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Summary 

Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory ho-

munculus. Though it seems straightforward, this simple representation belies the complex link 

between an activation in somatosensory Area 3b and the associated touch location on the 

body. Any isolated activation is spatially ambiguous without a neural decoder that can read its 

position within the entire map, though how this is computed by neural networks is unknown. 

We propose that somatosensory cortex implements multilateration, a common computation 

used by surveying and GPS systems to localize objects. Specifically, to decode touch location 

on the body, the somatosensory system estimates the relative distance between the afferent 

input and the body’s joints. We show that a simple feedforward neural network which captures 

the receptive field properties of somatosensory cortex implements a Bayes-optimal multilat-

eral decoder via a combination of bell-shaped (Area 3b) and sigmoidal (Areas 1/2) tuning 

curves. Simulations demonstrated that this decoder produced a unique pattern of localization 

variability between two joints that was not produced by other known neural decoders. Finally, 

we identify this neural signature of multilateration in actual psychophysical experiments, sug-

gesting that it is a candidate computational mechanism underlying tactile localization. 
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Introduction 

In the 18th century, surveyors in France completed the world’s first topographically accurate 

map of an entire country. To do so, they relied on the computation of triangulation; given a 

precisely known distance between two baseline landmarks, the location of a third landmark 

could be computed from its angles of intersection with the baseline landmarks. Countries could 

utilize this simple geometric computation to accurately map the location of all landmarks in 

their borders (Figure 1A). This is also possible using multilateration (or trilateration, more spe-

cifically) where the known distance between multiple baseline landmarks is used to compute 

the location of another landmark. These computations are simple yet robust ways to localize 

objects and therefore still used in modern surveying and global position systems. 

Geometric computations involving manipulating distances and angles are also employed by 

the nervous system of animals to localize and interact with objects in the environment. When 

navigating an environment, mammals readily return to their starting location by taking into 

account all computed distances and heading directions travelled (Figure 1B), a phenomenon 

known as path integration (Mittelstaedt and Mittelstaedt, 1980). Reaching to grasp a visible 

target is another behavior involving geometric computations (Figure 1C). To do so, the brain 

must compute a reach vector from distances derived from hand and target position signals 

(Beurze et al., 2006; Buneo et al., 2002; Flanders et al., 1992), involving transformations that 

take place in the frontal and parietal cortices (Burnod et al., 1999; Crawford et al., 2004; 

Medendorp et al., 2005; Pesaran et al., 2006). 

Equally crucial to localizing objects in the environment is localizing objects on the personal 

space of the body. Despite over 180 years of research on the sense of touch (Weber, 1834), 

the computations underlying tactile localization remain largely unknown. Recent accounts 

have suggested that tactile localization requires two computational steps (Longo et al., 2010; 

Medina and Coslett, 2010). First, afferent input must be localized within a topographic map in 
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somatosensory cortex (Penfield and Boldrey, 1937). However, an activation within this map is 

not sufficient for localization since it alone explicitly represents little-to-no information about its 

associated position on the body surface. Localizing touch on the body therefore requires a 

neural decoder (Seung and Sompolinksy, 1993) that can “read” the topographic landscape of 

the population response within the map (Nicolelis et al., 1998) and reference this information 

to stored spatial representations of the body (Head and Holmes, 1911). However, given that 

the nature of these computations—and how they might be implemented by neural circuits—

remain largely unknown, it is unclear whether the brain uses geometric computations to local-

ize objects touching the body. 

 

 

Figure 1. Examples of geometric computations 

(A) Idealized example of how multi/trilateration can be used to map a country. After establishing a distance between 

two baseline landmarks (d1), a third landmark can be localized by calculating its distance from each landmark 

individually (d2 and d3). Given these initial results (red triangle), a trilateration network (gray) is be derived across 

the rest of the country. (B) Path integration: By computing over distances traveled (d1 and d2) a rat can calculate 

how much it needs to travel (d3) to return to its starting position. (C) Visuomotor reaching: The magnitude of the 

reach vector (d3) can be computed by evaluating over the eye-centered hand position (d1) and object position (d2). 

We propose that, like a surveyor, the human brain employs multi/trilateration to localize an 

object in body-centered coordinates. To do so, this ‘neural surveyor’ uses simple arithmetic to 

calculate the relative distance between the location of the afferent input and the joints (the 

baseline landmarks; Figure 2A). Each landmark’s position in the coordinate system is likely 
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represented via both online proprioceptive feedback (Proske and Gandevia, 2012) and stored 

knowledge about the body’s geometry (Longo and Haggard, 2010). In the present study, we 

provide multiple lines of evidence that the brain uses multi/trilateration to localize touch on the 

limb. We first develop a Bayesian formulation of it in the nervous system. We then develop a 

population-based neural network model that implements this computation, thus allowing us to 

identify its neural signatures. Simulations revealed that trilateration produces a unique pattern 

of localization variability across a limb. Finally, we identify this pattern in actual psychophysical 

experiments.  

Results 

A Bayesian formulation of trilateration 

In multilateration, the distances between known locations are used compute an unknown lo-

cation. In the present paper we will focus mainly on trilateration, which requires calculating the 

distance between three unique locations in a common coordinate system. If we consider only 

a single dimension 𝑥, this simply amounts to subtracting each location from one another: 

 𝑑# = 𝑥% − 𝑥# 

𝑑' = 𝑥' − 𝑥% 

𝑑% = 𝑥' − 𝑥# 

 

(1) 

in which 𝑑% is the distance between two known locations,	𝑥# and 𝑥', which serves as a baseline 

for calculating the unknown third location 𝑥%.  

When applied to localizing a point of touch 𝐿 on the limb (the 𝑥% in Eq. 1) the baseline 𝑑% 

corresponds to an internal representation of limb size, and 𝑥# and 𝑥' are the boundaries of a 

limb-centered coordinate system. For many limbs (e.g., the forearm), these boundaries—or 

landmarks—are represented by the position of the proximal and distal joints. Given peripheral 

input from mechanoreceptors, 𝑑# and 𝑑' must be measured via a neural surveyor that can 
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‘read’ a population response in a central somatotopic map Assuming noiseless signals (e.g., 

𝑥# = 0, 𝑥' = 100, 𝑥% = 75) and decoding computations, we can re-write Equation 1 to produce 

two estimates of location: 

 𝐿/# = 𝑥# + 𝑑# 

𝐿/' = 𝑥' − 𝑑' 

(2) 

Because these estimates are defined within the same limb-centered coordinate system, a final 

estimate of location can be derived by taking their average, though in the case of noiseless 

signals both estimates are equal and therefore redundant (i.e., both 𝐿/# and 𝐿/' equal 75). 

In the nervous system, however, noise is ubiquitous (Faisal et al., 2008). Sensory encoding is 

corrupted by receptor noise (Barlow, 1956; Lillywhite and Laughlin, 1979) which is com-

pounded by computational operations performed by the nervous system (McGuire and Sabes, 

2009; Shadlen and Newsome, 1998). Hence, an internal estimate of location cannot be taken 

as one specific estimate but rather as a probability distribution of locations with a variance that 

is often assumed to be Gaussian. The locations along dimension 𝑥 are therefore specified as 

Gaussian random variables and the landmark-centered estimates 𝐿/ are best approximated as 

independent Gaussian likelihoods with distinct means and variances. Note that even though 

both estimates share a common feature (i.e., 𝑥%), because they are derived from distinct land-

mark-specific distance estimates their noise is not necessarily correlated (see next section). 

