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Abstract

Allee effects describe populations in which long-term survival is only possible if the

population density is above some threshold level. A simple mathematical model of an

Allee effect is one where initial densities below the threshold lead to population extinc-

tion, whereas initial densities above the threshold eventually asymptote to some positive

carrying capacity density. Mean field models of population dynamics neglect spatial

structure that can arise through short-range interactions, such as short-range competi-

tion and dispersal. The influence of such non mean-field effects has not been studied in

the presence of an Allee effect. To address this we develop an individual-based model

(IBM) that incorporates both short-range interactions and an Allee effect. To explore the

role of spatial structure we derive a mathematically tractable continuum approximation

of the IBM in terms of the dynamics of spatial moments. In the limit of long-range inter-

actions where the mean-field approximation holds, our modelling framework accurately

recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive

to spatial structure that mean-field models neglect. For example, we show that there

are cases where the mean-field model predicts extinction but the population actually

survives and vice versa. Through simulations we show that our new spatial moment dy-

namics model accurately captures the modified Allee threshold in the presence of spatial

structure.

Keywords individual-based model, spatial moments, mean-field, competition, population

extinction.

1 Introduction

Mathematical models of biological population dynamics are routinely built upon the classical

logistic growth model where a population tends to a finite carrying capacity density for

all positive initial densities [1–3]. While the logistic growth model is reasonable in some

situations, there are other situations where the long-term survival of a population depends

on the initial density, often called an Allee effect [4,5]. A strong Allee effect is associated with

a net negative growth rate at low densities leading to population extinction below the Allee
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threshold density. In contrast, a net positive growth rate at higher densities leads to the

survival of the population when the initial density is greater than the Allee threshold [6–8].

Another type of Allee effect, known as the weak Allee effect, describes population growth with

a reduced but positive growth rate at low densities [5]. Unlike the strong Allee effect, a weak

Allee effect does not exhibit any threshold density due to the net positive growth rate. In this

study, we focus on the strong Allee effect since we are interested in exploring threshold effects

and factors that influence the Allee threshold. Initial evidence for the Allee effect came from

ecological systems for various plant and animal populations [6, 9–15], whereas more recent

studies suggest a role for the Allee effect in populations of biological cells [16–21].

Most mathematical models of Allee population dynamics invoke a mean-field assump-

tion [2, 6, 22, 23] where, either implicitly or explicitly, interactions between individuals are

assumed to occur in proportional to the average density. Such models neglect spatial

correlations between the locations of individuals [24]. When short-range interactions are

present, such as short-range competition, the mean-field approximation can become inaccu-

rate [25–28]. Short-range interactions can lead to the development of spatial structure that

can affect the overall population dynamics [29–31]. Spatial structure in biological populations

includes both clustering and segregation [32–37]. Stochastic individual-based models (IBM)

offer a straightforward means of exploring population dynamics without invoking a mean-

field approximation [38, 39]. However, IBM approaches are computationally prohibitive for

large populations and provide limited mathematical insight into the population dynamics,

for example how particular biological mechanisms affect the carrying capacity or the Allee

threshold [40].

A continuum approximation of the IBM in terms of the dynamics of spatial moments

is a useful way to study how short-range interactions and spatial structure can influence

population dynamics [41,42]. Law et al. developed a spatial moment model, called the spatial

logistic model, that quantifies the impact of spatial structure on classical logistic growth

dynamics [29]. This work shows that spatial structure has a strong impact on the carrying

capacity density. More recently, the spatial logistic model has been extended to consider

other relevant mechanisms including interspecies and intraspecies interactions, neighbour-

dependent motility bias, predator-prey dynamics and chase-escape interactions [43–46].

In this work, we present an IBM and a novel spatial moment dynamics approximation

that incorporates a strong Allee effect. This model is a generalisation of the spatial logis-

tic model [29]. Localised density-dependent interactions, such as short-range competition,

short-range cooperation and short-range offspring dispersal are incorporated. In the limit of

large scale interactions where the mean-field approximation is valid, both the IBM and the

spatial moment model are consistent with the classical mean-field Allee growth model. In

contrast, when spatial structure is present, we find that the Allee threshold density can be

very sensitive to the spatial structure. For example, under a combination of short-range com-

petition and short-range dispersal, all initial densities lead to population extinction, whereas

the classical mean-field model predicts that the population will survive. In contrast, the new

spatial moment approximation gives an accurate prediction of the long-time outcome even
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when strong spatial structure is present.

In this work we broadly consider two different types of results. In the first set we focus on

population-level outcomes with regard to whether a population eventually becomes extinct

or whether it survives. We study these problems using a classical mean-field model, a new

spatial moment dynamics model as well as using repeated, identically-prepared stochastic

simulations. For these results we are very careful to select initial conditions in the IBM

simulations so that the vast majority of the repeated simulations lead to the same long-time

outcome. For example, we consider parameter choices and initial conditions where more

than ¿99% of identically-prepared IBM simulations all lead to either long-term extinction

or long-term survival. The extremely small proportion of outliers are then excluded from

the calculation of ensemble data. In the second set of results we focus on repeated IBM

simulations in situations where stochastic effects can lead to either long-term survival or

long-term extinction. We characterise this transition in terms of a survival probability, and

we note that neither the classical mean-field or the new spatial moment dynamics model can

make such predictions because they describe population-level outcomes only.

2 Individual-based model

The IBM describes the dynamics of N(t) individuals, initially distributed randomly on a

continuous two-dimensional domain of size L × L. The location of the nth individual is

xn ∈ R2, and periodic boundary conditions are imposed. Individuals undergo birth, death

and movement events, with event rates influenced by interactions between individuals. The

IBM is developed for a spatially homogeneous, translationally-invariant environment, where

the probability of finding an individual in a small region, averaged over multiple realisations

of the IBM, is independent of the location of that region [43,46]. Hence the model is relevant

to populations that do not involve macroscopic gradients in the density of individuals [47].

Competition between individuals influences the death rate, modelling increased mortality

as a result of competition for limited resources. We use an interaction kernel, ωc(|ξ|), to

describe the competition a particular reference individual experiences from another individual

at a displacement, ξ. We specify the competition kernel to be a function of separation

distance, |ξ|,

ωc(|ξ|) = γc exp

(
−|ξ|

2

2σ2c

)
, (2.1)

where γc > 0 and σc > 0 are the competition strength and range, respectively. Specifying

the competition kernel to be Gaussian means that the impact of competition is a decreasing

function of separation distance, |ξ|. We define a random variable, Xn, that measures the

neighbourhood density of the nth individual weighted over by the competition kernel as,

Xn =

N(t)∑
k=1
k 6=n

ωc (|xk − xn|) . (2.2)
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We consider the death rate of the nth individual to be some function of Xn,

Dn = F (Xn). (2.3)

For a specific choice of F (Xn), the key factors controlling how competition influences

the death rate are σc and γc. Figure 1 illustrates two scenarios for the simplest choice of

F (Xn) = Xn. The arrangement of agents in Figure 1(a) and (c) are identical but we consider

a long-range competition kernel (large σc) in Figure 1(a)-(b) and a short-range competition

kernel (small σc) in Figure 1(c)-(d). Level curves of Dn are superimposed in Figure 1(a) and

(c) and we see that the differences in the length-scale of interaction leads to very different

local death rates. For example, when competition is long-range in Figure 1(a)-(b) the death

rate for the relatively isolated green agent is Dn = 0.275 whereas when the competition is

short-range in Figure 1(c)-(d) the death rate of the same agent is very different, Dn = 0. A

similar set of results with a different choice of F (Xn) in Appendix A shows similar results.
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Figure 1: Visualising long- and short-range competition interactions. a, c locations of indi-
viduals (dots) superimposed with level curves of Dn for long- and short-range competition,
respectively. b, d shows the long- (σc = 4.0) and short-range (σc = 0.5) competition kernels.
Here, F (Xn) = Xn and γc = 0.1.

