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Abstract

The precise timing of neuronal activity is critical for normal brain function. In weakly
electric fish, the medullary pacemaker network (PN) sets the timing for an oscillating
electric organ discharge (EOD) used for electric sensing. This network is the most
precise biological oscillator known, with sub-microsecond variation in oscillator period.
The PN consists of two principle sets of neurons, pacemaker and relay cells, that are
connected by gap junctions and normally fire in synchrony, one-to-one with each EOD
cycle. However, the degree of gap junctional connectivity between these cells appears
insufficient to provide the population averaging required for the observed temporal
precision of the EOD. This has led to the hypothesis that individual cells themselves fire
with high precision, but little is known about the oscillatory dynamics of these
pacemaker cells. To this end, we have developed a biophysical model of a pacemaker
neuron action potential based on experimental recordings. We validated the model by
comparing the changes in oscillatory dynamics produced by different experimental
manipulations. Our results suggest that a relatively simple model captures the complex
dynamics exhibited by pacemaker cells, and that these dynamics may enhance network
synchrony and precision.

Author summary

Many neural networks in the brain exhibit activity patterns which oscillate regularly in
time. These oscillations, like a clock, can provide a precise sense of time, enabling
drummers to maintain complex beat patterns and pets to anticipate “feeding time”.
The exact mechanisms by which brain networks give rise to these biological clocks are
not clear. The pacemaker network of weakly electric fish has the highest precision of all
known biological clocks. In this study, we develop a detailed biophysical model of
neurons in the pacemaker network. We then validate the model against experiments
using a nonlinear dynamics approach. Our results show that pacemaker precision is due,
at least in part, to how individual pacemaker cells generate their activity. This supports
the idea that temporal precision in this network is not solely an emergent property of
the network but also relies on the dynamics of individual neurons.
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Introduction 1

Timing of neuronal spikes is critical to many brain processes, including sound 2

localization [1–3], escape responses [4–6], and learning and memory [7, 8]. When neural 3

processes are periodic, they can form the basis for biological clocks which span a range 4

of precision (variability in oscillation period), with a higher variability leading to a less 5

reliable clock. 6

Variability in the period of neuronal oscillators (reported as a coefficient of variation: 7

CV = s.d./mean) can be relatively high, as in the bullfrog sciatic nerve with a 8

CV=0.37 [9, 10]. For reference, a random Poisson process has a CV=1, while neurons in 9

the visual system can have a CV >1 [11,12]. In contrast, the neural oscillators 10

underlying the electric organ discharge (EOD) of the weakly electric fish Apteronotus 11

have a CV as low as ∼10-4 (corresponding to a raw standard deviation of ∼100ns), 12

making it the most precise biological oscillator known [10, 13]. The high precision of the 13

EOD of Apteronotus makes it a particularly attractive model for the study of neural 14

circuit timing [10,13,14]. 15

Apteronotus generates an oscillating electric field (EOD) to sense their environment 16

in the dark [15]. Heterogeneities in the environment perturb the EOD, and these 17

perturbations are sensed by electroreceptors on the skin. The timing of the oscillations 18

underlying the EOD are set by the medullary pacemaker network (PN) [13,16–19]. This 19

nucleus is a collection of two principle cell types: pacemaker cells which are intrinsic to 20

the PN, and relay cells which project down the spinal cord to drive the EOD [14,16, 20]. 21

Additionally, there are parvalbumin positive cells (parvocells) whose function is 22

currently unknown, but are not thought to contribute to the oscillatory function of the 23

PN [21]. 24

The pacemaker cells in the PN are highly synchronized, with relative phases across 25

cells close to 2% of the oscillator period [10,14]. In general, networks are thought to 26

achieve high-precision and high-synchrony through the population-averaged activity of a 27

large number of strongly-connected cells [14, 16, 22]. However, pacemaker and relay cells 28

are connected only sparsely, with weak gap junctions [14,16–18]. Although network 29

connectivity may be functionally enhanced through the electric feedback from the EOD 30

itself [14, 23], the apparent disconnect between high-synchrony or high-precision and low 31

connectivity in the PN may also be explained by the high precision of individual 32

cells [16], with synchrony emerging from weak interactions between precise cells with 33

stereotyped dynamics. Indeed, some underlying oscillatory dynamics are thought to be 34