Following Bayes’ theorem, touch location L given estimate 𝐿/ , that is the posterior distribution 

𝑝2𝐿3𝐿/4, relates to: 

 𝑝2𝐿3𝐿/4 ∝ 𝑝2𝐿/3𝐿4𝑝(𝐿) (3) 

in which 𝑝2𝐿/3𝐿4	 denotes the likelihood, representing probability density of the estimate 𝐿/ given 

the true location 𝐿, and 𝑝(𝐿)	represents prior information about the location. Given that there 
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are two independent likelihoods, and assuming the prior over 𝐿 is flat, the integrated posterior 

𝑝2𝐿3𝐿/#, 𝐿/'4 corresponds to the product the two likelihood functions: 

 𝑝2𝐿3𝐿/#, 𝐿/'4 ∝ 𝑝2𝐿/#3𝐿4𝑝2𝐿/'3𝐿4 (4) 

If the likelihoods are Gaussian distributions, the mean (𝜇9:;)	and variance (𝜎9:;' ) of the inte-

grated limb-centered posterior distribution depend on the means (𝜇# and 𝜇') variances (𝜎#' 

and 𝜎'') of the individual estimates:  

 
𝜇9:; = =

𝜇#
𝜎#'

+
𝜇'
𝜎''
	> 𝜎9:;' 							,							𝜎9:;' =

𝜎#'𝜎''

𝜎#' +	𝜎''
 

 

The integrated posterior thus reflects the maximum-likelihood estimate of touch location 𝐿. 

The integrated variance is always smaller than the variance of either individual estimate; its 

mean can also be reformulated as the precision-weighted average of each estimate: 

 𝜇9:; = 𝑤#𝜇# + 𝑤'𝜇' (5) 

whose weights depend upon their variances: 

 
𝑤# =

𝜎''

𝜎#' + 𝜎''
							,							𝑤' = (1 − 𝑤#) 

 

This reformulation will be important below (see Eq. 10 in the next section) where we show that 

it can be used to extract a near-optimal location estimate on individual trials. Bayesian infer-

ence of this form has been demonstrated in a range of behaviors, such as visual object recog-

nition (Kersten et al., 2004), multisensory integration (van Beers et al., 1999; Ernst and Banks, 

2002), sensorimotor learning (Kording and Wolpert, 2004), and coordinate transformations 

(Clemens et al., 2011; McGuire and Sabes, 2009). 

Trilateration, as formulated above, provides a computational mechanism to localize touch in 

intrinsic coordinates. In the next section, we explore how it could be implemented by the so-

matosensory cortex. We describe a simple population-based neural network model that can 
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trilaterate the location of touch from the population activity within the somatotopic map of 

Area 3b (Figure 2a). Importantly, determining the neural signatures of a trilateral computation 

for tactile localization will allow us to make predictions that can be validated using actual psy-

chophysical data. 

 
Figure 2. Neural network implementing trilateration 

(A) Trilateral computation for tactile localization: The location of touch on the arm is computed by integrating two 

estimates of the distance of sensory input from each joint. (B) Neural network implementation of trilateration: (lower 

panel) the encoding layer is composed of bell-shaped tuning curves evenly spaced across the sensory surface, 

(upper panel) the decoding layer is composed of two subpopulation of evenly spaced sigmoidal tuning curves. The 

facing direction of each population is denoted by an arrow. How much of the surface is within each neuron’s re-

sponse field is coded by the luminance, with darker colors corresponding to neurons that cover more of the surface. 

(C) Activations for each layer of the network averaged over 5000 simulations. (lower panel) encoding layer; (middle 

panel) decoding layer; (upper panel) posterior probabilities of localization for each decoding subpopulation (blue 

and red) and their integration by the Bayesian decoder (purple). 
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Neural network model of a trilateration process in somatosensory cortex 

We created a fully connected feedforward network composed of an encoding layer, a decoding 

layer, and a Bayesian decoder. The encoding layer was composed of 100 artificial neurons 

with Gaussian (bell-shaped) tuning curves 𝑓A  (Figure 2B), with likelihood functions 

𝑝2𝑟CA3𝐿4	denoting the probability that location 𝐿 caused 𝑟CA  spikes in encoding neuron 𝑖. The 

likelihood function 𝑝2𝑟CA3𝐿4 can be modeled as a Poisson probability distribution, according to:  

 
𝑝2𝑟CA3𝐿4 	= 	

𝑒FGH
I(J)𝑓CA(𝐿)KH

I

𝑟CA!
 

(6) 

in which 𝑓CA  is the tuning curve of neuron 𝑖. All Gaussian tuning curves had identical widths 

and were evenly spaced across the sensory surface, forming a somatotopic map of a limb. 

This configuration approximates the receptive field properties of cutaneous neurons in the 

forelimb representations in Area 3b (Dicarlo et al., 1998; Mountcastle and Powell, 1959). The 

population response of the encoding neurons is denoted by a vector 𝒓𝑬 ≡ {𝑟#A, …,	𝑟#RRA }, where 

𝑟CA  is the spike count of neuron 𝑖 whose mean and variance are both equal (i.e., the Fano 

factor is equal to 1). Following previous work (Pitkow and Angelaki, 2017), the population 

response 𝒓𝑬 can be thought of as representing a probability distribution over the stimulus.  

The function of the decoding layer is to estimate the location of 𝐿 in limb-centered coordinates 

given the population response 𝒓𝑬 in the somatotopic map. This was implemented using two 

independent subpopulations of 100 neurons that were fully connected to the encoding layer 

via synaptic weights whose values corresponded to a sigmoidal distribution with slopes facing 

away from their respective landmark (see Methods). These subpopulations were therefore 

composed of evenly-spaced sigmoidal tuning curves 𝑓T , where some neurons were sensitive 

only to a small portion of the limb surface whereas others were sensitive to its entirety (Figure 

2B). Given the relatively on-or-off nature of their response profiles, each neuron can be 

thought of as contributing a fixed amount of spikes to a final location estimate (see Eq. 7) and 
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therefore as coding for a single unit of tactile space. Each decoding subpopulation is therefore 

organized to implicitly encode the distance between input and a specific landmark. 

Somatosensory areas 1 and 2 are good candidates for such distance computations since their 

cutaneous receptive fields match the necessary organization for their implementation. Both 

regions show a wide variety of receptive field sizes (Hyvarinen and Poranen, 1978), with the 

selectivity of neighboring neurons often spanning a continuous space from small to the full-

limb coverage (Favorov and Whitsel, 1988). These receptive fields often cluster around or 

span one-or-more joint segments (Iwamura et al., 1983), suggesting that they are best char-

acterized as sigmoidal. Further consistent with the function of the decoding layer, both Areas 1 

and 2 receive direct projections from Areas 3a and 3b (Garraghty et al., 1990; Vogt and 

Pandya, 1978) and therefore integrate cutaneous and proprioceptive signals (Iwamura et al., 

1983). 