We also consider a cooperative interaction between individuals that enhances the pro-

liferation rate of individuals [19]. This is a model for sexual reproduction or some other

mutualistic interaction in which reproductive fitness increases in the presence of near neigh-
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bours. Similar to the competition kernel, we define a cooperation kernel,

ωp(|ξ|) = γp exp

(
−|ξ|

2

2σ2p

)
, (2.4)

to account for the contribution of a neighbour at a displacement ξ to the reference indi-

vidual’s proliferation rate. Here, γp > 0 and σp > 0 represent the strength and range of

the interaction, respectively. As with competition, we define a random variable, Yn, that

measures the neighbourhood density weighted by the cooperation kernel,

Yn =

N(t)∑
k=1
k 6=n

ωp (|xk − xn|) . (2.5)

The proliferation rate of the nth individual is taken to be some function of Yn,

Pn = G(Yn). (2.6)

When an individual undergoes proliferation, a daughter agent is placed at a displacement

sampled from a dispersal kernel, µp(ξ) that we choose to be a bivariate normal with mean

zero and standard deviation σd.

For simplicity, we assume the movement rate is density-independent with a constant rate,

m. An individual undergoing a motility event traverses a displacement, (|ξ| cos(θ), |ξ| sin(θ))

sampled from a movement kernel, µm(ξ) . The direction of movement, θ ∈ [0, 2π] is uniformly

distributed. The distance moved, |ξ|, is sampled from a relatively narrow, truncated Gaussian

distribution with mean, µs, and standard deviation, σs, where σs < µs/4. To ensure |ξ| is

positive, the Gaussian is truncated so that µs − 4σs < |ξ| < µs + 4σs.

This IBM is an extension of the spatial stochastic logistic model [29], often simply called

the spatial logistic model, which focuses on understanding the impact of short-range inter-

actions and spatial structure on the classical logistic growth model [1]. In the spatial logistic

model, the death rate is taken to be the sum of the competition from the neighbours and the

proliferation rate is constant, so there is no cooperation. Furthermore, the spatial logistic

growth model does not involve any agent motility. We recover the spatial logistic model as

a particular case of our model when we set F (Xn) = Xn, G(Yn) = p and m = 0. In Figure

2(a)-(c), we summarise the dynamics of the spatial logistic model when the interactions are

long-range and the mean-field approximation is valid. Under these conditions the death rate

is a linearly increasing function of density and the proliferation rate is constant, as shown in

Figure 2(a). This choice leads to an unstable steady state Z
(1)
1 = 0 and a stable steady-state

Z
(2)
1 > 0 as shown in Figure 2(b). Hence the mean-field implies that all initial population

densities will eventually tend to Z
(2)
1 as t→∞, as in Figure 2(c).

Our generalised IBM framework accommodates various non-linear functional forms for

Dn and Pn. In Figure 2(d) we choose Dn to be a concave up quadratic function and Pn to

be linearly increasing function of density. This leads to three equilibrium densities: Z
(1)
1 ,

Z
(2)
1 , and Z

(3)
1 , as in Figure 2(e). Here, Z

(1)
1 and Z

(3)
1 are stable equilibria, and Z

(2)
1 is an
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unstable equilibrium. The population dynamics here with the long-range interactions where

the mean-field approximation is valid is shown in Figure 2(f). Here we see that populations

with an initial density less than the Allee threshold, Z
(2)
1 , eventually go extinct. In contrast,

any initial density greater than the Allee threshold, Z
(2)
1 , eventually tends to Z

(3)
1 . This is

the simplest mean-field model of an Allee effect in which the net population growth rate is

a cubic function of population density [3].
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Figure 2: Comparison of the spatial logistic and Allee effect models under mean-field condi-
tions. a, d proliferation (red) and death rates (blue) as functions of density. b, e density
growth rate as a function of density. Equilibria highlighted with cyan dots. c, f dynamics
for both models with the cyan lines indicating the equilibrium densities.

We simulate the IBM using the Gillespie algorithm [48] that is described in Section 2

of the Supplementary Material. The population dynamics arising from the IBM is analysed

by considering the average density of individuals, Z1(t) = N(t)/L2. Information about the

spatial configuration of the population can be studied in terms of the average density of

pairs of individuals expressed as a pair correlation function, C(|ξ|, t) [31, 35, 49, 50]. The

pair-correlation function denotes the average density of pairs of individuals with separation

distance |ξ|, at a time, t, normalised by the density of pairs in a population with the complete

absence of spatial structure. Therefore, for a population without any spatial structure,

C(|ξ|, t) = 1. When C(|ξ|, t) < 1, there are fewer pairs of individuals with a separation

distance, |ξ|, than in a population without any spatial structure. We refer to this spatial

configuration as being segregated. When C(|ξ|, t) > 1, we have more pairs of individuals with

a separation distance, |ξ|, than we would have in a population without any spatial structure

and this spatial configuration is referred to as being clustered.

3 Spatial moment dynamics

In this section, we construct a continuum approximation of the IBM in terms of the dynamics

of spatial moments. The first spatial moment, Z1(t), for a point process of the kind considered
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in the IBM is defined as the average density of individuals [29, 43]. The second spatial

moment, Z2(ξ, t), is the average density of pairs of individuals separated by a displacement

of ξ. The third spatial moment, Z3(ξ, ξ
′, t), is the average density of a triplet of individuals

separated by displacements ξ and ξ′, respectively. A formal definition of spatial moments is

provided in Appendix C. It is possible to define higher-order moments similarly, but for the

present study, we restrict our attention to the first three spatial moments [43,51].

To derive dynamical equations for the evolution of the spatial moments, we need to find

expressions for the continuum analogue of the discrete event rates given in Equation (2.3)

and Equation (2.6). This can be achieved by finding the expected death and proliferation

rates, E[Dn] = E [F (Xn)] and E[Pn] = E [G(Yn)], respectively. To calculate these expected

rates expand F (Xn) and G(Yn) in a Taylor series about X = E[Xn] and Y = E[Yn]. For the

death rate we have

E [F (Xn)] = E
[
F (X) + F ′(X)

(
Xn −X

)
+
F ′′(X)

2!

(
Xn −X

)2
+
F ′′′(X)

3!

(
Xn −X

)3
+ . . .