more amenable to synchronization than others [24–26]. 35

Previous studies have used a Hodgkin-Huxley based model to explore PN synchrony 36

and precision [14,16], but this model was not intended to accurately represent the 37

action potential waveform of pacemaker neurons. While these studies provided insight 38

into pacemaker network interactions, a more accurate biophysical model is required to 39

determine how transmembrane currents, intrinsic oscillatory dynamics and gap 40

junctional coupling impact single cell precision and network synchrony. To this end, we 41

present a biophysically based pacemaker cell model which accurately captures the 42

waveform of pacemaker cells as well as their dynamical responses to experimental 43

manipulations. 44

Methods 45

Model Developement 46

Previous pharmacological experiments have suggested that pacemaker cells express the 47

following suite of ionic currents: inactivating sodium (INa) and/or persistent sodium 48
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Fig 1. Model fit results. (A) Canonical model fit (black line) to A. leptorhynchus
action potential waveform (orange). (B) Dimensionless waveform (action potential
normalized by period in time and peak-peak amplitude) from two individuals from each
species. (C) Data fits showing model flexibility over a range of frequencies, amplitudes
and means for A. leptorhynchus (left, orange) and A. albifrons (right, grey). Orange
star indicates model fit in panel A.

(INaP), inactivating potassium (IK), T/R type calcium (ICa), and leak (IL) [27]. Using 49

the standard Hodgkin-Huxley-style biophysical approach [28], these currents underlie 50

the dynamics of our model (see supplemental equations [S1 File] for details). Model 51

parameters were fit to intracellular recordings from previously published experiments on 52

Apteronotus leptorhynchus pacemaker cells [14]. A standard waveform from a 53

representative pacemaker cell comprising two successive action potentials, averaged over 54

30 sweeps, was used to fit the primary model. Fitting two successive action potentials 55

(oscillator cycles), rather than one, minimizes frequency drift between model and target 56

waveforms. We also show that the primary model can be generalized by fitting it to 57

waveforms from other pacemaker cells in both Apteronotus leptorhynchus and the 58

related species Apteronotus albifrons (see figure 1). Note that Smith and Zakon (2000) 59

also suggested a role for a persistent sodium current (INap), but our initial studies 60

showed that including this current resulted in many solutions that would not spike (not 61

shown), so we did not include INap in our final model. This current may provide a 62

means of modulating frequency but it is not necessary to explain variations in 63

pacemaker cell waveform across individuals and species. 64

We implemented a generic, parameterized model in the Brian2 simulation engine 65

(version 2.3) [29], and fit our model using a differential evolutionary algorithm provided 66

in the brian2modelfitting package (version 0.3). This algorithm is similar to a genetic 67

algorithm and starts with a large set of parameters drawn randomly within set bounds. 68

Based on the fitting performance (i.e. “fitness”; see later discussion on fitting error), 69

some parameter values will have a higher or lower probability of being used in the next 70

iteration. Stochastic perturbations within the parameters allow for an efficient sampling 71

of large parameter spaces [30,31]. The algorithm was initialized with 5000 samples of 72

each parameter and run for 3 iterations. Each parameter was sampled uniformly 73

between upper and lower bounds, based roughly on known biophysical principles (see S1 74

Table). 75

Fitting error was quantified using the root mean squared (RMS eq. 1) error when 76

the two waveforms (experimentally measured Ve, and model Vm) were aligned by first 77

spike times (defined as the action potential peak), 〈x〉 represents the mean of x. 78

RMS =
√
〈(V e − V m)2〉 (1)

Experimental methods 79

To validate the model, brain slices of the pacemaker nucleus were prepared as described 80

previously [10, 14]. Briefly, adult black ghost knifefish (A. albifrons) were obtained from 81

commercial fish suppliers and housed on a 12/12 light-dark cycle in flow-through tanks 82

at water temperature 27-28°C and conductivity 150-250μS. All housing and 83

experimental protocols were in accordance with guidelines approved by the Animal Care 84

Committee of the University of Ottawa (BL-1773). Fish (N=5) were deeply 85

anaesthetized using 0.1% Tricaine methanosulfate (TMS, Syndel International Inc, 86

Nanaimo, BC, Canada) before being transferred to a bath of ice-cold artificial 87

cerebrospinal fluid (ACSF; in mM: 124 NaCl, 24 NaHCO3, 10 D-Glucose, 1.25 KH2PO4 , 88