Trilateration requires calculating the distance between 𝐿 and each landmark (Eq. 2). Given 

the sigmoidal shapes of the tuning curves in the decoding layer, this information is implicitly 

coded by the overall population response of the respective decoding populations 𝒓𝑫 ≡

{𝑟#T,…,	𝑟#RRT }. Take an example where 𝐿 is located at position 75 within the somatotopic map 

of the encoding layer (Figure 2A,C). For one decoding subpopulation, this point falls inside the 

maximal response field of neurons 𝑖 = [1…75] and outside for neurons 𝑖 = [76…100]; this is 

reflected in the shape of its response 𝒓𝑫𝟏. Conversely, the subpopulation response  𝒓𝑫𝟐 re-

flects the fact that this point falls inside the maximal response field of neurons 𝑖 = [1…25] and 

outside for neurons 𝑖 = [26…100]. As can be seen in Figure 2C, the shape of each population 

response is a sigmoid that intersects at 𝐿. Since each neuron likely codes for a single unit of 

tactile space, calculating the distance between 𝐿 and each landmark amounts to pooling the 

spike count of each subpopulation. We can therefore reformulate the location estimates 𝐿/ of 

Equation 2 as follows: 
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𝐿/#
(\) = 𝑥# + 𝑔F#^𝑟CT#

#RR

C_#

 

𝐿/'
(\) = 𝑥' − 𝑔F#^𝑟CT'

#RR

C_#

 

(7) 

where 𝑥 is the location of the corresponding landmark (in our network, 𝑥# = 0;	𝑥' = 100), 𝑔 is 

a constant that converts spike count into units of tactile space, and ‘(𝑛)’ denotes that this 

estimate comes from trial 𝑛. Furthermore, the quantity 𝑟CT corresponds to the spike count of 

decoder neuron 𝑖 resulting from the weighted integration of all activity in the encoding layer: 

𝑟CT# = 	𝒘𝒊
𝑫 ∙ 𝒓𝑬 + 𝜀, where 𝒘𝒊

𝑫 is the vector of synaptic weights connecting neuron 𝑖 to the en-

coding layer, ‘∙’ is the dot product, and 𝜀 is the Poisson noise (Eq. 6). 

Given that the spike count 𝑟 for each neuron will vary from trial-to-trial, this equation is only 

valid for estimating the location of a single instance of touch. In an experiment, we wish to 

estimate behavioral performance over multiple trials. We can therefore rewrite Equation 7 to 

account for the firing rate statistics of each neuron (Eq. 6) as well as the uncertainty inherent 

in the location of each landmark 𝑥. The location estimate 𝐿/ can thus be written as a likelihood 

function: 

 
𝑝2𝐿/#3𝐿, 𝒓𝑬, 𝑠g4 = 𝑝(𝑥#|𝑠g) + 𝑔F#^𝑝2𝑟CT#3𝒓𝑬, 𝐿4

#RR

C_#

 

𝑝2𝐿/'3𝐿, 𝒓𝑬, 𝑠g4 = 𝑝(𝑥'|𝑠g) − 𝑔F#^𝑝2𝑟CT'3	𝒓𝑬, 𝐿4
#RR

C_#

 

(8) 

where 𝑝2𝑟CT3𝒓𝑬, 𝐿4 is the probability distribution of each decoding neuron’s response profile 

given touch at 𝐿 and encoding population response 𝒓𝑬, and 𝑝(𝑥|𝑠g) is the probability distribu-

tion of the location of each landmark given proprioceptive signals 𝑠g (i.e., online feedback and 

stored representation).  
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Equation 8 demonstrates that calculating the distance between 𝐿 and 𝑥 amounts to summing 

the entire population response 𝒓𝑫. The variance of each estimate is therefore equivalent to 

the sum of the individual variances of each neuron’s response to the input, divided by g. Be-

cause responses are restricted to neurons with non-zero response fields between 𝐿 and 𝑥 

(Figure 2C), a greater distance means more active neurons in the population response and 

hence a location estimate with higher variance. A consequence of this pooling is therefore that 

the variance in each location estimate increases approximately linearly as a function of dis-

tance from the landmark. It is important to note that because this reflects a property of vari-

ance, distance-dependent noise is independent of the type of statistics that governs neural 

spiking (e.g., Poisson, Gaussian) or the Fano factor that links the mean and variance of the 

spike count. 

The final step in trilateration amounts to deriving an optimal estimate of location from the two 

decoding distributions. Because of the linear relationship between noise and distance (r=0.99 

in our simulations), a Bayesian decoder could theoretically perform optimal integration on each 

trial by using population spike count as a proxy for the variability in the estimates (Figure 2C). 

Because this is done on a single trial, we refer to this estimate as 𝐿/9:;. Given Equation 5, 

averaging each estimate weighted by the inverse of their overall activity would approximate 

the maximum-likelihood estimate 𝐿/9:; of location L and therefore: 

 
𝐿/9:;(𝑛) =

∑𝑟T'

∑ 𝑟T# + ∑𝑟T'
j𝑥# + 𝑔F#^𝑟CT#

#RR

C_#

k +
∑𝑟T#

∑ 𝑟T# + ∑𝑟T'
j𝑥' − 𝑔F#^𝑟CT'

#RR

C_#

k 
(9) 

 

It is important to note that integrating estimates of location (Eq. 4) assumes that they have 

independent sources of noise.  However, given that both decoding layers are connected to 

the same encoding layer, they will both inherit its noise and could therefore be highly corre-

lated. Unless the noise in the encoding layer can be removed from location estimates, the 

assumption of independence is violated.  
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In the present network, the problem of correlated noise is actually taken care of by Equation 9. 

Given Equation 8, any estimation bias due to noise in the encoding layer will have an opposite 

effect on both estimates (i.e., it’s added to 𝐿/# but subtracted from 𝐿/'). For example, let’s image 

that the true value of 𝐿/ is 75 but both decoding subpopulations inherit a bias of 5 from the 

encoding layer. 𝐿/# would be equal to 80 whereas 𝐿/' would equal 70—thus, when these two 

values are integrated, the bias largely cancels out. Trilateration of the form in Equation 9 there-

fore removes any inherited biases from the encoding layer. As can be seen in Figure 2C the 

output of the trial-specific output of Bayesian decoder laid out in Equation 9 produces an esti-

mate whose variance is lower than both landmark-specific estimates and is consistent with 

maximum likelihood integration. 

Simulations identify plausible neural signatures of trilateration 

So far we have provided a Bayesian formulation of trilateration and presented a plausible 

model of how this computation could be implemented in a simple feedforward network. We 

next investigated the localization behavior of this model by simulating single points of touch at 

each position within a limb-centered coordinate system (5000 iterations per location). The 

parameters of our initial simulations were based on known properties of somatosensory neu-

rons (see Methods). These simulations included only two landmarks and therefore best reflect 

body parts with two joints, such as the forearm; more complicated body parts, such as the 

fingers, may require additional landmarks to accurately simulate.  

Both subpopulations in the decoding layer (Figure 2B) were able to localize touch with minimal 

constant error (Figure 3A, upper panel), demonstrating that each produced unbiased esti-

mates of location from the sensory input. However, as predicted from Equation 8, the variance 

in their estimates rapidly increased as a function of distance from each landmark (Figure 3B, 

upper panel). The pattern of location-dependent variability for each landmark-specific subpop-

ulations was almost completely anti-correlated (r = –.99), forming an X-shaped pattern across 
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the surface of the limb. Noise thus renders the estimate of each subpopulation unreliable for 

most of the limb.  

