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ABSTRACT

The observation that even a tiny sample of genome sequences from a natural population contains a
plethora of information about the history of the population has enticed researchers to use these data
to fit complex demographic histories and make detailed inference about the changes a population has
experienced through time. Unfortunately, the standard assumptions required to make these inferences
are often violated by natural populations in such ways as to produce specious results. This paper
examines two phenomena of particular concern: when a sample is drawn from a single sub-population
of a larger meta-population these models infer a spurious recent population decline, and when a
genome contains loci under weak or recessive purifying selection these models infer a spurious recent
population expansion.

Keywords Demographic inference · Effective population size · Coalescent theory

Introduction

Coalescent theory gives us a powerful tool linking observable patterns of genetic diversity in a sample of individuals to
historical properties of the populations from which they descend (e.g. [1, 2]). These approaches have allowed us to
estimate important phenomena such as population sizes, migration rates among populations, and historical changes in
these governing parameters. Recent methods implementing Hidden Markov Models to leverage genome sequencing
data (e.g. [3, 4, 5, 6]) and the lengths of shared segments between individuals (e.g. [7, 8]) have extended the capabilities
of these analyses to fit models with dozens of parameters representing fine-scale changes in populations’ parameters
through time.

Problems, though, can arise, in interpreting the results when analytic models do not account for some of the important
forces contributing to the composition of a population sample. Schrider et al., for instance, point out that transient
periods of natural selection, such as individual selective sweeps, often leave signatures that are easily mistaken for
population bottlenecks [9]. Other forms of model-misspecification, however, can produce more fundamental difficulties
where evidence of dramatic population expansion or contraction arise from populations at complete equilibrium and is
not associated with any change experienced by the population. This paper examines two such conditions. In the first,
the mere existence of other, un-sampled populations is sufficient to generate a signature of recent population contraction
even if none of the populations have ever changed size and all of the parameters describing migration among them
have always remained fixed. The second is ongoing purifying selection with mutations that are either recessive or
weakly deleterious. This generates a signature of population expansion, even without anything changing regarding the
mutational spectrum, fitness landscape, or underlying genetic architecture.
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Results

Un-sampled populations

We simulated 100 replicate samples of two chromosomes taken from the central population of a nine-population
stepping-stone model [10] where each population was comprised of 10,000 haploid individuals and where each
population exchanged a fixed percentage of its individuals with the adjacent populations every generation. These were
entirely neutral simulations of populations with fixed demographic structure. None of the parameters changed at any
point during a simulation. When migration between populations is on the order of a single migrant entering a population
each generation (figure 1) the simulations show a consistent signature of population contraction with recent population
size estimates one tenth the size of older estimates. With decreasing migration rates the magnitude of the signature of
population contraction grows and its onset is pushed farther back in time (supplemental figures S1-S3). As expected
[11], much higher migration rates cause the entire meta-population to behave as a single, large, panmictic population
with no signature of population contraction (supplemental figure S4). With no migration at all the sampled population
behaves as a single, small, panmictic population and again exhibits no signature of population contraction (supplemental
figure S5).

Weak or recessive purifying selection

We simulated sets of 100 replicate constant-sized Wright-Fisher populations of 3,000 diploid individuals experiencing
weak purifying selection. With half of all mutations being neutral and half conferring an additive 0.1% reduction in
fitness we find a signature of population expansion with recent population size estimates an order of magnitude larger
than older ones (figure 2). These mutations are weak enough that they are approaching the lower limit of what natural
selection can act on [12]. Mutations that are more deleterious and systems where a higher proportion of mutations are
deleterious both give rise to even starker signatures of population expansion (supplemental figures S6-S10).

We also simulated sets of 100 replicate constant-sized Wright-Fisher populations of 3,000 diploid individuals where in
addition to neutral mutations, a fraction of new mutations were lethal when homozygous but neutral when heterozygous.
These simulations produced signatures of recent population expansion as well (figure 3). The effect is still present,
though less consistently, when as few as 10% of mutations are recessive lethal (supplemental figure S11).