2 KCl, 2.5 MgSO4 , 2.5 CaCl2 ; bubbled with 95% O2/5% CO2). The brain was quickly 89
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removed and the pacemaker nucleus cut away using fine scissors (∼1mm rostral, 2mm 90

caudal, 1mm dorsal) and transferred to a 35mm petri dish perfused with oxygenated 91

room-temperature (22 °C) ACSF. After a minimum of 30 minutes, pacemaker recordings 92

(intracellular or extracellular) were performed with borosilicate glass sharp electrodes 93

(30-90MΩ, P-2000 electrode puller, Sutter Instrument Company, Novato, CA, USA) 94

using an Axoclamp 2B amplifier (Molecular Devices, Sunnyvale, CA, USA). Data was 95

acquired using a Digidata 1440a digitizer (Molecular Devices) at a sampling frequency 96

of 100kHz using pClamp 10 (Molecular Devices). Low Na+ ACSF was prepared in a 97

similar fashion as ACSF, only substituting NaCl for equimolar amounts of sucrose 98

(Fisher Chemical, Fair Lawn, NJ, USA). The perfusion system involved a transfer time 99

of approximately 4 minutes when switching between Na+ and low-Na+ ACSF solutions. 100

Action potential frequency in the PN was measured from one-second recordings 101

taken at 20s intervals using Fourier analysis (as the highest power, dominant frequency). 102

Cessation of spiking was determined when the power at the dominant frequency was less 103

than 1.5 times the power at 60 Hz (signal-to-noise ratio, SNR<1.5) This criterion was 104

additionally used to identify overly noisy recordings. We additionally identify noisy 105

recordings by ensuring that the dominant frequency is not within 5Hz of a power line 106

harmonic. 107

Results 108

Model Fit 109

We developed a biophysical Hodgkin-Huxley-based model of a pacemaker neuron in the 110

PN of a weakly electric fish. Motivated by previous studies [27], our model included 111

voltage-dependent sodium, potassium, and calcium channels, along with leak channels 112

(INa, IK, ICa, IL). We used a differential evolutionary algorithm to survey a 113

44-dimensional parameter space (see Methods and Appendix). After optimization, the 114

RMS error between model and data waveform was 0.7mV; when normalized by action 115

potential amplitude, this corresponds to a 2.8% error. Note that small differences in 116

action potential timing can lead to relatively large errors due to the fast rise and fall 117

times that are typical of action potentials, so the model matches the data even better 118

than the RMS error would suggest over most of the action potential cycle (figure 1A). 119

For model fits see S2 Table and S3 Table. 120

At this point, our model describes an action potential of a single cell from an 121

individual A. leptorhynchus. It is also of interest to determine how well this model will 122

generalize across individuals and the related species A. albifrons. In figure 1B, we show 123

action potential waveforms (dimensionless, normalized in both time and amplitude) from 124

pacemaker cells from two individuals of each species (figure 1B); the similarity across 125

waveforms suggests that the underlying dynamics are also similar. To demonstrate this 126

and to show the flexibility of the model, we refit the model to each of these four action 127

potential waveforms with the same parameter bounds (figure 1C; data from figure 1A is 128

indicated by gold star). Over a range of amplitudes and frequencies, the model fits 129

involved a worst-case error of 5.3%. And importantly, there were no systematic 130

differences in the voltage dependence of the gating variables across all models (S1 Fig). 131

Previous results suggest that while calcium can contribute to action potential 132

waveform shape, it does not fundamentally underlie pacemaker cell oscillation [27]. We 133

tested this in our model by setting gCa to 0 (ICa-Block ) and found that changes to the 134

waveform were subtle and the model continues to oscillate (figure 2A). In figure 2B, we 135

show the contributions of each current to the action potential waveform. As expected, 136

the depolarization of the action potential is driven by the sodium current, and the 137

repolarization/hyperpolarization is driven by potassium current, but ICa has little effect 138
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Fig 2. Analysis of membrane currents in the canonical model and the
effects of ICa-block. (A) Model fits for both full model (left) and with ICa blocked
(right) showing no systematic differences. (B) Current breakdown with ICa×10 (dashed
light blue line) showing a 10× magnified calcium current for illustrative purposes.