We next examined the output of the Bayesian decoder from Equation 9 (Figure 2C). As ex-

pected, integrating both estimates increased the reliability (Figure 3B, lower panel; for accu-

racy: Figure 3A, lower panel) of localization. Intriguingly, the variance of the Bayesian de-

coder’s estimate formed an inverted U-shaped curve across the surface of the limb (Figure 3B, 

lower panel), with the lowest decoding variance near the landmarks and the highest decoding 

variance in the middle. This exact pattern of variance was also found when we computed the 

integration directly from the two simulated likelihoods (Eq. 4), demonstrating that our network 

optimally combines both estimates. These results demonstrate that near-optimal trilateration 

is possible on a single trial of touch—a necessary pre-requisite for our network to be plausible. 

It should be noted that by the term ‘near-optimal’ we do not mean being near the Cramér-Rao 

lower bound; rather, our Bayesian decoder is near-optimal in the sense of performing maxi-

mum-likelihood integration.  

We then explored whether the observed inverted U-shaped variance profile is a signature of 

neural trilateration. To do so, we compared our network to three networks with a single en-

coding layer and distinct decoders (see Methods). The purpose of this comparison was not to 

compare overall decoding variance, but to assess whether the inverted U-shaped pattern of 

variance is specific to trilateration. In these networks, the location of touch was determined 

either by (1) the peak of the population response in the encoding layer (Riesenhuber and 

Poggio, 1999); (2) the minimal squared-error between the population response and location-

specific templates (Deneve et al., 1999); or (3) the log-likelihood of the encoding population 

(Jazayeri and Movshon, 2006). In all cases, decoding variance was better than trilateration 

but did not vary as a function of stimulus location (Figure 3C). Furthermore, it is unclear 

whether these decoders could disambiguate the location of touch from the activation in the 

encoding layer (see Introduction).   
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Figure 3. Simulation results and predictions 

(A) Localization accuracy for the estimates of each decoding subpopulation (upper panel; L1, blue; L2, red) and 

after integration by the Bayesian decoder (lower panel; LINT, purple). (B) Decoding variance (units: % of surface) 

for each decoding subpopulation (upper panel) increased as a function of distance from each landmark. Interest-

ingly, integration by the Bayesian decoder (lower panel) led to an inverted U-shaped pattern across the surface. In 

these simulations, g was set to the maximum synaptic drive between the encoding and decoding layers in order to 

decorrelate both estimates (see Methods). (C) Decoding variance for three other decoders: a peak decoder (LPEAK), 

a template-matching decoder (LTEMP), and a log-likelihood decoder (LlogL). Decoding variance did not vary as a 

function of touch location for either of these decoders. (D) Results of the first prediction: Adding a third landmark 

in the middle of sensory surface led to an inverted W-shaped pattern of decoding variance. Inset: The receptive 

fields of the decoder subpopulation centered on this third landmark. 

Why might the somatosensory cortex implement trilateration if decoding variance is not sta-

tistically optimal? One possibility has to do with the need for rapid decoding of location. Tactile 

localization in body-centered coordinates is completed with as little as 40 milliseconds of pro-

cessing in primary somatosensory cortex (Miller et al., 2019a). Even with the high firing rate 

of somatosensory neurons (i.e., 50–100Hz; Bensmaia et al., 2008; Chapman and Ageranioti-

Bélanger, 1991; Nicolelis et al., 1998; Reed et al., 2010), this corresponds to only one or two 
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spikes per layer. Indeed, we found that our trilateration network could decode touch location 

with a mean firing rate of a single spiker per layer, which corresponds to roughly 20-30 ms of 

processing in total. Decoding accuracy was as in Figure 3A and variance formed the inverted 

U-shaped pattern seen in Figure 3B, though it was higher. On the other hand, statistically 

optimal decoders—such as those implementing template matching—require recurrent pro-

cessing and would therefore need much longer to implement (Deneve et al., 1999). Trilatera-

tion provides a means to tradeoff optimality with speed. 

It is important to note that the inverted U-shaped pattern of variability is not a byproduct of our 

chosen network architecture but is due to the implemented computations. Per Equation 8, 

variance in an estimate will increase linearly as a function of the number of spikes contributing 

to that estimate. Any architecture where firing rate linearly codes for the distance from a land-

mark will therefore observe distance-dependent noise. Given that the optimal behavior is to 

integrate multiple noisy estimates (Equation 9), our observed pattern of variability will always 

be observed when trilateration computes tactile location on surfaces with two landmarks. 

In all, our simulations demonstrate that observed location-specific pattern of variance is a sig-

nature of trilateration. We next conducted psychophysical experiments to confirm this pattern 

of variability in behavioral data. This is a necessary validation that our model is capturing 

something real in the computations underlying tactile localization. Importantly, observing an 

inverted U-shaped pattern of localization variability in our experiments would suggest that hu-

mans are ideal observers that trilaterate touch location near-optimally.  

Trilateration explains tactile localization on the arm 

In two psychophysical experiments, we investigated patterns of perceptual variability during 

tactile localization on the arm (see Methods). In Experiment 1 (n=11), participants localized 

points of touch passively applied to the volar surface of their forearm. In Experiment 2 (n=14), 

participants localized touch after they actively contacted an object with their forearm. Each 
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participant’s responses were fit with a linear regression and the slope was taken as a measure 

of localization accuracy. Participants in Experiment 1 were highly accurate at localizing pas-

sive touches (slope: 1.04, 95% CI [1.00, 1.08]; Figure 4A, upper row). Similarly, participants 

in Experiment 2 were highly accurate at localizing active touches (slope: 1.06, 95% CI [0.99, 

1.12]; Figure 4B, upper row). Importantly, in both experiments, we observed the expected in-

verted U-shaped pattern of variability (Figure 4A-B, bottom row). Thus, perceptual variability 

was dependent upon where the touch occurred, as predicted by trilateration.  

 
Figure 4. Results of behavioral experiments 

The results of (A) Experiment 1 and (B) Experiment 2. Perceived location and perceptual variability as a function 

of touch location (0 = elbow; 100 = wrist). Tactile localization in both experiments was very accurate (upper rows). 

The fit line corresponds to a linear regression fit to the group-level data. The variable errors (lower rows) exhibited 

the expected signature of trilateration. The fit line corresponds to the computational model fit to the group-level 

data. 

We used a reverse engineering approach (Clemens et al., 2011) to validate that the observed 

perceptual variability was due to trilateration. Because we cannot measure the parameters of 

trilateration directly, we inferred them by using least-squares regression to model each partic-

ipant’s variable error as a function of location (see Methods). Our regression model had three 

free parameters: one parameter that quantified the distance-dependent noise (𝜎l) and one 
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intercept parameter per landmark (𝜀̂). As in Equation 4, the model consisted of integrating 

landmark-specific patterns of noise to form a final pattern based on an optimal estimate of 

location.  

Trilateration explained a large portion of the location-specific patterns of variability in each 

experiment. We found good fits for the group-level variable errors for both passive (Fig-

ure 4A, lower panel; R2=0.89) and active touch (Figure 4B, upper panel; R2=0.86). Im-

portantly, trilateration provided a good fit (R2 > 0.5) for every participant in Experiment 1 

(mean±sem: 0.81±0.04; range: 0.54–0.94) and Experiment 2 (mean±sem: 0.80±0.04; 

range: 0.57–0.98). Figure 5 displays five randomly selected participants per experiment. The 

model fits for each participant in Experiments 1 and 2 are listed in Supplementary Tables 1 

and 2, respectively. 

