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Significance 2 

Language is a quintessentially human ability. Research has long probed the functional architecture of language processing in 3 

the mind and brain using diverse brain imaging, behavioral, and computational modeling approaches. However, adequate 4 

neurally mechanistic accounts of how meaning might be extracted from language are sorely lacking. Here, we report an 5 

important first step toward addressing this gap by connecting recent artificial neural networks from machine learning to 6 

human recordings during language processing. We find that the most powerful models predict neural and behavioral 7 

responses across different datasets up to noise levels. Models that perform better at predicting the next word in a sequence 8 

also better predict brain measurements – providing computationally explicit evidence that predictive processing 9 

fundamentally shapes the language comprehension mechanisms in the human brain. 10 

 11 

 12 

Abstract 13 

The neuroscience of perception has recently been revolutionized with an integrative modeling approach in which computation, 14 

brain function, and behavior are linked across many datasets and many computational models. By revealing trends across models, 15 

this approach yields novel insights into cognitive and neural mechanisms in the target domain. We here present a first systematic 16 

study taking this approach to higher-level cognition: human language processing, our species’ signature cognitive skill. We find 17 

that the most powerful ‘transformer’ models predict nearly 100% of explainable variance in neural responses to sentences and 18 

generalize across different datasets and imaging modalities (fMRI, ECoG). Models’ neural fits (‘brain score’) and fits to behavioral 19 

responses are both strongly correlated with model accuracy on the next-word prediction task (but not other language tasks). 20 

Model architecture appears to substantially contribute to neural fit. These results provide computationally explicit evidence that 21 

predictive processing fundamentally shapes the language comprehension mechanisms in the human brain.  22 
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A core goal of neuroscience is to decipher from patterns of neural activity the algorithms underlying our abilities to 29 

perceive, think, and act. Recently, a new “reverse engineering” approach to computational modeling in systems 30 

neuroscience has transformed our algorithmic understanding of the primate ventral visual stream (Bao et al., 2020; Cadena 31 

et al., 2019; Cichy et al., 2016; Kietzmann et al., 2019; Kubilius et al., 2019; Schrimpf et al., 2018, 2020; Yamins et al., 2014), 32 

and holds great promise for other aspects of brain function. This approach has been enabled by a breakthrough in artificial 33 

intelligence (AI): the engineering of artificial neural network (ANN) systems that perform core perceptual tasks with 34 

unprecedented accuracy, approaching human levels, and that do so using computational machinery that is abstractly similar 35 

to biological neurons. In the ventral visual stream, the key AI developments come from deep convolutional neural networks 36 

(DCNNs) that perform visual object recognition from natural images (Cireşan et al., 2012; Krizhevsky et al., 2012; Schrimpf et 37 

al., 2018, 2020; Yamins et al., 2014), widely thought to be the primary function of this pathway. Leading DCNNs for object 38 

recognition have now been shown to predict the responses of neural populations in multiple stages of the ventral stream 39 

(V1, V2, V4, IT), in both macaque and human brains, approaching the noise ceiling of the data. Thus, despite abstracting 40 

away aspects of biology, DCNNs provide the basis for a first complete hypothesis of how the brain extracts object percepts 41 

from visual input. 42 

 43 

Inspired by this success story, analogous ANN models have now been applied to other domains of perception (Kell et al., 44 

2018; Zhuang et al., 2017). Could these models also let us reverse-engineer the brain mechanisms of higher-level human 45 

cognition? Here we show for the first time how the modeling approach pioneered in the ventral stream can be applied to a 46 

higher-level cognitive domain that plays an essential role in human life: language comprehension, or the extraction of 47 

meaning from spoken, written or signed words and sentences. Cognitive scientists have long treated neural network models 48 

of language processing with skepticism (Marcus, 2018; Pinker & Prince, 1988) given that these systems lack (and often 49 

deliberately attempt to do without) explicit symbolic representation – traditionally seen as a core feature of linguistic 50 

meaning. Recent ANN models of language, however, have proven capable of at least approximating some aspects of 51 

symbolic computation, and have achieved remarkable success on a wide range of applied natural language processing (NLP) 52 

tasks. The results presented here, based on this new generation of ANNs, suggest that a computationally adequate model of 53 

language processing in the brain may be closer than previously thought. 54 

 55 

Because we build on the same logic in our analysis of language in the brain, it is helpful to review why the neural network-56 

based integrative modeling approach has proven so powerful in the study of object recognition in the ventral stream. 57 