(compare the full model with the ICa-Block model, Figure 2B). Overall, our modeling 139

results confirm previous experimental results suggesting a minimal role of calcium in the 140

pacemaker action potential oscillation. 141

At this stage, it would not be inappropriate to consider the model overfit. We have 142

used a biophysical model with 44 parameters to fit a single oscillator waveform. A good 143

fit would not be surprising, so it is important to validate the dynamics of our model 144

against additional data. To this end, we consider the pacemaker dynamics during two 145

different experimental manipulations: low concentration of extracellular sodium 146

(decreased ENa), and pharmacological block of Na+ and K+ channels [21]. 147

Model Validation: Effects of ENa 148

To test the new pacemaker model, we compared its dynamics under conditions that 149

differed from those in the model fitting process. In the study of dynamical systems, 150

qualitative changes in behavior produced by small changes in a system parameter are 151

referred to as bifurcations [32]. One particular example of a bifurcation relevant to 152

pacemaker dynamics is the transition between an oscillating state and a rest state 153

(non-oscillating), and vice-versa; the nature of this transition depends on the system 154

properties as well as the particular parameter that is varied. 155

One classic way in which oscillations can arise is through a Hopf bifurcation. The 156

hallmark of a Hopf bifurcation is that the transition from an oscillating state to rest (or 157

vice-versa) involves a discontinuous jump (i.e. as a system parameter is varied, there is 158

an abrupt change in frequency from some minimum value to zero) [32] There are two 159

kinds of Hopf bifurcations: one that exhibits a hysteresis and one that does not. 160

Hysteresis can manifest in many ways. In the case of a Hopf bifurcation, hysteresis 161

appears as a bistable system i.e. at a given parameter value the system can be 162

oscillatory or not. Bifurcations presenting with hysteresis are known as subcritical Hopf 163

bifurcations, whereas those without are supercritical. An alternative type of bifurcation 164

(the homoclinic bifurcation) involves a continuous transition from rest to oscillating 165

state along with a gradual change in oscillation frequency (i.e. rest can be thought of as 166

an oscillation with infinite period) [32]. In summary, characterizing the transition 167

between oscillating and non-oscillating states can provide a test of system dynamics [33]. 168

Lowering the equilibrium potential of sodium (ENa) via changes in extracellular Na+ 169

concentration typically leads to cessation of action potential generation. We thus used 170

this parameter to explore the transition between oscillating and non-oscillating states in 171

both our pacemaker model and in experimental pacemaker preparations. In our model, 172

we can manipulate ENa directly. In our experiments, low-Na+ ACSF was washed in to 173

dilute the control ACSF, thereby gradually decreasing ENa. Under ideal mixing 174

conditions, the sodium concentration of the bath should obey an exponential diffusion 175

equation (eq 2) where r is the flow rate: 176

[Na+out](t) = [Na+out]0e
− t

r (2)

ENa is given by the Nernst equation (eq 3) so by substitution we have: 177

ENa ∝ log
[Na+out](t)

[Na+in]
= −k t

r
+ α (3)
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Fig 3. Data and model bifurcation analysis. (A) Time-series of pacemaker
frequency (normalized time, Trel) as Na-free ACSF is washed in (see Methods) for 5
different pacemaker preparations. Green trace represents average (individual
preparations in grey) and red trace represents cessation of firing. Trel=1 represents the
bifurcation point. (B) Orbit diagram for model bifurcation analysis with respect to ENa.
Green trace denotes action potential extrema; black trace denotes unstable fixed points;
and red trace denotes stable fixed points. Black-Red intersection point denotes the Hopf
bifurcation. (C) Frequency analysis of the model Hopf bifurcation. Dark green line
shows action potential frequency of the model in figure 1C(i). Light green lines shows
firing frequency for other model fits, figure 1C(ii-iv). Red line represents cessation of
firing and dotted lines show the bifurcation point of each model.

where ∝ represents proportionality, and k and α are lumped constants. This implies 178

that ENa should decrease linearly in time, and since we do not have a direct measure of 179

ENa, time should be a good proxy. 180

In figure 3, we show the transition between oscillation and rest in both model and 181

experiments. Our experimental analysis reveals that pacemaker frequency decreases 182

over time, with an abrupt shift to the rest state (for simplicity we define rest to have 183

zero frequency), as extracellular sodium concentration (i.e. ENa) decreases (Figure 3A). 184