 
Figure 5. Model fitting confirms trilateration in our behavioral experiments 

The variable errors in (A) Experiment 1 and (B) Experiment 2 were well-fit by a computational model of trilateration. 

Each rows shows five randomly chosen participants from each experiment and the corresponding goodness of fit. 

Finally, we statistically compared the fit parameters for each experiment (Supplementary Ta-

bles 1–2). We found that the intercept terms (𝜀#̂ and 𝜀'̂) did not significantly differ in Experi-

ments 1 (paired t-test: P>.2, corrected) or 2 (paired t-test: P>.2, corrected). As the intercept 

terms likely reflect uncertainty about the location of landmarks, this is consistent with findings 

of similar proprioceptive sensitivity for the wrist and elbow (Fuentes and Bastian, 2010; Marini 

et al., 2016). It is also interesting to note that the noise parameter (𝜎l) in the active touch 
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experiment was lower than the passive touch experiment. However, given that the conditions 

of the stimulation were not closely matched across experiments, we chose not to statistically 

compare them in the present study.  

In sum, we found that our participants’ behavior reflected what is expected from ideal localiz-

ers. That is, their localization was on average unbiased and showed the pattern of variable 

error consistent with near-optimal trilateration. More generally, our behavioral experiments 

reveal broad agreement with the predictions of our population-based neural network model.  

Model predictions 

Thus far, we have shown that a neurally plausible implementation of trilateration accurately 

explains patterns of tactile localization in humans. We will now focus on several predictions 

made by our model of trilateration that can be tested empirically. 

First, an inverted U-shaped pattern of variability will always be observed on either side of a 

landmark. This is somewhat trivial for individual limbs that share a single joint—such as the 

upper and lower arms—as trilateration is presumably implemented separately on either sur-

face. However, it is non-trivial in cases where a salient object (e.g., jewelry) might serve as an 

artificial landmark. These objects can become an integrated part of the wearer’s body repre-

sentation (Aglioti et al., 1997) and may alter tactile perception. Figure 3D shows the effects of 

a third landmark centered in the middle of a sensory surface. As predicted, decoding variability 

now exhibits two hills, matching what has been observed when a vibrating object is placed in 

the middle of the arm (Cholewiak and Collins, 2003). How artificial landmarks might be instan-

tiated in the plastic reorganization of somatosensory cortex is an open question, though con-

tinuous stimulation does lead to the reorganization somatosensory receptive fields (Dinse et 

al., 2003). 
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Figure 6. Model predictions 

(A) Second prediction: For active touch (Experiment 2; purple), we observe an increase in the goodness of fit as a 

function of correlation between each location estimate. This is not observed for passive touch (Experiment 1; pink). 

(B) Third prediction: Effect of increased variability in the second landmark location (The mark 100% on the surface). 

As variability increases (from 0% to 30% of tactile space; in steps of 5%), the inverted U-shaped pattern becomes 

more linear. 

Correlated noise can have detrimental effects on population coding (Zohary et al., 1994) and 

the optimality of integration (Oruç et al., 2003). Our second prediction is that, due to differ-

ences in the magnitude of noise correlations, the integration of location estimates 𝐿/ during 

active touch will be suboptimal compared to passive touch. Though Equation 9 accounts for 

shared noise in each estimate arising in the encoding layer, other sources of noise may affect 

the decoding layer and therefore the optimality of the integration. Indeed, arm movements 

modulate the cutaneous responses of neurons in Area 1 (Jiang et al., 1991) and increases the 

magnitude of its noise correlations (Song and Francis, 2013). We tested this prediction in our 

own experiments by modelling trilateration with varying levels of correlation between estimates 

(see Methods). As can be seen in Figure 6A, accounting for correlated noise improved the fit 

of our model for the active touch experiment (Experiment 2) but not passive touch (Experi-

ment 1).  

Third, we predict that increasing the localization variability of a single landmark will modify the 

shape of the perceptual variability across the limb. Specifically, as the variability of a landmark 

increases, the inverted U-shaped pattern of variability will become less symmetrical 
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(Figure 6B). The variability of joint-based feedback can be modified, for example, by adding 

noise into the system via tendon vibration (Lackner, 1988). In the most extreme case of com-

pletely deafferenting a joint, variability would become linear. This might not be feasible, how-

ever, given that stored offline representations of body size also play a role in the position of a 

landmark within a body-centered coordinate system. 

Fourth, we predict that a similar pattern of perceptual variability will be found when localizing 

touch on a hand-held tool. Indeed, humans can accurately localize where a tool has been 

touched (Miller et al., 2018; Yamamoto and Kitazawa, 2001). We recently found evidence that 

mechanisms in somatosensory cortex for localizing touch on an arm are re-used to localize 

touch on a tool (Miller et al., 2019a). Furthermore, tool use leads to lasting changes in soma-

tosensory perception (Canzoneri et al., 2013; Cardinali et al., 2011; Miller et al., 2014, 2017) 

that are likely driven by plasticity in somatosensory cortex (Miller et al., 2019b; Schaefer et al., 

2004). Given the high-degree of flexibility in the somatosensory system, we propose that the 

computation of trilateration is also used to localize touch on tools. Moreover, whether trilater-

ation during tool sensing could involve mechanisms in somatosensory cortex—or is only im-

plemented in higher-level frontoparietal regions—should be addressed using neurophysiology 

or functional neuroimaging. 

Discussion 

We proposed and tested the computation of multilateration as a candidate mechanism under-

lying tactile localization. Neural network modeling showed that this computation can be simply 

implemented in feedforward circuits of the somatosensory cortex, which integrate multiple lo-

cation estimates into a single optimal surface-centered estimate. Simulations further indicated 

a location-dependent pattern of perceptual variability that reflects a signature of near-optimal 

trilateration. This signature was then found in two psychophysical experiment involving touch 
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on the arm. We conclude that multilateration is an important computation for localizing touch 

in the intrinsic coordinates of a sensory surface. 

Multilateration provides a unified account of tactile ‘perceptual anchors’ 

Tactile perception varies across the surface of an individual body part. Perhaps the most strik-

ing example is the increased perceptual precision near the joints of the body (Brooks et al., 

2019; Cholewiak and Collins, 2003; Cody et al., 2008; Knight et al., 2014; Longo, 2017; 

Pillsbury, 1895; De Vignemont et al., 2009), a phenomenon termed ‘perceptual anchoring’. 

Despite being first observed over 180 years ago by the psychophysicist E.H. Weber (Weber, 

1834), the underlying reason why perception is tied to the proximity to joints is unknown. It is 

unlikely that ’perceptual anchors’ have a peripheral origin since the receptive fields of mech-

anoreceptors are not more densely distributed near joints (Vallbo et al., 1995). Instead, they 

likely have a central explanation, such as the fact that joints function as category boundaries 

between somatosensory representations (Shen et al., 2018; De Vignemont et al., 2009). How 

this could be instantiated computationally has never been made explicit. 