Conclusions

These phantom signatures of historic changes in population size are not the result of any sort of implementation or
computational difficulty. Rather, they stem from fundamental model misspecifications. As discussed recently in [13],
the concept of an effective population size (Ne) has been a powerful one that has been defined and interpreted in many
different ways throughout the history of population genetics. One particular definition of Ne, the coalescent effective
population size (N c

e ), is the linear scaling of the Kingman coalescent [14] that yields the expected distribution of times
of shared ancestry among individuals within the sample [15]. This is the concept of population size that is being
estimated from coalescent-based demographic inference algorithms. Deviations from a constantly-scaled Kingman
coalescent history of a sample are being interpreted as changes in historical population size. Difficulty arises from
conditions for which a sample’s genealogy is not expected to converge to a Kingman coalescent. If there is no single
re-scaling that recovers a Kingman coalescent, algorithms are forced to introduce temporally-shifting population sizes
to explain the inferred distribution of coalescent events. This is why even with completely stationary phenomena such
as the presence of un-sampled populations or mildly deleterious (or recessive) mutations, coalescent-based inference of
demographic history produces artifacts of dynamic changes in effective population size.

Intuitively, for the example of un-sampled populations, one can imagine that individuals who share recent common
ancestors do so by a process dominated by the local parameters of the population in which they were sampled. If
individuals do not share a recent common ancestor, however, the probability increases that they have ancestors who
belonged to different populations, and the process that describes their relationship to each other is one that involves
multiple populations’ worth of individuals as well as the rate of migration among them. This time-varying signature
from a static demographic structure is a distinct phenomenon from transient increases in N c

e due to transient increases
in population structure discussed in [3].

With weak or recessive deleterious mutations, new mutations are not immediately removed from the population. While
they segregate, carriers of these alleles are free to contribute to the ancestry pool of subsequent generations. Over time,
however, natural selection acts to remove these variants, reducing the number of potential ancestors over longer time
periods. In both cases, at any and every point in time, the process describing the recent history of a sample is distinct
from the process describing its more distant past, though neither of these processes involve any change in the population
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at any point in time. "Recent" and "distant" history are forever relative to the time of sampling as the genealogy will
never have the simple form of a Kingman coalescent.

This problem is then compounded when comparing samples taken at different time points, such as a modern sample
and ancient DNA. In any of the above examples, if the ancient sample is drawn from a population directly ancestral to
the modern sample the two will share identical patterns of expansion or contraction, but do so relative to their distinct
sample times producing diverged historical effective population sizes. If their shared history includes periods of true
demographic variation (such as a population bottleneck or selective sweep), those signals would appear on an absolute
timescale. No translation or scaling of the inferred historical N c

e would align the two trajectories, even though they
represent the same population.

Un-sampled populations, mildly deleterious mutations, and recessive deleterious mutations are all examples of phenom-
ena that cause a population to deviate from Kingman coalescent, and yet are wide-spread throughout the natural world.
Entire species rarely behave as a single panmictic population and it is not reasonable to expect that any researcher will
sample all of a species’ populations. Organisms such as Arabidopsis thaliana with reduced non-coding portions of the
genome [16] and population structure that can be characterized primarily by isolation by distance [17] are likely to be
particularly recalcitrant to accurate inference and may comprise a worst-case scenario.

Going forward, coalescent-based algorithms for demography inference will require more care and attention to imple-
mentation and interpretation. Modern methods allow us to accurately estimate historical coalescent intensities. Simply
summarizing those intensities as a function of a time-varying effective population size, however, can lead to greater
confusion than insight. Considering the undesired confounding from natural selection, whenever possible researchers
should start by masking genomes to enrich for regions that are far removed from regions known to experience selective
constraint. Considering population structure, it will be necessary to develop new analytical methods flexible enough to
directly account for demographic histories that are far more complex than the current state of the art. Until that point,
results from these kinds of inference must be treated skeptically, as the values represented will reflect a delicate balance
of multiple different forces occurring across different time periods and likely varying in composition and strength across
populations.