]
,

= F (E[Xn]) +
F ′′(X)

2!
Var[Xn] +

F ′′′(X)

3!
E
[(
Xn −X

)3]
+ . . . . (3.1)

While our IBM can incorporate any choice of F (Xn), the higher-order terms in the truncated

Taylor series in Equation (3.1) are, in general, non-zero. The most straightforward choice of

F (Xn) to generate the Allee effect is a quadratic, and this choice has the additional benefit

that third and higher derivatives vanish, so we have

E [F (Xn)] = F (E[Xn]) +
F ′′(X)

2!
Var[Xn]. (3.2)

The computation of expected death rates reduces to calculating E[Xn] and Var[Xn], and

substituting these into Equation (3.2). If we suppose the L × L domain is divided into

M = L2/δA subregions, each of area δA, where these subregions are sufficiently small such

that each subregion contains at most one individual, we have

E[Xn] = E

[
M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

]
, (3.3)

where, IδA(xk − xn) = 1, if an individual is present in a region of area δA at a displacement

xk − xn, and IδA(xk − xn) = 0, otherwise. Using the property of the indicator function that

E [IδA(xk − xn)] = P [IδA(xk − xn) = 1] [52], we have,

E[Xn] =
M∑
k=1

ωc(|xk − xn|)P [IδA(xk − xn) = 1] . (3.4)

In the continuum limit, the right-hand side of Equation (3.4) is equivalent to multiplying the

conditional probability of having an individual in a small window of size δA at a displacement

ξ from the reference individual, with the corresponding interaction kernel and integrating

over all possible displacements as δA→ 0 [43]. The conditional probability for the presence
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of a neighbour individual is Z2(ξ, t) δA/Z1(t). A derivation of the conditional probability is

provided in Appendix D. Hence we have,

E[Xn] =

∫
ωc(|ξ|)

Z2(ξ, t)

Z1(t)
dξ. (3.5)

Note that the previous spatial moment models, including the spatial logistic model,

assume that F (Xn) is a linear function [29,30,40,43]. In that case, the death rate in Equation

(3.2) depends only on E[Xn]. But in the more general case where F (Xn) is nonlinear, such

as an Allee effect, we also require information about the variance. Therefore we compute

Var[Xn] in a similar fashion,

Var [Xn] = Var

[
M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

]
,

=
M∑
k=1

ω2
c (|xk − xn|) Var

[
IδA(xk − xn)

]
+

M∑
i=1,j=1
i6=j

ωc(|xi − xn|)ωc(|xj − xn|) Cov [IδA(xi − xn), IδA(xj − xn)] .

(3.6)

Following a similar procedure used in the computation of continuum analogue of E[Xn] in

Equation (3.5), we derive the expression for Var[Xn] as,

Var [Xn] =

∫
ω2
c (|ξ|)

(
Z2(ξ, t)

Z1(t)

)
dξ

+

∫∫
ωc(|ξ′|)ωc(|ξ′′|)

(
Z3(ξ

′, ξ′′, t)

Z1(t)
− Z2(ξ

′, t)Z2(ξ
′′, t)

Z2
1 (t)

)
dξ′dξ′′.

(3.7)

For brevity, we omit the intermediate steps involved in the derivation of Var[Xn] here. These

details are provided in Appendix E.

To make our spatial moment dynamics framework as general as possible, until this point

we have made no assumptions about the choice of F (Xn) and G(Xn). From this point

onwards we consider specific forms: F (Xn) = d + X2
n and G(Yn) = p + Yn. We make these

choices because they are the simplest scenario that result in a strong Allee effect. To proceed,

we compute the expected death rate of an individual, D1(t), by substituting the expressions

for E[Xn] and Var[Xn] in Equation (3.2) to give,

D1(t) = d+

(∫
ωc(|ξ|)

Z2(ξ, t)

Z1(t)
dξ

)2

+

∫
ω2
c (|ξ|)

Z2(ξ, t)

Z1(t)
dξ

+

∫∫
ωc(|ξ|)ωc(|ξ′|)

(
Z3(ξ, ξ

′, t)

Z1(t)
− Z2(ξ, t)Z2(ξ

′, t)

Z2
1 (t)

)
dξ dξ′.

(3.8)

Similarly the expected proliferation rate for an individual is,

P1(t) = p+

∫
ωp(|ξ|)

Z2(ξ, t)

Z1(t)
dξ. (3.9)
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The dynamics of the first moment depend solely on the balance between proliferation and

death. The movement of individuals does not result in a change in the population size.

Hence the time evolution of the first spatial moment is given by,

d

dt
Z1(t) = P1(t)Z1(t)︸ ︷︷ ︸

Increase in density due to proliferation

−
Decrease in density due to death︷ ︸︸ ︷

D1(t)Z1(t). (3.10)

Note that the dynamics of the first moment depends on the second and third moments

through Equations (3.8)-(3.9), and to solve the dynamics of the first moment, we need to

specify the values of these higher-order moments.

Now we derive the dynamical equation for the density of pairs of individuals. For the

derivation, we need to calculate the event rates of individuals while they are in a pair with

another individual at a displacement, ξ. The conditional probability of finding an individual

at displacement ξ′, given that a pair of individuals exist with separation displacement ξ is

Z3(ξ, ξ
′, t) δA/Z2(ξ, t). The derivation of the expression for the conditional probability is

given in Section 4 of the Supplementary Material. Using this expression for the conditional

probability, and following the same procedures used to arrive at Equation (3.5) and Equation

(3.7), we compute E[Xn] and Var[Xn] for an individual that forms a pair with another

individual at a displacement ξ. Hence, the expected death rate of an individual, conditional

on the presence of a neighbour at a displacement ξ, is given by,

D2(ξ, t) = d+

(∫
ωc(|ξ′|)

Z3(ξ, ξ
′, t)

Z2(ξ, t)
dξ′ + ωc(|ξ|)

)2

+

∫
ω2
c (|ξ′|)

Z3(ξ, ξ
′, t)

Z2(ξ, t)
dξ′. (3.11)

Note that the subscript in D2(ξ, t) indicates the fact that we are computing the expected

rate for an individual that forms a pair with another individual at displacement ξ. The

additional factor of ωc(|ξ|) in the second term of Equation (3.11) accounts for the direct

influence of the individual at displacement ξ. Similarly, the expected proliferation rate of an

individual, conditional on the presence of a neighbour at a displacement ξ is,

P2(ξ, t) = p+

∫
ωp(|ξ′|)

Z3(ξ, ξ
′, t)

Z2(ξ, t)
dξ′ + ωp(|ξ|). (3.12)

The time evolution of Z2(ξ, t) depends on the creation of new pairs and the loss of existing

pairs. The schematic in Figure 3 illustrates possible ways in which movement, proliferation

or death event leads to the creation or destruction of pairs of individuals separated by a

displacement of ξ. Figure 3(a) represents a pair of individuals at a separation displacement

of ξ. A movement of either individual destroys this pair, as does the death of either individ-

ual. Figure 3(b)-(c) demonstrates two different ways to generate a new pair separated by a

displacement ξ. When an individual among the pair separated by a displacement ξ′ + ξ in

Figure 3(b) moves or places a daughter agent a displacement ξ, a new pair is formed at a

displacement ξ. In this case, the movement and proliferation occurs with rates µm(ξ′)m and