Crucially, our ability to robustly link computation, brain function, and behavior is supported not by testing a single model on 58 

a single dataset or a single kind of data, but by large-scale integrative benchmarking (Schrimpf et al., 2020) that establishes 59 

consistent patterns of performance across many different ANNs applied to multiple neural and behavioral datasets, 60 

together with their performance on the proposed core computational function of the brain system under study. Given the 61 

complexities of the brain’s structure and the functions it performs, any one of these models is surely oversimplified and 62 

ultimately wrong – at best, an approximation of some aspects of what the brain does. But some models are less wrong than 63 

others, and consistent trends in performance across models can reveal not just which model best fits the brain, but which 64 

properties of a model underlie its fit to the brain, thus yielding critical insights that transcend what any single model can tell 65 

us. 66 
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In the ventral stream specifically, our understanding that computations underlying object recognition are analogous to the 67 

structure and function of DCNNs is supported by findings that across hundreds of model variants, DCNNs that perform better 68 

on object recognition tasks also better capture human recognition behavior and neural responses in IT cortex of both human 69 

and non-human primates (Rajalingham et al., 2018; Schrimpf et al., 2018, 2020; Yamins et al., 2014). This integrative 70 

benchmarking reveals a rich pattern of correlations among three classes of performance measures — (i) neural variance 71 

explained, in IT neurophysiology or fMRI responses (brain scores), (ii) accuracy in predicting hits and misses in human object 72 

recognition behavior, or human object similarity judgments (behavioral scores), and (iii) accuracy on the core object 73 

recognition task (computational task score) — such that for any individual DCNN model we can predict how well it would 74 

score on each of these measures from the other measures. This pattern of results was not assembled in a single paper but in 75 

multiple papers across several labs and several years. Taken together, they provide strong evidence that the ventral stream 76 

supports primate object recognition through something like a deep convolutional feature hierarchy, the exact details of which 77 

are being modeled with ever-increasing precision. 78 

Here we describe an analogous pattern of results for ANN models of human language, establishing a link between language 79 

models, including transformer-based ANN architectures that have revolutionized natural language processing in AI systems 80 

over the last three years, and fundamental computations of human language processing as reflected in both neural and 81 

behavioral measures.  Language processing is known to depend causally on a left-lateralized fronto-temporal brain network 82 

(Bates et al., 2003; Binder et al., 1997; Fedorenko & Thompson-Schill, 2014; Friederici, 2012; Gorno-Tempini et al., 2004; 83 

Hagoort, 2019; Price, 2010) (Fig. 1) that responds robustly and selectively to linguistic input (Fedorenko et al., 2011; Monti et 84 

al., 2012), whether auditory or visual (Deniz et al., 2019; Regev et al., 2013). Yet the precise computations underlying language 85 

processing in the brain remain unknown. Computational models of sentence processing have previously been used to explain 86 

both behavioral (Dotlačil, 2018; Futrell, Gibson, & Levy, 2020; Gibson, 1998; Gibson et al., 2013; Hale, 2001; Jurafsky, 1996; 87 

Figure 1: Comparing Artificial Neural Network models of language processing to human language processing. We tested how well different models predict 

measurements of human neural activity (fMRI and ECoG) and behavior (reading times) during language comprehension. The candidate models ranged from 

simple embedding models to more complex recurrent and transformer networks. Stimuli ranged from sentences to passages to stories and were 1) fed into 

the models, and 2) presented to human participants (visually or auditorily). Models’ internal representations were evaluated on three major dimensions: 

their ability to predict human neural representations (brain score, extracted from within the fronto-temporal language network (e.g., Fedorenko et al., 2010; 

the network topography is schematically illustrated in red on the template brain above); their ability to predict human behavior in the form of reading times