The present study suggests that the perceptual anchoring of tactile localization is a conse-

quence of Bayesian trilateration in the somatosensory cortex. In our neural network, each 

decoding subpopulation is organized in reference to a specific landmark (i.e., a joint), con-

sistent with their role as boundaries between different body-centered coordinate systems (i.e., 

category boundaries). Because these subpopulations represent the distance between touch 

and a specific landmark using a rate code, decoding noise increases linearly as a function of 

distance (Eqns. 8 & 9)—the closer touch is to a landmark, the more precisely it will be de-

coded. Therefore, integrating estimates with distance-dependent noise naturally leads to 

higher perceptual precision near landmarks. Our findings thus provide a unified computational 

explanation of perceptual anchoring in touch. 
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A spatial function for large somatosensory receptive fields 

The shape of a neuron’s tuning curve not only reflects principles of optimality (Smith and 

Lewicki, 2006) and statistics of the environment (Schwartz and Simoncelli, 2001) but also the 

functional role of the population they are embedded in (Salinas, 2006). Whereas bell-shaped 

tuning curves—as in our encoding layer—may be optimal for representing locations within a 

topographic map, sigmoid-shaped tuning curves—as in our decoding layer—are optimal for 

representing specific values (Sanger, 2003). Consistent with this, the Fisher information of 

sigmoidal tuning curves is centered around a single point in feature space (Yarrow and Series, 

2015). We therefore reasoned that sigmoid-shaped tuning curves provide a natural means by 

which the somatosensory cortex could represent a unit of tactile space. 

Indeed, our neural network model demonstrated that, given a specific organization, a popula-

tion of sigmoid-shaped neurons can implicitly calculate the distance between touch and a 

landmark. While it is unclear whether such an organization actually exists in the somatosen-

sory cortex, it is well known that receptive field sizes of cutaneous neurons in somatosensory 

Areas 1 and 2 vary on a continuum from small to large (Hyvarinen and Poranen, 1978). For 

example, two neighboring neurons in the forearm region of Area 1 may code for a small region 

by the wrist and the entire forearm (Favorov and Whitsel, 1988). Given the broad tuning of 

these neurons, sigmoid-shaped tuning curves provide a good approximation for their coding 

properties. Despite the popular belief that large receptive fields lack spatial discrimination, our 

results are consistent with previous evidence to the contrary (Foffani et al., 2008; Nicolelis et 

al., 1998) in demonstrating that they can precisely code spatial information at the population 

level. 

Neural implementation of the Bayesian decoder 

In our neural network, the distance between touch and each landmark (Eqs. 1 & 2) is repre-

sented by the pooled activity of two subpopulations of decoding neurons (Eq. 8). By weighting 
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each subpopulation by its overall activity, the Bayesian decoder could estimate the location of 

touch near-optimally (Eq. 9). Unlike the encoding and decoding layers, we left the implemen-

tation of the Bayesian decoder largely unspecified. There are therefore several open questions 

about the nature of this computational step.  

First, it is unclear whether the pooling of activity in each subpopulation would be implemented 

by single neurons or an entire neuronal population. Single neurons in area LIP (Shadlen and 

Newsome, 2001) are known to integrate information from an entire sensory population (Beck 

et al., 2008). While this has never been directly demonstrated for somatosensory processing, 

several somatosensory regions have neurons with receptive fields covering an entire limb 

(Favorov and Whitsel, 1988; Iwamura et al., 1983; Mountcastle et al., 1975; Sakata et al., 

1973), suggesting that they pool across a population of tactile neurons as formulated in Equa-

tions 8 and 9. Alternatively, pooling could be implemented by an entire population of neurons 

(Seung and Sompolinksy, 1993). Indeed, it is often argued that Bayesian inference is best 

implemented at the population level (Ma et al., 2006), such as with basis functions with multi-

dimensional attractors (Deneve et al., 2001). This should be addressed in future research. 

Second, it is unclear whether the Bayesian decoding would be implemented in somatosensory 

cortex or higher-order associative regions, such as posterior parietal cortex. Low-level sensory 

regions can implement Bayesian inference. For example, auditory spatial cues are optimally 

integrated by the owl midbrain during sound source localization (Cazettes et al., 2016; Fischer 

and Peña, 2011). It is therefore possible that a third subpopulation of neurons in somatosen-

sory Areas 1 or 2 could optimally integrate signals from both decoding subpopulations. In-

stead, Bayesian decoding might be performed by somatosensory regions in the posterior pa-

rietal cortex (Breveglieri et al., 2008; Duhamel et al., 1998; Mountcastle et al., 1975; Seelke 

et al., 2012), which are known to play a role in tactile localization (Reed et al., 2005). These 

regions are likely important for referencing sensory signals to stored knowledge of body size 

(Ehrsson et al., 2005), an important component of multilateration (Eqns. 1 & 2). Most likely, 
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Bayesian decoding during tactile localization is implemented by both feedforward signals in 

somatosensory cortex and feedback signals from posterior parietal cortex (Jones et al., 2007). 

Is multilateration a general spatial computation? 

Whether multilateration is involved in other forms of spatial cognition is unclear. However, its 

equations map onto other known distance-based geometric computations implemented in the 

nervous system. Consider the example of reaching to grasp a coffee mug (Figure 1C). Per 

Equation 1, the magnitude of the reach vector (𝑑%) can be computed simply by subtracting the 

distance between the eyes and the coffee mug (𝑑') from the distance between the hand and 

the eyes (𝑑#). This operation is thought to be performed by neurons in posterior parietal cortex 

(Buneo, et al., 2002, Beurze, et al., 2006). 

As shown in our study, when distance is encoded in the overall firing rate of a population, 

noise in each location estimate scales linearly with distance (Equation 8). Given that distance 

is treated as a magnitude in this computation, distance-dependent noise is consistent with 

Weber’s Law and may therefore be a general feature of multilateral computations. This sug-

gests that patterns of distance-dependent noise can serve to identify multilateration in other 

domains. This appears to be the case in allocentric vision, where noise in the estimated loca-

tion of an object is dependent upon its distance from landmarks in the scene (Aagten-Murphy 

and Bays, 2019). Further, the dominant source of error during path integration is noise that 

accumulates with distance travelled (Stangl et al., 2020). Interesting, similar errors are found 

for path integration in the tactile domain (Fardo et al., 2018; Moscatelli et al., 2014), suggesting 

that they may involve multilateration as well. 

Conclusion 

In sum, our results suggest that, like a surveyor, the somatosensory system employs near-

optimal multilateration to localize a tactile stimulus. This computation is likely implemented, at 

least partially, in somatosensory cortex. Future work should address how multilateration can 
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be extended to cases of localization in two (Mancini et al., 2011) or three dimensions (Azañón 

et al., 2016), as well as when touch occurs under more dynamic contexts (Maij et al., 2013). 

Furthermore, it remains to be seen to what extent other spatial behaviors—such as path inte-

gration, allocentric vision, and reaching—should be reformulated as implementing multilater-

ation.  
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Material and Methods 

Neural network modeling 

Network parameters 

We devised a simple two layer feedforward neural network that implements trilateration to 

localize touch on a sensory surface. Each layer of the network was composed of 100 artificial 

neurons whose preferred locations were evenly spaced across the sensory surface (Figure 2). 

The space of the surface was always modelled in terms of percentage (i.e., 0-100% of the 

surface). The properties of the ‘neurons’ in each layer approximated important aspects of ac-

tual neurons found in the somatosensory cortex (Delhaye et al., 2018).  