µp(ξ
′)P2(ξ

′+ξ, t), respectively. Another possibility for the creation of a pair with separation
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displacement ξ is when a single individual, as shown in Figure 3(c), places a daughter agent

over a displacement -ξ. The rate for this event is µp(−ξ)P1(t). The dynamics of the second

moment is obtained by combining these possibilities as,

∂

∂t
Z2(ξ, t) = −2D2(ξ, t)Z2(ξ, t)︸ ︷︷ ︸

Loss of pairs at displacement ξ due to the death of either individual

(3.13)

−2mZ2(ξ, t)︸ ︷︷ ︸
Loss of pairs at displacement ξ due to the movement of either individual

+2

∫
µp(ξ

′)P2(ξ + ξ′, t)Z2(ξ + ξ′, t) dξ′︸ ︷︷ ︸
Formation of pairs at displacement ξ due to the proliferation of individuals that form a pair at displacement ξ+ξ′

+2m

∫
µm(ξ′)Z2(ξ + ξ′, t) dξ′︸ ︷︷ ︸

Formation of pairs at displacement ξ due to the movement of individuals that form a pair at displacement ξ+ξ′

+2µp(−ξ)P1(t)Z1(t).︸ ︷︷ ︸
Formation of pairs at displacement ξ due to the placement of a daughter individual at a displacement -ξ′

(a) (b) (c)

+ ‘
‘

-

Figure 3: Possible events leading to a change in pair density. Red dots represent existing
individuals and black open circles indicate potential locations of an individual after a move-
ment or proliferation event. a A pair separated by a displacement ξ. Movement or death of
either individual destroys the pair. b A pair separated by a displacement ξ + ξ′. A move-
ment or placement of a daughter over a displacement of ξ′ creates a new pair separated by
displacement ξ. c A single individual where the placement of a daughter at displacement
−ξ creates a new pair with a displacement ξ.

Since the event rates in Equations (3.11)-(3.12) depend on the third-order moment,

Z3(ξ, ξ
′, t), we need some expression for the third moment to solve the system, and we

anticipate that the dynamics of the third moment will depend upon higher moments. To

deal with this hierarchy of equations we use the Power-2 asymmetric moment closure ap-

proximation [29,30]

Z3(ξ, ξ
′, t) =

4Z2(ξ, t)Z2(ξ
′, t) + Z2(ξ, t)Z2(ξ

′ − ξ, t)− Z2(ξ
′, t)Z2(ξ

′ − ξ, t)− Z4
1 (t)

5Z1(t)
,

(3.14)

to approximately close the system in terms of the first and second moments only. Other

closure approximations, such as the power-1 closure, the symmetric power-2 closure and the
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Kirkwood superposition approximation [29, 53], are possible, and we compare the accuracy

of these four different closure approximations in Appendix F. Details about the numerical

methods involved in solving the dynamical equation for the second moment, Equation (3.13)

is provided in Appendix G and MATLAB code to implement the algorithm is available on

Github.

4 Mean-field dynamics

Under the classical mean-field approximation, interactions between individuals occur in pro-

portion to the average density, and there is no spatial structure. These conditions correspond

to having long-range interactions between individuals. Comparing the solutions of the classi-

cal mean-field model, IBM simulations and the solution of the new spatial moment dynamics

model will provide insight into how spatial structure influences the population dynamics.

In terms of spatial moments, the mean-field implies that we have Z2(ξ, t) = Z2
1 (t) [30,31],

which means that the expected death rate from Equation (3.8) simplifies to,

D1(t) =d+ Z2
1 (t)

(∫
ωc(|ξ|) dξ

)2

+ Z1(t)

∫
ω2
c (|ξ|) dξ. (4.1)

Similarly, the expected proliferation rate in Equation (3.9) simplifies to

P1(t) =p+ Z1(t)

∫
ωp(|ξ|) dξ. (4.2)

Since the interaction kernels have the property that

∫
ωc(|ξ|) dξ = 2πγcσ

2
c and

∫
ω2
c (|ξ|) dξ = πγ2cσ

2
c ,

we substitute the mean-field death and proliferation rates in Equations (4.1)-(4.2) into Equa-

tion (3.10) to give

d

dt
Z1(t) = (p− d)Z1(t) +

(
2πγp σ

2
p − πγ2cσ2c

)
Z2
1 (t)− 4π2γ2c σ

4
c Z

3
1 (t), (4.3)

which leads to three equilibrium densities:

Z
(1)
1 = 0,

Z
(2)
1 =

2γpσ
2
p − γ2cσ2c

8πγ2cσ
4
c

−

√(
2γpσ2p − γ2cσ2c

)2
+ 16γ2cσ

4
c (p− d)

8πγ2cσ
4
c

,

Z
(3)
1 =

2γpσ
2
p − γ2cσ2c

8πγ2cσ
4
c

+

√(
2γpσ2p − γ2cσ2c

)2
+ 16γ2cσ

4
c (p− d)

8πγ2cσ
4
c

,

(4.4)

where Z
(3)
1 > Z

(2)
1 > Z

(1)
1 for the parameters we consider in this study. In this classical

mean-field context, Z
(2)
1 is the Allee threshold and Z

(3)
1 is the carrying capacity density. The

equilibrium densities and dynamics associated with Equation (4.3) are depicted in Figure

2(e)-(f).
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5 Results and Discussion

We now present IBM simulation results together with numerical solutions of both the spa-

tial moment and the mean-field models to explore the influence of spatial structure on the

population dynamics. In each case that we consider (Figures 4–7) we plot the time evolution

of the average density of individuals from repeated, identically-prepared IBM simulations.

Information about the spatial structure of the population is given in terms of the pair cor-

relation function computed at the end of the simulation. Since the IBM is stochastic, there

is a non-zero probability that any individual simulation will lead to extinction, regardless of

whether the average outcome is that the population would survive. In the first set of results

we present we take care to choose parameters and initial conditions such that at least 99%

of the 1000 identically prepared simulations leads to the same long-term population-level

outcome (i.e. extinction or survival) and any outliers, if present, are excluded from the cal-

culation of ensemble averages. For each parameter combination, we consider three different

initial conditions: (i) Z
(1)
1 < Z1(0) < Z

(2)
1 ; (ii) Z

(2)
1 < Z1(0) < Z

(3)
1 ; and (iii) Z1(0) > Z

(3)
1 .

In the IBM simulations we control the initial density by choosing a different value of N(0).

As a starting point we consider a simple case with relatively weak long-range interactions

so that the mean-field approximation is valid in Figure 4. Choosing long-range dispersion and

competition kernels ensures that there is minimal correlation between the locations of agents

in the simulations. As expected, results with Z
(1)
1 < Z1(0) < Z

(2)
1 lead to extinction, and

results with Z
(2)
1 < Z1(0) < Z

(3)
1 and Z1(0) > Z

(3)
1 leads to the population eventually settling

to the carrying capacity density by t = 30. The comparison of the averaged IBM results,

the mean-field and spatial moment models in 4(g)-(i) shows that all three approaches are

consistent and the eventual long-time population contains no spatial structure since the pair

correlation function is unity in Figure 4(k)-(l). Note that we do not show the pair correlation

function in Figure 4(j) since, in this case, the long-time result is that the population goes

extinct.