(behavioral score); and their ability to perform computational tasks such as next-word prediction (computational task score). Consistent relationships 

between these measures across many different models reveal insights beyond what a single model can tell us. 
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Lakretz et al., 2020; Levy, 2008a, 2008b; Lewis et al., 2006; McDonald & Macwhinney, 1998; Smith & Levy, 2013; Spivey-88 

Knowlton, 1996; Steedman, 2000; van Schijndel et al., 2013), and neural responses to linguistic input (Brennan et al., 2016; 89 

Brennan & Pylkkänen, 2017; Ding et al., 2015; Frank et al., 2015; Henderson et al., 2016; Huth et al., 2016; Lopopolo et al., 90 

2017; Lyu et al., 2019; T. M. Mitchell et al., 2008; Nelson et al., 2017; Pallier et al., 2011; Pereira et al., 2018; Rabovsky et al., 91 

2018; Shain et al., 2020; Wehbe et al., 2014; Willems et al., 2016; Gauthier & Ivanova, 2018; Gauthier & Levy, 2019; Hu et al., 92 

2020; Jain & Huth, 2018; S. Wang et al., 2020; Schwartz et al., 2019; Toneva & Wehbe, 2019). However, none of the prior 93 

studies have attempted large-scale integrative benchmarking that has proven so valuable in understanding key brain-94 

behavior-computation relationships in the ventral stream; instead, they have typically tested one or a small number of models 95 

against a single dataset, and the same models have not been evaluated on all three metrics of neural, behavioral, and 96 

objective task performance. Previously tested models have also left much of the variance in human neural/behavioral data 97 

unexplained. Finally, until the rise of recent ANNs (e.g., transformer architectures), language models did not have sufficient 98 

capacity to solve the full linguistic problem that the brain solves – to form a representation of sentence meaning capable of 99 

performing a broad range of real-world language tasks on diverse natural linguistic input. We are thus left with a collection 100 

of suggestive results but no clear sense of how close ANN models are to fully explaining language processing in the brain, or 101 

what model features are key in enabling models to explain neural and behavioral data. 102 

Our goal here is to present a first systematic integrative modeling study of language in the brain, at the scale necessary to 103 

discover robust relationships between neural and behavioral measurements from humans, and performance of models on 104 

language tasks. We seek to determine not just which model fits empirical data best, but what dimensions of variation across 105 

models are correlated with fit to human data. This approach has not been applied in the study of language or any other higher 106 

cognitive system, and even in perception has not been attempted within a single integrated study. Thus, we view our work 107 

more generally as a template for how to apply the integrative benchmarking approach to any perceptual or cognitive system. 108 

Specifically, we examined the relationships between 43 diverse state-of-the-art ANN language models (henceforth ’models’) 109 

across three neural language comprehension datasets (two fMRI, one electrocorticography (ECoG)), as well as behavioral 110 

signatures of human language processing in the form of self-paced reading times, and a range of linguistic functions assessed 111 

via standard engineering tasks from NLP. The models spanned all major classes of existing ANN language approaches and 112 

included simple embedding models (e.g., GloVe (Pennington et al., 2014)), more complex recurrent neural networks (e.g., 113 

LM1B (Jozefowicz et al., 2016)), and many variants of transformers or attention-based architectures—including both 114 

‘unidirectional-attention’ models (trained to predict the next word given the previous words; e.g., GPT (Radford et al., 2019)) 115 

and ‘bidirectional-attention’ models (trained to predict a missing word given the surrounding context; e.g., BERT (Devlin et 116 

al., 2018)).  117 

Our integrative approach yielded four major findings. (1) Models’ relative fit to neural data (neural predictivity or “brain 118 

score’’)—estimated on held-out test data—generalizes across different datasets and imaging modality (fMRI, ECoG), and 119 

certain architectural features consistently lead to more brain-like models: transformer-based models perform better than 120 

recurrent networks or word-level embedding models, and larger-capacity models perform better than smaller models. (2) 121 

