobiont  

N raw reads (x106) 409 418 
N qual filtered: PE, SE (x106) 32.5, 2.9 50.5, 8.7 
N contigs holobiont 146,510 225,126 
 Carteriospongia foliascens  Cliona 

orientalis 
Gerakladium 
endoclionum  

N contigs target species only 67,304 82,895 28,670 
Mean GC content target species only 40.2 45.5 59 
N genes 15,248 37,344 21,566 
Mean contig length (bp) 3,024 1,756 1,375 
N50 (bp) 4,355 2,369 1,672 
% Annotated 64 77 39 
% core KOGs 97.9 98.7 56 
    
BUSCOs    
 N complete (%) 908 (92.8) 921 (94.2) 98 (32.3) 
 N partial (%) 14 (1.48) 16 (1.94) 16 (5.28) 
 N missing (%) 56 (5.73) 38 (3.89) 189 (62.8) 

 198 

Re-use potential 199 

These reference transcriptomes were assembled to facilitate sponge holobiont research aimed at exploring 200 

how both host and symbionts respond to changing environmental conditions. The transcriptomes can be 201 

used for studies involving Tag-based RNAseq (TagSeq) [67], a highly accurate [68] and cost-effective 202 

sequencing technique for large sample sets. Output files are also formatted for Rank-based Gene Ontology 203 

analysis of gene expression data (GO_MWU, [69]), and for Functional Summary and Meta-Analysis of Gene 204 

Expression Data (KOGMWU, [70]).  205 

Availability of supporting data 206 

All data, including raw reads, can be accessed here: 207 

https://www.dropbox.com/sh/82ue5l16n4xzxww/AABENUi-Cdbm_z-6x4Gj3qICa?dl=0 . Raw data has also 208 
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been deposited on NCBI’s SRA under accession numbers PRJNA639714 and PRJNA639798 for the C. 209 

orientalis holobiont and C. foliascens, respectively. 210 
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