Having verified that both the IBM and spatial moment dynamics model replicate solutions

of the mean-field model for relatively weak long-range interaction and dispersal kernels, we

now focus on short-range interactions that can lead to spatial structure.
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Figure 4: Long-range interactions and dispersal kernels (σc = σp = σd = 4.0) with weak
interaction strengths (γc = 0.009 and γp = 0.009) lead to mean-field conditions. a-c initial
locations of individuals (dots) for three different initial population sizes, N(0) = 80, 240
and 400, respectively. d-f location of individuals at t = 30. g-i density of individuals as
a function of time. Black solid lines correspond to averaged results from 1000 identically-
prepared IBM realisations, red dashed lines correspond to the solutions of the spatial moment
dynamics model and green solid lines are the solution of the mean-field model. The cyan lines
show the equilibrium densities. j-l pair-correlation function, C(|ξ|, 30). Parameter values
are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.
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5.1 Short-range competition reduces the Allee threshold

Results in Figure 5 are presented in the same format as in Figure 4 except that we consider

short-range competition by setting σc = 0.5 without changing the cooperation or dispersal

kernels.
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Figure 5: Short-range competition (σc = 0.5 and γc = 0.448) reduces the Allee threshold.
a-c initial locations of individuals (red) for three different population sizes, N(0) = 80, 160
and 240, respectively. d-f location of individuals at t = 30. g-i density of individuals as a
function of time. Black solid lines correspond to the averaged results from 1000 identically-
prepared IBM realisations, red dashed lines correspond to the solutions of the spatial moment
dynamics model and green solid lines are the solution of the mean-field model. The cyan lines
show the equilibrium densities. j-l pair-correlation function, C(|ξ|, 30). Parameter values
are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.
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Figure 5(a)-(c) shows the initial randomly-placed populations, N(0) = 80, 160 and 240,

respectively. Results in the left-most column with Z1(0) = 80/400 < Z
(2)
1 leads to extinction.

Results in the central column with Z1(0) = 160/400 < Z
(2)
1 are very interesting because the

initial density is below the classical mean-field Allee threshold and so standard models would

predict extinction, yet we see that the population grows to reach a positive carrying capacity

density. This difference is caused by the spatial structure, which we can see in Figure

5(k) is segregated at short distances. When competition is short range and the population

is segregated, individuals in the IBM experience less competition that would be expected

in a population without spatial structure under mean-field conditions. This decrease in

competition means that the population increases despite the initial density being less than

the mean-field Allee threshold.

Results in the right-most column in Figure 5 show that when the initial density is above

the mean-field Allee threshold, Z1(0) > Z
(2)
1 , we see that the population increases to reach

the same carrying capacity density is in Figure 5(h). Here we find that the carrying capacity

density reached by the IBM is much higher than the mean-field carrying capacity density.

This means that the classical mean-field model under-predicts the long-time density. In

contrast, the spatial moment dynamics model leads to an accurate prediction of the aver-

aged density from the IBM. This result, that the spatial structure can impact the carrying

capacity density is consistent with previous observations for the spatial logistic model [29],

but our observation that spatial structure changes the Allee threshold has not been reported

previously.

5.2 Short-range competition and dispersal encourage population extinc-

tion

Results in Figure 6 consider both short-range competition and short-range dispersal by set-

ting σc = σd = 0.5. The format of the results in Figure 6 is the same as in Figures 4-5. An

additional set of results in Appendix H present some cases where we consider just short-range

dispersal.

IBM simulations in Figure 6 show that short-range dispersal and competition leads to

clustering and extinction. When the dispersal is short-range, daughter individuals are placed

in close proximity to the parent individual, which leads to the formation of clusters. Short-

range competition means that the competition within those clusters is strong, and signif-

icantly increases the local death rate of individuals. In the classical mean-field model we

expect extinction to occur only when Z1(0) < Z
(2)
1 but our IBM results show that the pop-

ulation goes extinct when we set Z1(0) > Z
(2)
1 in Figure 6(h), and even more surprisingly

we see that the IBM simulations lead to extinction even when Z1(0) > Z
(3)
1 in Figure 6(i).

This means that the spatial structure in this case leads the population to extinction. While

the mean-field model completely fails to predict the observed extinction in the IBM, we find

that the spatial moment model accurately reproduces the population dynamics of the IBM.
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Figure 6: Short-range competition and short-range dispersal drive the population to extinc-
tion. In this case we consider short-range competition and dispersal (σc = σd = 0.5) with
γc = 0.488. a-c initial locations of individuals (red) for three different population sizes,
N(0) = 80, 240 and 400, respectively. d-f location of individuals at t = 30. g-i density of in-
dividuals as a function of time. Black solid lines correspond to the averaged results from 1000
identically-prepared IBM realisations, red dashed lines correspond to the solutions of spatial
moment dynamics model and green solid lines are the solution of the mean-field model. The
cyan lines show the equilibrium densities. j-l pair-correlation function, C(|ξ|, 30). Parameter
values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.26.173153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173153


5.3 Short-range cooperation and intermediate-range dispersal promotes

population growth

We now consider a further case where IBM simulations are qualitatively different from

the classical mean-field model. Results in Figure 7 correspond to short-range cooperation

(σp = 0.5) and intermediate-range dispersal (σd = 2.0). Some clustering in Figure 7(d)-(f) is

evident, and this clustering is induced by the intermediate-range dispersal and leads to en-

hanced proliferation because of strong short-range cooperation. This case is very interesting

because we observe population growth even when the initial density is below the classical

mean-field Allee threshold in Figure 7(g). For all three choices of initial density in Figure

7, the population survives and eventually reaches a carrying capacity density that is greater

than the carrying capacity density predicted by the classical mean-field model.
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Figure 7: Short-range cooperation and dispersal promotes population growth. In this case we
consider short-range cooperation σp = 0.5 and an intermediate-range dispersal σd = 2.0 with
γp = 0.576. a-c the initial locations of individuals (red dots) for three different population
sizes, N(0) = 105, 240 and 400. d-f show the location of individuals at t = 30. g-i show
the density of individuals as a function of time. Black solid lines correspond to the averaged
results from 1000 realisations of the IBM, red dashed lines correspond to the solutions of
spatial moment dynamics and green solid lines correspond to the solution of the mean-field
model. The cyan lines show the critical densities. j-l show the C(|ξ|, t) computed at t = 30
as a function of separation distance. Parameter values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4
and σs = 0.1.

5.4 Survival probability

We conclude our results by using the IBM to estimate the survival probability, P(survival),

as a function of initial density in Figure 8. To calculate P(survival), we perform a large
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number of identically-prepared realisations over a sufficiently long period of time, t = 100.

From these simulations we record the fraction of realisations in which the population does

not become extinct in this time interval. Results in Figure 8(a) show P(survival) for a

population with short-range competition. The mean-field Allee threshold for this choice of

parameters is Z
(2)
1 = 0.43. In contrast, we find that a certain proportion of populations

with Z1(0) < Z
(2)
1 can survive. This difference between the classical mean-field result is due

to the presence of spatial structure, and for this choice of parameters we have a segregated

population, as illustrated in Figure 5. Another factor that influences the survival probability

is the stochastic nature of the IBM. Even in the absence of spatial structure, the stochasticity

can lead to a continuous transition of P(survival) from 0 to 1 in the IBM, but possibly quite

narrow and centred around the mean-field model Allee threshold. The spatial structure can

shift the transition left or right (depending on whether it makes survival more or less likely)

and potentially broaden the transition curve. Results in Figure 8(b) show P(survival) for a

population with short-range cooperation and intermediate-range dispersal where the classical

mean-field Allee threshold is Z
(2)
1 = 0.3. Again we see that populations with an initial density

below the Allee threshold can survive. This difference between the classical mean-field result

is due to the presence of spatial structure, which in this case leads to clustering, as shown

in Figure 7, and the stochasticity of the IBM.
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Figure 8: Survival probability as a function of Z1(0) for: a short-range competition (σc = 0.5,
γc = 0.488), and b short-range cooperation and intermediate-range dispersal (σp = 0.5, σd =
2.0, γp = 0.576). Cyan lines show the classical mean-field Allee threshold and black dots
show P(survival) estimated from 100 identically-prepared IBM realisations. Other parameter
values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.