The best models explain nearly 100% of the explainable variance (up to the noise ceiling) in neural responses to sentences. 122 

This result stands in stark contrast to earlier generations of models that have typically accounted for at most 30-50% of the 123 

predictable neural signal. (3) Across models, significant correlations hold among all three metrics of model performance: brain 124 

scores (fit to fMRI and ECoG data), behavioral scores (fit to reading time), and model accuracy on the next-word prediction 125 

task. Importantly, no other linguistic task was predictive of models’ fit to neural or behavioral data. These findings provide 126 

strong evidence for a classic hypothesis about the computations underlying human language understanding, that the brain’s 127 

language system is optimized for predictive processing in the service of meaning extraction. (4) Intriguingly, the scores of 128 

models initialized with random weights (prior to training, but with a trained linear readout) are well above chance and 129 

correlate with trained model scores, which suggests that network architecture is an important contributor to a model’s brain 130 

score. In particular, one architecture introduced just in 2019, the generative pre-trained transformer (GPT-2), consistently 131 

outperforms all other models and explains almost all variance in both fMRI and ECoG data from sentence processing tasks. 132 

GPT-2 is also arguably the most cognitively plausible of the transformer models (because it uses unidirectional, forward 133 

attention), and performs best overall as an AI system when considering both natural language understanding and natural 134 

language generation tasks. Thus, even though the goal of contemporary AI is to improve model performance and not 135 
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necessarily to build models of brain processing, this endeavor appears to be rapidly converging on architectures that might 136 

capture key aspects of language processing in the human mind and brain. 137 

 138 

Results 139 

We evaluated a broad range of state-of-the-art ANN language models on the match of their internal representations to three 140 

human neural datasets. The models spanned all major classes of existing language models (Methods_5, Table S11). The 141 

neural datasets consisted of i) fMRI activations while participants read short passages, presented one sentence at a time 142 

(across two experiments) that spanned diverse topics (Pereira2018 dataset (Pereira et al., 2018)); ii) ECoG recordings while 143 

participants read semantically and syntactically diverse sentences, presented one word at a time (Fedorenko2016 dataset 144 

(Fedorenko et al., 2016)); and iii) fMRI BOLD signal time-series elicited while participants listened to ~5-minutes-long 145 

naturalistic stories (Blank2014 dataset (Blank et al., 2014)) (Methods_1-3). Thus, the datasets varied in the imaging modality 146 

(fMRI/ECoG), the nature of the materials (unconnected sentences/passages/stories), the grain of linguistic units to which 147 

responses were recorded (sentences/words/2s-long story fragments), and presentation modality (reading/listening). In most 148 

analyses, we consider the overall results across the three neural datasets; when considering the results for the individual 149 

neural datasets, we give the most weight to Pereira2018 because it includes multiple repetitions per stimulus (sentence) 150 

within each participant and quantitatively exhibits the highest internal reliability (Fig. S1). Because our research questions 151 

concern language processing, we extracted neural responses from language-selective voxels or electrodes that were 152 

functionally identified by an extensively validated independent ’localizer‘ task that contrasts reading sentences versus 153 

nonword sequences (Fedorenko et al., 2010). This localizer robustly identifies the fronto-temporal language-selective 154 

network (Methods_1-3). 155 

To compare a given model to a given dataset, we presented the same stimuli to the model that were presented to humans 156 

in neural recording experiments and ‘recorded’ the model’s internal activations (Methods_5-6, Fig. 1). We then tested how 157 

well the model recordings could predict the neural recordings for the same stimuli, using a method originally developed for 158 

studying visual object recognition (Schrimpf et al., 2018; Yamins et al., 2014). Specifically, using a subset of the stimuli, we 159 