To account for variability between experiments, we normalize the time scale such that 185

the PN ceases to oscillate at time t=1. Measurements from individual preparations are 186

shown in grey, with the mean shown in green (N=5 fish). On average, we see that the 187

oscillation stops at ∼260 Hz (figure 3B). 188

For the pacemaker model, we compute a bifurcation diagram showing the system’s 189

state (membrane potential, Vm) for different values of ENa using XPP [34] (figure 3B). 190

As ENa decreases, the model neuron transitions from a oscillating (membrane potential 191

extrema in green) to rest (red) at a bifurcation point corresponding to ENa = −12.8 mV 192

with no hysteresis. To distinguish a Hopf from a homoclinic bifurcation, we measured 193

the frequency of the oscillation as ENa decreases in figure 3C (dark green trace). The 194

oscillation frequency follows the square-root-like curve, characteristic of a Hopf 195

bifurcation [32] until a discontinuity at ENa=−12.8mV, after which the cell stops firing. 196

In other words, we can say that as ENa is increased, our model undergoes a supercritical 197

Hopf bifurcation at ENa=-12.8mV. We observe qualitatively similar dynamics for the 198

other model fits (figure 1C, light green traces). 199

While both the models and recordings undergo a sudden loss of spiking, a feature 200

consistent with a Hopf bifurcation, other features of the model dynamics do not match 201

the data. First, the manner in which frequency decreases with decreasing Na+ is very 202

different, as indicated by an increasing versus decreasing second derivative (compare 203

figure 3A and 3C). This is possibly due to nonlinear changes in ENa in the experiments 204

resulting from variations in mixing and diffusion through the tissue; this would affect 205

the detailed time-course of ENa but the relation between ENa and time will still be 206

monotone. Secondly, we note that the experimental data spans a larger frequency range 207

(∼525Hz→∼230Hz; a drop of 60%) whereas the model spans ∼380Hz→260Hz, a drop 208

of ∼30% (although for the other model fits we see 40-50% drops). This could be due to 209

several factors, but one interesting possibility is that the pacemaker sensitivity to Na+ 210

is higher due to the presence of a persistent sodium current that underlies frequency 211

control. It is important to note however, that despite these quantitative differences, 212

both model and experimental systems show similar dynamics, with each exhibiting a 213

Hopf bifurcation. 214
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Fig 4. Response to progressive block of Na+ and K+ channels. (A) Model
response to Na+ channel block (gNa, left) and K+ channel block (gK, right). (B) Action
potential properties measured as a function of block level for peak-peak amplitude (left),
action potential rise rate (center) and fall rate (absolute value; right). Dots represent
block level with equivalent percentage change in each property from data reported
in [27]

Model validation: Pharmacological Manipulations 215

In a similar manner, we can also consider how PN dynamics change as individual 216

currents are manipulated. Smith and Zakon [27] showed that blocking either INa or IK 217

channels results in firing cessation in experimental preparations. Importantly, they 218

measured action potential waveform parameters as the channel blocker was washed in 219

(i.e. as an increasing fraction of the channels are blocked). These data can thus provide 220

another means of model validation. 221

We simulated this gradual channel block in the pacemaker model by manipulating 222

the conductance of the appropriate channel as Gion → (1− b)Gion where b is a number 223

between 0 and 1; control (b = 0) represents no block, while b = 1 represents complete 224

block. We demonstrate the effects of progressive block of either Na+ (left) and K+
225

(right) channels in figure 4A (block level, b = 0 to b = 0.7). As with the ENa 226

manipulations, we performed a bifurcation analysis in XPP [34] and found that 227

progressive block of both Na+ and K+ channels is associated with a supercritical Hopf 228

bifurcation (not shown). The reader familiar with bifurcation analyses may note that 229

the decreases in gNa appear to result in a continuous frequency drop, but over a larger 230

parameter range there is in fact a discontinuous drop in frequency associated with a 231