6 Conclusion and Outlook

In this study we consider an IBM of population dynamics that incorporates short-range

interactions and spatial structure. The model construction allows us to incorporate a strong

Allee effect, and in particular to explore the impact of spatial structure on the Allee threshold.

Classical mathematical models of population dynamics that incorporate an Allee effect are
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based on making a mean-field approximation. This approximation implies that individuals

interact in proportion to their average density and leads to the neglect of spatial structure,

such as clustering and segregation.

We explore how short-range competition, short-range cooperation and short-range dis-

persal leads to spatial structure in a dynamic population and we focus on examining how

this spatial structure influences the Allee threshold density. Overall, we find that the Allee

threshold can be very sensitive to the presence of spatial structure to the point that classi-

cal mean-field predictions are invalid. For example, when we consider short-range dispersal

and short-range competition we find that the population becomes extinct, despite the fact

that the classical mean-field model predicts that the population will always survive when

Z1(0) > Z
(2)
1 . While our IBM results disagree with the classical mean-field prediction when

the spatial structure is present, we also derive and solve a novel spatial moment dynamics

model that is able to accurately capture how the Allee threshold depends upon spatial struc-

ture and we find that the spatial moment model reliably predicts population dynamics when

spatial structure is present. Our results on the estimation of P(survival) show that a certain

proportion of populations seemed to have non-zero survival probability despite the fact that

the initial population density is below the Allee threshold due to the presence of spatial

structure. Note that the spatial moment model developed in this study is deterministic and

hence cannot be used to estimate P(survival). Instead, the spatial moment model predicts

a threshold initial density above which the population survives. Overall our results show

that the spatial moment model predicts this threshold more accurately than the mean-field

model.

There are many potential avenues to extend the features in this study. For example,

in this work we make the simplest possible assumption that agent movement is random

and density-independent. This feature could be refined. For example, if the model was

applied to study a population of biological cells, it might be more appropriate to consider

a density-dependent movement rate and some directional bias where individuals are either

attracted to or repelled from other agents in their neighbourhood [54, 55]. In this study, we

restrict our exploration to a simple population where all individuals are of the same type.

Another interesting extension of the model would be to consider a multi-species where the

total population consists of individuals from various distinct species [14, 56]. We leave both

these extensions for future consideration.

Data Accessibility

Codes used for the simulation of the individual based model and numerical evaluation of

spatial moment dynamics equation are available on Github.
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Appendices

A Comparison of long-range and short-range competition

Here we present a second set of results comparing the impact of short-range and long-range

competition on the death rate, Dn, analogous to the results in Figure 1. These additional re-

sults, in Figure 9, are generated with precisely the same parameters and spatial arrangement

of individuals as those in Figure 1, with the exception that here we consider a quadratic

functional form for the death rate (F (Xn) = X2
n). Comparing the results in Figure 1 with

the additional results in Figure 9 indicates that the choice of F (Xn) = X2
n, reduces the death

rates of individuals.

Similar to the results in Figure 1, the long-range competition leads to Dn being influenced

by neighbours that are further apart, as shown in Figure 9(a)-(b). But the difference here

is that overall we see a decrease in the death rate. For example, even though the death rate

of the relatively isolated individual shown with the green dot is non-zero due to the long-

range competition, the value of Dn = 0.076 here is lower than Dn = 0.275 computed using

F (Xn) = Xn in Figure 1. Under short-range competition, as shown in Figure 9(c)-(d), only

the contribution from immediate neighbours is significant. As a result, the isolated individual

(green dot), does not experience competition from its neighbours, leading to Dn = 0.
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Figure 9: Visualisation of the impact of long-range and short-range neighbour-dependent
interactions. Results in a, c show the location of individuals (red dots) superimposed with
the level curves of Dn for long-range and short range-competition, respectively. Results in b,
d show the long-range (σc = 4.0) and short-range (σc = 0.5) competition kernel, respectively,
where these kernels are centred at the origin. For the computation of Dn, we use F (Xn) = X2

n

and γc = 0.1.

B Numerical implementation of the individual-based model

Here we outline the numerical implementation of our individual-based model (IBM) using

the Gillespie algorithm [48]. The codes used for the simulation of the IBM are available

on Github. In each simulation, we initially populate the computational domain, of size

L×L, with N(0) individuals placed at random. We use periodic boundary conditions along

all boundaries. For each potential event, we compute the death and proliferation rates of

individuals using Equation (2.3) and Equation (2.6). The movement of individuals is density

independent, and the constant intrinsic movement rate is m. The sum of event rates of all

individuals is given by,

λ(t) =

N(t)∑
n=1

(Dn + Pn +m) . (B.1)

Each time the IBM is updated, one of the three possible events occurs, and the time interval

between successive events is exponentially distributed with mean 1/λ(t). The probability

for any of the events to occur is proportional to the rate of the corresponding event. For
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a proliferation event, an offspring is placed at a displacement sampled from the dispersal

kernel, µp(ξ), and the population size increases by one. For a death event, the population

size reduces by one. For a movement event, an individual traverses a displacement that is

sampled from the movement displacement kernel, µm(ξ).

We compute the average density of individuals at a particular time by dividing the

population size, N(t), by the area of the computational domain, L2. To compute the pair-

correlation function, C(|ξ|, t), we consider a reference individual located at xn and calculate

all distances |ξ| = |xk − xn|, associated with the other N(t) − 1 individuals [29, 40]. We

repeat this process with each of the remaining individuals until every individual has acted

as the reference individual. The pair-correlation function is calculated by enumerating the

distances which fall into the interval, [|ξ| − δ|ξ|/2, |ξ|+ δ|ξ|/2]. We normalise the bin count

by a factor of 2π|ξ|δ|ξ|N(t)(N(t)− 1)/L2 to ensure that C(|ξ|, t) = 1 in the absence of

spatial structure. The choice of bin width, δ|ξ|, is crucial in computing the pair-correlation

function. When δ|ξ| is very small, we obtain a noise dominated C(|ξ|, t). In contrast, very

large δ|ξ| leads to an overly smooth C(|ξ|, t) that fails to describe the effects of short-range

interactions. In all our simulations, we use an intermediate value of δ|ξ| = 0.2 which helps

us to avoid the two extremities.

C Definition of spatial moments

Here, we provide a more formal mathematical definition for the spatial moments [24,30,43].