fit a linear regression from the model activations to the corresponding human measurements, modeling the response of 160 

each voxel (Pereira2018) / electrode (Fedorenko2016) / brain region (Blank2014) as a linear weighted sum of responses of 161 

different units from the model. We then computed model predictions by applying the learned regression weights to model 162 

activations for the held-out stimuli, and evaluated how well those predictions matched the corresponding held-out human 163 

measurements by computing Pearson’s correlation coefficient. We further normalized these correlations by the extrapolated 164 

reliability of the particular dataset, which places an upper bound (‘ceiling‘) on the correlation between the neural 165 

measurements and any external predictor (Methods_7, Fig. S1). The final measure of a model’s performance (‘score’) on a 166 

dataset is thus Pearson’s correlation between model predictions and neural recordings divided by the estimated ceiling and 167 

averaged across voxels/electrodes/regions and participants. We report the score for the best-performing layer of each model 168 

(Methods_6, Fig. S12) but controlled for the generality of the layer choice in a train/test split (Fig. S2b, c). 169 

Specific models accurately predict human brain activity. We found (Fig. 2a-b) that specific models predict Pereira2018 and 170 

Fedorenko2016 datasets with up to 100% predictivity relative to the noise ceiling (Methods_7, Fig. S1). These scores 171 

generalize to another metric, “RDM”, based on representational similarity without any fitting (Fig. S2a). The Blank2014 172 
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dataset is also reliably predicted, but with lower predictivity. Models vary substantially in their ability to predict neural data. 173 

Generally, embedding models such as GloVe do not perform well on any dataset. In contrast, recurrent networks such as skip-174 

thoughts, as well as transformers such as BERT, predict large portions of the data. The model that predicts the human data 175 

best across datasets is GPT2-xl, a unidirectional-attention transformer model, which predicts Pereira2018 and Fedorenko2016 176 

at close to 100% of the noise ceiling and is among the highest-performing models on Blank2014 with 32% normalized 177 

predictivity. These scores are higher in the language network than other parts of the brain (SI-4). Intermediate layer 178 

representations in the models are most predictive, significantly outperforming representations at the first and output layers 179 

(Figs. 2c, S13). 180 

Model scores are consistent across experiments/datasets. To test the generality of the model representations, we examined the 181 

consistency of model brain scores across datasets. Indeed, if a model achieves a high brain score on one dataset, it tends to 182 

also do well on other datasets (Fig. 2d), ruling out the possibility that we are picking up on spurious, dataset-idiosyncratic 183 

predictivity, and suggesting that the models’ internal representations are general enough to capture brain responses to 184 

diverse linguistic materials presented visually or auditorily, and across three independent sets of participants. Specifically, 185 

model brain scores across the two experiments in Pereira2018 (overlapping sets of participants) correlate at r=.94 (Pearson 186 

here and elsewhere, p<<.00001), scores from Pereira2018 and Fedorenko2016 correlate at r=.50 (p<.001), and from 187 

Pereira2018 and Blank2014 at r=.63 (p<.0001). 188 

 189 

Next-word-prediction task performance selectively predicts brain scores. In the critical test of which computations might 190 

underlie human language understanding, we examined the relationship between the models’ ability to predict an upcoming 191 

word and their brain scores. Words from the Wikitext-2 dataset (Merity et al., 2016) were sequentially fed into the candidate 192 

models. We then fit a linear classifier (over words in the vocabulary; n=50k) from the last layer’s feature representation 193 

(frozen, i.e. no finetuning) on the training set to predict the next word, and evaluated performance on the held-out test set 194 

(Methods_8). Indeed, next-word-prediction task performance robustly predicts brain scores (Fig. 3a; r=.44, p<.01, averaged 195 

across datasets). The best language model, GPT2-xl, also achieves the highest brain score (see previous section). This 196 

relationship holds for model variants within each model class—embedding models, recurrent networks, and transformers—197 

ruling out the possibility that this correlation is due to between-class differences in next-word-prediction performance. 198 