In the encoding layer, neurons were modelled as narrowly tuned Gaussian tuning curves 𝑓A  

(FWHM: 5% of the surface). Each neuron in the decoding layer was fully connected to each 

neuron in the encoding layer via a synaptic weight vector 𝒘𝑫. The synaptic weights formed a 

sigmoidal distribution with values ranging from 0 to 0.2, a standard deviation of 1% of the 

surface, and a central point that was neuron-dependent and evenly spaced across the space 

of the encoding layer. The maximum value of 0.2 was chosen because, given our network 

configuration, it produced near-identical peak spike counts in neurons in the encoding and 

decoding layers. Given this connectivity, the tuning curves in each decoding sub population 

𝑓T  were sigmoidal in shape (Figure 2).  

As discussed at length in the Main Text, neurons in the encoding and decoding layers approx-

imated the shapes of tuning curves found in Areas 3b and 1/2, respectively. In our initial sim-

ulations, the mean peak spike count of these neurons was set to 10 spikes. Given that high 

peak firing rates (50-100Hz) are observed in Areas 3, 1, and 2 (Bensmaia et al., 2008; 

Chapman and Ageranioti-Bélanger, 1991; Nicolelis et al., 1998; Reed et al., 2010), this corre-

sponds to ~100-200 ms of processing. We made the simplifying assumption that the variability 

in firing rates corresponds to a Poisson process with a Fano factor of 1. While neurons 
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measured in vivo do exhibit a range of Fano factors, the mean Fano factor in several brain 

regions is close to 1 following stimulus onset (Churchland et al., 2010) and thus this assump-

tion is not without merit. 

To convert units of spikes in the decoding subpopulations into units of distance—and to ac-

count for shared bias in the encoding layer—we set 𝑔 to equal the maximum synaptic drive 

from the encoding to the decoding layer:  

𝑔 = argmax
K

𝑊T ∙ 𝒓𝑬 

in which 𝑊Tis the matrix of synaptic weights for each decoding subpopulation, 𝒓𝑬 is the pop-

ulation response in the encoding layer, and ‘∙’ is the dot product. This is one possible value of 

𝑔 and is largely used for convenience to uncorrelate both decoding estimates (Supplementary 

Figure 1B). However, it is important to note that its tuning is largely unnecessary since any 

bias is removed by the weighted integration of both estimates (see Main Text; Equation 9). 

Simulations for a multilateral decoder 

To investigate the neural consequences of a trilateral computation, we simulated 5000 in-

stances of touch at each location on the sensory surface using the above network. Our initial 

simulations used a mean peak spike count of 10 spikes for neurons in both layers. Simulations 

were also performed across a wide range of mean peak spike counts, ranging from 1 to 100 

spikes. In all cases the same decoding accuracy and shape of variability was found. It should 

also be noted that the results did not depend on identical peak spike counts in both layers, 

and instead this was done for convenience. The equations underlying trilateration in our net-

work (Eqns. 6–9) and all simulations were implemented using custom code in Matlab.  

Simulating alternative decoders 

We further simulated the neural consequences of three different decoding schemes in order 

to compare them with the trilateral decoder. Each decoder contained only a single encoding 
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layer, which was identical to what is described above. These comparisons were not done to 

determine which decoder had the highest decoding accuracy but instead to investigate 

whether their decoding variance varied as a function of touch location. Each decoder esti-

mated the location of touch 𝐿/ from the population response 𝒓𝑬 in the encoding layer (mean 

peak spike count: 10 spikes). All simulations were performed using custom Matlab code. The 

equation underlying each decoding scheme is as follows: 

Log-likelihood decoder: For this decoder, the estimated location of touch 𝐿/ corresponds to the 

location in the encoding population that maximizes the log-likelihood log ℒ for a given tactile 

input at 𝐿 (Jazayeri and Movshon, 2006; Ma et al., 2006), and is calculated via the following 

equation: 

 
𝐿/ = argmax

J
log ℒ(𝐿) =^𝑟CA

#RR

C_#

log 𝑓CA(𝐿) 
 

where 𝐿/ is the location within the encoding layer that maximizes the log-likelihood log ℒ for a 

given tactile input at 𝐿, computed by summing the product between each neuron’s response 

𝑟A  and the log of its tuning curve. 

Winner-take-all decoder: For this decoder, the estimated location of touch 𝐿/ corresponds to 

neuron in the encoding population with the highest spike count.  

 𝐿/ = 	argmax
J

	𝒓𝑬(𝐿)  

in which 𝒓𝑬 is the population response of the encoding neurons following touch at location 𝐿. 

Template matching decoder: For this decoder, the estimated location of touch 𝐿/  corresponds 

to the location-specific Gaussian-shaped template 𝑓; (FWHM: 5% of surface) whose shape 

best matches the shape of the population response 𝒓𝑬: 
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𝐿/ = argmin

J
	^(𝑟CA
#RR

C_#

−𝑓J;(𝑖))' 
 

in which 𝑟CA  is the spike count of the ith neuron to the location of touch 𝐿 and 𝑓J;(𝑖) is the value 

of the Lth template corresponding to the location 𝑖. This equation minimizes the mean squared 

error between population response and the location-specific templates and therefore reflects 

maximum likelihood estimation. 

Behavioral experiment 

Participants 

Twenty-seven right-handed participants in total completed our behavioral experiments. 

Twelve participated in Experiment 1 (8 females, 24±0.63 years of age) and fifteen in Experi-

ment 2 (9 females, 24.2±0.56 years of age. One participant from both Experiments 1 and 2 

was removed due to inability to follow task instructions. All participants had normal or cor-

rected-to-normal vision and no history of neurological impairment. Every participant gave in-

formed consent before the experiment. The study was approved by the ethics committee (CPP 

SUD EST IV, Lyon, France). 

Experiment 1: Passive touch on the forearm 

During the task, participants were seated comfortably in a cushioned chair with their torso 

aligned with the edge of a table and their right arm resting on the table top behind an occluding 

board. On the surface of the table, an LCD screen (70 x 30 cm) lay backside down in the 

length-wise orientation; the edge of the LCD screen was 5 cm from the table’s edge. The 

center of the screen was aligned with the participant’s midline. 

The task of participants was to localize touches applied passively to their arm. In an experi-

mental session, participants completed two tasks with distinct reporting methods (order coun-

terbalanced across participants; combined in the results of the Main Text). In the ‘drawing 
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task’, participants used a cursor to indicate the corresponding location of touch on a down-

sized drawing of a human arm (12 cm in length; forearm and hand); the purpose of using a 

downsized drawing was to dissociate it from the external space occupied by the real arm. The 

drawing began 15 cm from the edge of the table, was raised 5 cm above the table surface, 

and was oriented in parallel with their real arm. The red cursor (circle, 0.2 cm radius) was 

constrained to move in the center of the screen occupied by the drawing. In the ‘external space 

task’, participants used a cursor to indicate the corresponding location of touch within in an 

empty LCD screen (white background). The cursor was constrained to move along the vertical 

bisection of the screen and could be moved across the entire length of the screen. It is critical 

to note that in this task, participants were forced to rely on proprioceptive information about 

their arm position as no other sensory cues were available to do so. 

In each experiment, unknown to the participant, there were six evenly-spaced touch locations 

between 5% to 95% the length of the arm (18% intervals; elbow-to-wrist; mean arm length: 

23.9±0.4 cm). In each task, there were ten trials per touch location, making 60 trials per task 

and 120 trials in total. The specific location for each trial was chosen pseudo-randomly. The 

entire experimental session took approximately 45 minutes.  