Let us suppose DδA(x) ⊂ R2 is a disc of area δA centred at position x ∈ R2 and the

number of individuals in the region DδA(x), at a time t, is denoted by the random variable

N(DδA(x), t). The first spatial moment, Z1(t), can be computed by dividing the population

size of individuals by the area of the domain. Hence we have,

Z1(t) = lim
δA→0

1

δA
E
[
N
(
DδA(x), t

)]
. (C.1)

The second spatial moment, Z2(ξ, t), is the average density of pairs of individuals separated

by a displacement ξ at time t. For a pair of individuals separated by a displacement ξ, we

have,

Z2(ξ, t) = lim
δA→0

1

δA2E
[
N (DδA(x), t)N (DδA(x + ξ), t)−N (DδA(x) ∩DδA(x + ξ), t)

]
.

(C.2)

The second term in the expectation in Equation (C.2) is necessary to avoid counting self-pairs.

For non-overlapping regions DδA(x) and DδA(x + ξ), this term becomes zero as δA → 0.
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The third spatial moment is the density of triplets of individuals, and is similarly defined as,

Z3(ξ, ξ
′, t) = lim

δA→0

1

δA3E
[
N(DδA(x), t)N(DδA(x + ξ), t)N(DδA(x + ξ′), t)

−N(DδA(x) ∩DδA(x + ξ), t)N(DδA(x + ξ′), t)

−N(DδA(x) ∩DδA(x + ξ′), t)N(DδA(x + ξ), t) (C.3)

−N(DδA(x + ξ) ∩DδA(x + ξ′), t)N(DδA(x), t)

+ 2N(DδA(x) ∩DδA(x + ξ′) ∩DδA(x + ξ), t)
]
.

Again, the extra terms in Equation (C.3) are needed to avoid counting non-distinct triplets.

D Conditional probabilities for the presence of individuals

In this section we derive expressions for the probabilities of finding individuals at specific

displacements conditional on the presence of other individuals. In the limit, δA → 0, the

probability of having one individual in the region DδA(x) is given by,

P
[
N
(
DδA(x), t

)
= 1
]

= E
[
N
(
DδA(x), t

)]
. (D.1)

Now, the probability of having two individuals located in non overlapping regions DδA(x)

and DδA(x + ξ), respectively, is given by,

P
[
N
(
DδA(x), t

)
= 1 ∩ N

(
DδA(x+ ξ), t

)
= 1
]

= E
[
N
(
DδA(x), t

)
N
(
DδA(x+ ξ), t

)]
. (D.2)

Similarly, the probability for having three individuals at non overlapping regions DδA(x),

DδA(x + ξ) and DδA(x + ξ′), respectively, is given by,

P
[
N
(
DδA(x), t

)
= 1 ∩ N

(
DδA(x + ξ), t

)
= 1 ∩ N

(
DδA(x + ξ′), t

)
= 1
]

= E
[
N
(
DδA(x), t

)
N
(
DδA(x + ξ), t

)
N
(
DδA(x + ξ′), t

)]
.

(D.3)

To compute the event rates, we need to find the probabilities of individuals being present

at a given displacement, conditional on the presence of other individuals. To compute the

conditional probabilities, we use the property that,

P[A | B] =
P[A ∩B]

P[B]
. (D.4)

The conditional probability of finding an individual at a displacement x + ξ, given that the

reference individual is located at x, is,

P
[
N(DδA(x+ξ), t) = 1 | N(DδA(x), t) = 1

]
=

P
[
N(DδA(x + ξ), t) = 1 ∩N(DδA(x), t) = 1

]
P
[
N(DδA(x), t) = 1

] .

(D.5)
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Using the definitions of probabilities in Equations (D.1)-(D.2) and the definitions of spa-

tial moments in Equations (C.1)-(C.2), we rewrite the the numerator and denominator of

Equation (D.5) as,

P
[
N(DδA(x), t) = 1

]
= Z1(t) δA, (D.6)

P
[
N(DδA(x + ξ), t) = 1 ∩N(DδA(x), t) = 1

]
= Z2(ξ, t) (δA)2. (D.7)

Hence the conditional probability of finding an individual at a displacement x + ξ from a

reference individual at x is given by,

P
[
N(DδA(x + ξ), t) = 1 | N(DδA(x), t) = 1

]
=
Z2(ξ, t) δA

Z1(t)
. (D.8)

Similarly, we compute the conditional probability of finding an individual at a displacement

x + ξ′, given that a pair of individuals where constituent individuals are located at x + ξ

and x, respectively, as

P
[
N(DδA(x + ξ′), t) = 1 | N(DδA(x + ξ), t) = 1 ∩N(DδA(x), t) = 1

]
=

P
[
N(DδA(x + ξ′), t) = 1 ∩N(DδA(x + ξ), t) = 1 ∩N(DδA(x), t) = 1

]
P
[
N(DδA(x + ξ), t) = 1 ∩N(DδA(x), t) = 1

] ,

=
Z3(ξ, ξ

′, t) δA

Z2(ξ, t)
.

(D.9)

E Computation of variance

Here we outline the steps involved in the derivation of expression for variance of the neigh-

bourhood density in Equation (3.7). The fundamental definition of the variance is,

Var [X] =Var

[
M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

]
,

=

M∑
k=1

ω2
c (|xk − xn|) Var

[
IδA(xk − xn)

]
+

M∑
i=1,j=1
i6=j

ωc(|xi − xn|)ωc(|xj − xn|) Cov [IδA(xi − xn), IδA(xj − xn)] .

(E.1)

Now, using the properties of indicator function, E
[
IδA(xk −xn)

]
= P

[
IδA(xk −xn) = 1

]
and

Var
[
IδA(xk−xn)

]
= P

[
IδA(xk−xn) = 1

]
−
(
P
[
IδA(xk−xn) = 1

])2
[52], we rewrite Equation
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(E.1) as,

Var [X] =

M∑
k=1

ω2
c (|xk − xn|)

(
P
[
IδA(xk − xn)

]
− P

[
IδA(xk − xn)

]2)
+

M∑
i=1,j=1
i6=j

ωc(|xi − xn|)ωc(|xj − xn|)× (E.2)

(
P
[
IδA(xi − xn) = 1 ∩ IδA(xj − xn) = 1

]
− P

[
IδA(xi − xn) = 1

]
P
[
IδA(xj − xn) = 1

])
.

Using Equation (D.4), we write,

P
[
IδA(xi − xn) = 1 ∩ IδA(xj − xn) = 1

]
=P
[
IδA(xi − xn) = 1 | IδA(xj − xn) = 1

]
× P

[
IδA(xj − xn) = 1

]
.

(E.3)

These definitions allow us to rewrite Equation (E.2) in terms of continuous variables by

multiplying the corresponding conditional probabilities for the presence of individuals with

the interaction kernels and summing over all possible displacements as,

Var [X] =

∫
ω2
c (|ξ|)

(
Z2(ξ, t)

Z1(t)

)
dξ

+

∫∫
ωc(|ξ′|)ωc(|ξ′′|)

(
Z3(ξ

′, ξ′′, t)

Z1(t)
− Z2(ξ

′, t)Z2(ξ
′′, t)(

Z1(t)
)2

)
dξ′ dξ′′.