Methods

Each simulation used constant mutation and recombination rates of 10−8 per-base, per-generation. We used coalescent
simulation (as implemented in msprime version 0.7.3 [18]) to create pairs of 50Mb chromosomes from each replicate
for the neutral stepping stone scenarios. We used Wright-Fisher simulations (as implemented in SLiM3.3.1 [19]) for
scenarios involving natural selection. The Wright-Fisher simulations were initialized from neutral expectations and
run forward in time for 30,000 (10N ) generations before sampling two 100 Mb chromosomes from each. Mutations
in SLiM were sampled from a fixed fitness effect distribution, and all mutations that became fixed in the population
were not removed from the simulation by setting "convertToSubstitution = F". All simulated variants with a physical
position that appears more than once in a single simulation were removed from the analysis. We used MSMC [5] version
1.1.0 with default settings to infer the demographic history of each sample. Each MSMC input file was formatted using
generate_multihetsep.py from msmc-tools. MSMC output 40 time steps, but different time intervals for each
simulation replicate. Therefore, we used the median time value at each time interval when forming the step plots of
population size estimates.
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Figure 1: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104 and the per-generation migration rate between adjacent populations is a constant 10−4.
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Figure 2: Inferred historic population size in presence of mildly deleterious mutations. Estimates of effective population
sizes from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing weak purifying
selection. Each new mutation has a 50% chance of conferring a 0.1% reduction of fitness.
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Figure 3: Inferred historic population size in presence of recessive lethal mutations. Estimates of effective population
sizes from a sample of two chromosomes drawn from a population of 3,000 individuals where each new mutation has a
50% chance of incurring lethality when homozygous.
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Figure S1: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104 and the per-generation migration rate between adjacent populations is a constant 10−5.
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Figure S2: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104 and the per-generation migration rate between adjacent populations is a constant 10−6.
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Figure S3: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104 and the per-generation migration rate between adjacent populations is a constant 10−7.
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Figure S4: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104 and the per-generation migration rate between adjacent populations is a constant 10−3.
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Figure S5: Inferred historic population size in presence of un-sampled populations. Estimates of effective population
sizes from a sample of two chromosomes drawn from the central of nine linearly arrayed populations. Each population
has a fixed size of 104. There is no migration among populations.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.26.173963doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173963
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - JUNE 26, 2020

Generations

P
op

ul
at

io
n 

S
iz

e

10
0

10
00

30
00

50
00

70
00

1
1e

1
1e

2
1e

3
1e

4
1e

5
1e

6

5th−95th Percentile
25th Percentile
75th Percentile
median

Figure S6: Inferred historic population size in presence of deleterious mutations. Estimates of effective population sizes
from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing purifying selection.
Each new mutation confers a 1% reduction of fitness.
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Figure S7: Inferred historic population size in presence of deleterious mutations. Estimates of effective population sizes
from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing purifying selection.
Each new mutation confers a 0.1% reduction of fitness.
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Figure S8: Inferred historic population size in presence of deleterious mutations. Estimates of effective population sizes
from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing purifying selection.
Each new mutation has a 50% chance of conferring a 1% reduction of fitness.
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Figure S9: Inferred historic population size in presence of deleterious mutations. Estimates of effective population sizes
from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing purifying selection.
Each new mutation has a 10% chance of conferring a 1% reduction of fitness.
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Figure S10: Inferred historic population size in presence of mildly deleterious mutations. Estimates of effective
population sizes from a sample of two chromosomes drawn from a population of 3,000 individuals experiencing weak
purifying selection. Each new mutation has a 10% chance of conferring a 0.1% reduction of fitness.

Generations

P
op

ul
at

io
n 

S
iz

e

10
0

10
00

30
00

50
00

70
00

1e
2

1e
3

1e
4

1e
5

1e
6

5th−95th Percentile
25th Percentile
75th Percentile
median

Figure S11: Inferred historic population size in presence of recessive lethal mutations. Estimates of effective population
sizes from a sample of two chromosomes drawn from a population of 3,000 individuals where each new mutation has a
10% chance of incurring lethality when homozygous.
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