The trial structure for each task was as follows: In the ‘Pre-touch phase’, participants sat facing 

the computer screen with their left hand on a trackball. A red cursor was placed at a random 

location within the vertical bisection of the screen. A cue (tap on the right shoulder) indicated 

an impending touch on the volar surface of the forearm. Touch was applied with a von Frey 

microfilament at a suprathreshold level of stimulation (180 g of force) for approximately one 

second. In the ‘Localization phase’, participants made their task-relevant judgment with the 

cursor, controlled by the trackball. Participants never received feedback about their perfor-

mance.  
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Experiment 2: Active touch with the forearm 

The experimental procedures were identical to Experiment 1 with the following exceptions. 

Throughout the experiment, the participant’s right elbow was placed upright in a padded sup-

port with the entire arm hidden from view behind a long occluding board. The task of partici-

pants was to localize touches that resulted from active contact between their right arm (mean 

arm length: 23.5±0.5 cm) and an object (rounded tip plastic cylinder; 1 mm radius). The arm 

was placed at a height necessary for a 1 cm separation between the object and the forearm 

at a posture parallel with the table. To minimize auditory cues during the task, pink noise was 

played continuously over noise-cancelling headphones. During each trial, a ‘go’ cue (tap on 

the right shoulder) indicated that they should actively bring their forearm from to its upright 

posture into contact with the object, placed at one of six locations (5% to 95% of forearm 

length, evenly spaced). Participants were instructed to attempt to hit the object with the same 

speed and force across trials, though this was not measured. The number of trials and report-

ing methods were as in Experiment 1. 

Data analysis 

Localization accuracy 

We used least-squares linear regression to analyze the localization accuracy of each task in 

each experiment. The mean localization judgment for each touch location was modelled as a 

function of actual object location. Accuracy was assessed by comparing the group-level con-

fidence intervals around the slope to zero and one (Miller et al., 2018). To standardize the 

data for each participant and each surface, all judgments were converted to a percentage of 

total surface length. For the drawing task, this amounted to converting judged locations on the 

drawing into percentage of drawing length. For the external space task, this amounted to con-

verting judged locations in the space of the screen into percentage of actual surface or per-

ceived rod length. In the Main Text, we collapsed localization analysis across both localization 
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tasks for the passive and active datasets. This is because performance on the drawing and 

external tasks was nearly identical: passive dataset (drawing vs. external; slope: 1.03 vs. 1.06) 

and active dataset (drawing vs. external; slope: 1.04 vs. 1.08).  

Modelling perceptual variability 

Our model of trilateration in the somatosensory system assumes that the perceived location 

of touch is a consequence of the optimal integration of two independent location estimates,  

𝐿/# and 𝐿/'. This is exemplified in our Bayesian formulation of trilateration (Equations 4-5) as 

well as our neural network implementation (Equations 8-9). As discussed extensively in the 

Main Text, trilateration predicts that noise in each estimate varies linearly as a function of the 

distance of touch from two landmarks (Equation 8), corresponding to the elbow and wrist for 

the arm (Experiments 1 and 2). For any location of touch 𝐿 along a tactile surface, the variance 

in each landmark-specific location estimate 𝐿/ can therefore be written as follows: 

 𝜎#' = (𝜀#̂ + 𝑑#𝜎l)' 

𝜎'' = (𝜀'̂ + 𝑑'𝜎l)' 

in which 𝜀̂ is a landmark-specific intercept term that likely corresponds to uncertainty in the 

location of each landmark, 𝑑 is the distance of touch location 𝐿 from the landmark (Equations 1 

and 2), and 𝜎l is the magnitude of noise per unit of distance. Note that because the noise term 

𝜎l corresponds to a general property of the underlying neural network (Equation 8), it is the 

same for each landmark. The distance-dependent noise for the integrated estimate is there-

fore: 

𝜎9:; = y
𝜎#'𝜎''

𝜎#' + 	𝜎''
 

The three parameters in the model (𝜎l,	𝜀#̂, and 𝜀'̂) are properties of the underlying neural pro-

cesses that implement trilateration and are therefore not directly observable. They must 
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therefore be inferred using a reverse engineering approach (Clemens et al., 2011), where they 

serve as free parameters that are fit to each participant’s variable errors. The equations from 

(Oruç et al., 2003) were used to account for correlated variability in the integration process 

(see Model Predictions). We simultaneously fit the three free parameters to the data using 

non-linear least squares regression. Optimal parameter values were obtained through maxi-

mum likelihood estimation using the Matlab routine ‘fmincon’ (Clemens et al., 2011; McGuire 

and Sabes, 2009; Niehof et al., 2019). All modelling was done with the combined data from 

both localization tasks.  R2 values for each participant in each experiment were taken as a 

measure of the goodness-of-fit between the observed and predicted pattern of location-de-

pendent noise. The values of the fit parameters were compared within experiment using paired 

t-tests.  
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Participant 𝜺l𝟏 𝜺l𝟐 𝝈| R2 RMSE 

1 2.12 2.14 0.28 0.91 1.31 
2 1.91 3.23 0.28 0.79 2.28 
3 9.46 0.01 0.34 0.69 4.13 
4 3.57 2.05 0.29 0.55 4.06 
5 0.76 1.17 0.27 0.91 1.36 
6 3.50 5.89 0.35 0.72 3.31 
7 2.62 0.36 0.45 0.87 2.85 
8 7.53 2.09 0.51 0.77 4.34 
9 2.08 0.97 0.29 0.93 1.29 
10 1.66 0.01 0.65 0.94 2.50 
11 13.50 4.98 0.27 0.84 2.03 
      
Mean 4.43±1.21 2.08±0.59 0.36±0.04 0.81±0.04 2.68±0.35 

 
Supplementary Table 1. Best fit parameters for Experiment 1 
 
 
 
 
 
 
 
 

Participant 𝜺l𝟏 𝜺l𝟐 𝝈| R2 RMSE 

1 4.23 2.68 0.21 0.65 2.25 
2 2.27 2.81 0.21 0.87 1.19 
3 4.07 4.64 0.15 0.57 1.71 
4 5.04 2.69 0.28 0.96 0.89 
5 2.75 0.01 0.31 0.68 3.62 
6 3.99 6.06 0.28 0.92 1.20 
7 4.32 6.21 0.24 0.85 1.42 
8 6.14 0.01 0.27 0.80 2.15 
9 1.57 4.84 0.29 0.98 0.63 
10 1.92 0.41 0.26 0.73 2.47 
11 9.86 0.01 0.32 0.87 2.3 
12 4.72 0.01 0.34 0.63 5.07 
13 6.94 6.39 0.21 0.96 0.55 
14 2.09 1.90 0.22 0.78 1.86 
      
Mean 4.28±0.61 2.77±0.66 0.26±0.01 0.80±0.04 1.95±0.33 

 
Supplementary Table 2. Best fit parameters for Experiment 2 
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Supplementary Figure 1. Removal of correlated bias inherited from encoding layer 

 (A) When the value of g is set to a fixed value, the biases from the encoding layer are inherited by both location 

estimates. Therefore, they are highly correlated (10000 simulations).  (B) When the value of g is instead set to the 

maximum synaptic drive between the encoding and decoding layers (see Methods), this removes the inherited bias 

and thus the correlation between the bias in both location estimates drops near zero. 
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