(E.4)

F Comparison of moment closure methods

The moment closure methods help to approximate the third-order spatial moments in terms

of the first and second spatial moments. In this section, we compare the performance of

popular moment closure methods. The closure methods considered are the power-1 closure

(P1), the symmetric power-2 closure (P2S), the asymmetric power-2 closure (P2A) and the

Kirkwood superposition approximation (KSA) [29,53].

The power-1 closure (P1) method use an approximation for the third moment, Z3(ξ, ξ
′, t),

given by,

Z3(ξ, ξ
′, t) = Z1(t)Z2(ξ, t) + Z1(t)Z2(ξ

′, t) + Z1(t)Z2(ξ
′ − ξ, t)− 2Z3

1 (t). (F.1)

The symmetric power-2 closure is given by,

Z3(ξ, ξ
′, t) =

Z2(ξ, t)Z2(ξ
′, t) + Z2(ξ, t)Z2(ξ

′ − ξ, t)− Z2(ξ
′, t)Z2(ξ

′ − ξ, t)− Z4
1 (t)

2Z1(t)
. (F.2)

The asymmetric power-2 closure is given by,

Z3(ξ, ξ
′, t) =

4Z2(ξ, t)Z2(ξ
′, t) + Z2(ξ, t)Z2(ξ

′ − ξ, t)− Z2(ξ
′, t)Z2(ξ

′ − ξ, t)− Z4
1 (t)

5Z1(t)
. (F.3)
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The Kirkwood superposition approximation (KSA) is given by,

Z3(ξ, ξ
′, t) =

Z2(ξ, t)Z2(ξ
′, t)Z2(ξ

′ − ξ, t)

Z3
1 (t)

. (F.4)

To compare the accuracy of closure methods, we compute the solutions of the spatial

moment model with each of the four closure methods and compare it with the averaged data

from the IBM simulation. We calculate the density dynamics and pair-correlation function

for a population with initial population size, N(0) = 150, and random initial arrangement

of individuals. The density dynamics computed using all four closure methods, as well

as from the IBM simulations for this population, are shown in Figure 10(a). Our results

indicate that the asymmetric power-2 closure provides the best match with the average

results from the IBM. Similarly, the pair-correlation function computed using the asymmetric

power-2 closure most accurately reproduces C(|ξ|, t) from the IBM, as shown in Figure

10(b). While our results suggest that the asymmetric power-2 closure provides the best

approximation to IBM for the parameters considered, the motive of this study is not to

advocate for one particular closure approximation over others. Instead, we provide a general

moment dynamics model that can be implemented using different closure methods if one

particular closure approximation is preferred over others.
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Figure 10: Comparison of moment closure methods. a shows the density of individuals as
a function of time. b shows the C(|ξ|, t) computed at t = 30 as a function of separation
distance. Parameter values are σc = 0.5, γc = 0.448, σp = σd = 4.0, γp = 0.009, d = 0.4, p =
0.2,m = 0.1, µs = 0.4 and σs = 0.1.

G Numerical methods for solving the moment dynamics equa-

tion

Here we describe the numerical methods used for solving the dynamical equation for the

second spatial moment, Equation (3.13). Temporal derivatives are approximated using an

explicit Euler approximation implemented in MATLAB. The codes used are available on
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Github. The numerical scheme involves spatial discretisation of the displacement, ξ =

(ξx, ξy), over the domain {−ξmax ≤ ξx, ξy ≤ ξmax} using a constant grid spacing of ∆ξ.

We use a sufficiently large ξmax such that Z2(ξ, t) = Z2
1 (t) at the boundary since we antic-

ipate that the usual mean-field condition will hold for sufficiently large displacements. We

approximate the integral terms in Equations (3.11)-(3.13) using the trapezoid rule. The

evaluation of these integral terms require the values of Z2(ξ+ ξ′, t) for all values of ξ and ξ′.

A potential issue here is when both ξ and ξ′, are large, there is a possibility that Z2(ξ+ξ′, t)

lies outside of the computational domain. In such cases, we replace those terms with the

value of Z2(ξ, t) at the boundary, Z2((ξmax, ξmax), t). The movement and dispersal kernels

are normalised such that

∫
µm(ξ) dξ = 1 and

∫
µp(ξ) dξ = 1, using the trapezoid rule.

Solving for the dynamics of the second spatial moment, Equation (3.13), requires the

evaluation of Z1(t). Since we consider a sufficiently large computational domain compared

to the interaction ranges, the usual mean-field condition, Z2(ξ, t) = Z2
1 (t) will be valid at

large displacements. Using this property, we evaluate the first moments without actually

solving the Equation (3.10). At each time step, the first moment is computed using, Z1(t) =√
Z2((ξmax, ξmax), t). To compare the results from the spatial moment model with that of

the IBM, we calculate the pair-correlation function as, Z2(ξ, t)/Z
2
1 (t). We use an initial

condition, Z2(ξ, 0) = Z2
1 (0). In all of our computation we use a constant time step, dt = 0.1,

grid spacing, ∆ξ = 0.2 and ξmax = 16. We find that these values of dt, and ∆ξ are sufficiently

small to produce grid-independent results. Further, we find that choosing larger values of

ξmax does not affect our results.

H Effect of short-range dispersal

Here, we investigate the effect of short-range dispersal of offspring in Figure 11. For these

suites of simulations, we consider long-range competition and cooperation among individuals

(σc = σp = 4.0) so that we can describe solely the dynamics resulting from the close dispersal

of offspring (σd = 0.5). Again we consider three cases with initial population size, N(0) =

80, 240 and 400, where individuals are randomly distributed over the domain, as shown in

Figure 11(a)-(c). The three initial conditions considered here are the same as those considered

in Figure 4.

When Z1(0) < Z
(2)
1 , the population goes extinct since the total death rate is higher

compared to the proliferation rate. For the two cases where Z1(0) > Z
(2)
1 , the population

survives, and the locations of individuals at the final time are shown in Figure 11(e)-(f). As

time progresses, individuals tend to be found in close groups corresponding to a clustered

spatial structure. The clustering arises in the population through short-range dispersal,

where offspring are placed in the close vicinity of parents. As time evolves, more and more

individuals are placed in close neighbourhoods creating a strong clustering. Since we consider

long-range competition, there is no mechanism to counteract or reduce the magnitude of the

cluster formation. The presence of spatial clustering in the population is further confirmed

by C(|ξ|, t) > 1 in Figure 11(k)-(l). Now the competition within these clusters enhances the
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net death rate. As a result, the population grows to a carrying capacity that is lower than

Z
(3)
1 . The spatial moment model accurately captures cluster formation due to short-scale

dispersal and the resulting reduction in the carrying capacity.
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Figure 11: Effect of short-range dispersal. In these set of simulations, dispersal range is
lowered to σd = 0.5. a-c show the initial locations of individuals (red dots) for three different
population sizes, N(0) = 80, 240 and 400. d-f show the location of individuals at t = 30.
g-i show the density of individuals as a function of time. Black solid lines correspond to
the averaged results from 1000 realisations of the IBM, red dashed lines correspond to the
solutions of spatial moment dynamics and green solid lines correspond to the solution of the
mean-field model. The cyan lines show the critical densities. j-l show the C(|ξ|, t) computed
at t = 30 as a function of separation distance. Parameter values are d = 0.4, p = 0.2,m =
0.1, µs = 0.4 and σs = 0.1.
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