Hopf bifurcation. 232

Because we do not know the equivalent block level at the time the waveform 233

properties were measured in the experiments, we use the following qualitative 234

comparison based on three action potential waveform features. We consider how these 235

features vary as the block level is increased (figure 4B), and what block level is required 236

to match experimental data (solid circle, figure 4B). A good model will be internally 237

consistent such that the required block level should be consistent across all waveform 238

features. In figure 4B we show the peak-to-peak amplitude, peak rise rate, and peak fall 239

rate (taken as positive for symmetry with rise rate) as a function of Na+ and K+
240

channel block level. The equivalent block level (that which corresponds to the percent 241

change noted in the original data) is indicated by a solid circle: the block level for Na+ 242

is 0.59 ± 0.06 (mean ± standard deviation) whereas that for K+ is 0.55 ± 0.007; the 243

similarity in these values suggests good model performance. 244

Overall, our analyses show that this new model captures the main oscillatory 245

dynamics and action potential waveforms of pacemaker cells based on the underlying 246

sodium and potassium currents. Further, the results suggest that oscillatory dynamics 247

in pacemaker neurons arise in a specific manner (supercritical Hopf bifurcation) that 248

may influence network synchrony and stability [35,36]. 249

Discussion 250

The pacemaker network (PN) of wave-type electric fish sets the timing of a neural 251

oscillation which exhibits precision and stability far beyond that of any known biological 252

oscillator [13,14]. To understand these dynamics, we have developed a biophysically 253

relevant model of pacemaker neurons that reproduces the action potential waveform as 254

well as the effects of various experimental manipulations. From a dynamical systems 255

perspective, we show that our model undergoes a Hopf bifurcation as ENa is decreased. 256

June 19, 2020 7/11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.26.173088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173088
http://creativecommons.org/licenses/by/4.0/


A similar effect is seen experimentally when Na+ is removed from the extracellular 257

medium: oscillations stop with a minimum frequency ∼260 Hz. In these experiments 258

however, we were not able to successfully recover a normal oscillation after low-Na+ 259

treatment, and thus could not differentiate between sub and supercritical bifurcations 260

based on the presence of hysteresis. This could be due to a network bistability where 261

the control Na+level could permit oscillation or not. Further work is of course required. 262

We were nonetheless able to show a sudden stop in oscillation which rules-in a Hopf 263

bifurcation and rules out any form of homoclinic bifurcation, where the birth of an 264

oscillation can have an arbitrarily low frequency. In addition, our model accurately 265

reproduces the changes in waveform properties such as amplitude and peak slew rate 266

caused by partial channel block. 267

Of particular interest in this study is the fact that our model was fit to data from two 268

related species (A. leptorhynchus and A. albifrons). While there are known differences 269

in cell counts, and frequencies [18,37–39], little is known about the differences in 270

pacemaker network dynamics between these species [14]. We show preliminary data to 271

suggest that both species have similar action potential waveforms (figure 1B) despite 272

wide variations in baseline potential, peak-peak amplitude, and frequency. The 273

implication of this being that pacemaker cells in both species have similar dynamics. 274

This is supported by the fact that the model was fit to these different waveforms within 275

relatively narrow parameter bounds. Furthermore, experimental validations are done 276

with data from both A. albifrons (ENa) and A. leptorhynchus (channel block). 277

This model can also provide important insight into precision and synchrony in the 278

PN. For example, fast, early currents such as INaP tend to decrease synchrony across a 279

network [35] whereas some of the slow, late potassium currents [35, 36]) tend to increase 280

network synchrony [35]. Interestingly, we found that INaP was not required to explain 281

pacemaker waveforms, but a delayed potassium current played a fundamental role. 282

Further, the specific dynamics of individual neurons in a network can also influence 283

network synchronization [35,36]. In particular, neurons exhibiting supercritical Hopf 284

bifurcations (also referred to as Type II excitability) can lead to more robust 285

synchronization [25, 26]. Understanding the role of bifurcation structure in PN precision 286

and synchrony will require future modeling and experimental work. 287

We acknowledge that our model is a single cell model fit to data from an intact 288

pacemaker network. The impact of this is not clear. In principle, gap junctional 289

strength is proportional to the voltage difference between cells, so in a synchronized 290

network, the voltage difference between cells is low, hence coupling is minimal, with gap 291

junctions serving primarily as an error-correcting entraining force. This suggests that 292

the network effects of gap junctions may be minimal. Nonetheless, given that the model 293

exhibits similar dynamics to those observed experimentally, it will provide a basis for 294

future work focused on how intrinsic neuronal dynamics interact with gap junctional 295

coupling to produce high temporal precision and synchrony in the pacemaker network. 296
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