To test whether next-word prediction is special in this respect, we asked whether model performance on any language task 199 

correlates with brain scores. As with next-word prediction, we kept the model weights fixed and only trained a linear readout. 200 

We found that performance on tasks from the GLUE benchmark collection (Cer et al., 2018; Dolan & Brockett, 2005; Levesque 201 

et al., 2012; Rajpurkar et al., 2016; Socher et al., 2013; A. Wang, Singh, et al., 2019; Warstadt et al., 2019; Williams et al., 202 

Figure 2: Specific models accurately predict neural responses consistently across datasets. (a) We compared 43 computational models of language 

processing (ranging from embedding to recurrent and bi- and uni-directional transformer models) in their ability to predict human brain data. The neural

datasets include: fMRI voxel responses to visually presented (sentence-by-sentence) passages (Pereira2018), ECoG electrode responses to visually presented 

(word-by-word) sentences (Fedorenko2016), fMRI region of interest (ROI) responses to auditorily presented ~5min-long stories (Blank2014). For each model, 

we plot the normalized predictivity (‘brain score’), i.e. the fraction of ceiling (gray line; Methods_7, Fig. S1) that the model can predict. Ceiling levels are .32 

(Pereira2018), .17 (Fedorenko2016), and .20 (Blank2014). Model classes are grouped by color (Methods_5, Table S10). Error bars (here and elsewhere) 

represent median absolute deviation over subject scores. (b) Normalized predictivity of GloVe (a low-performing embedding model) and GPT2-xl (a high-

performing transformer model) in the language-responsive voxels in the left hemisphere of two representative participants from Pereira2018 (also Fig. S3).

(c) Brain score per layer in GPT2-xl. Middle-to-late layers generally yield the highest scores for Pereira2018 and Blank2014 whereas earlier layers better 

predict Fedorenko2016. This difference might be due to predicting individual word representations (within a sentence) in Fedorenko2016, as opposed to 

whole-sentence representations in Pereira2018. (d) To test how well model brain scores generalize across datasets, we correlated i) two experiments with

different stimuli (and some participant overlap) in Pereira2018 (obtaining a very strong correlation), an ii) Pereira2018 brain scores with the scores for each 

of Fedorenko2016 and Blank2014 (obtaining lower but still highly significant correlations). Brain scores thus tend to generalize across datasets, although 

differences between datasets exist which warrant the full suite of datasets. 
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2018)—including grammaticality judgments, sentence similarity judgments, and entailment—does not predict brain scores  203 

(Fig. 3b-c). The difference in the strength of correlation between brain scores and the next-word prediction task performance 204 

vs. the GLUE tasks performance is highly reliable (p<<0.00001, t-test over 1,000 bootstraps of scores and corresponding 205 

correlations; Methods_9). This result suggests that optimizing for predictive representations may be a critical shared objective 206 

of biological and artificial neural networks for language, and perhaps more generally (Keller and Mrsic-Flogel, 2018; Singer et 207 

al., 2018). 208 

 209 

Brain scores and next-word-prediction task performance correlate with behavioral scores. Beyond internal neural 210 

representations, we tested the models’ ability to predict external behavioral outputs because, ultimately, in integrative 211 

benchmarking, we strive for a computationally precise account of language processing that can explain both neural response 212 

patterns and observable linguistic behaviors. We chose a large corpus (n=180 participants) of self-paced reading times for 213 

naturalistic story materials (Futrell2018 dataset (Futrell, Gibson, Tily, et al., 2020)). Per-word reading times provide a theory-214 

neutral measure of incremental comprehension difficulty, which has long been a cornerstone of psycholinguistic research in 215 

testing theories of sentence comprehension (Demberg & Keller, 2008; Gibson, 1998; Just & Carpenter, 1980; D. C. Mitchell, 216 

1984; Rayner, 1978; Smith & Levy, 2013) and which were recently shown to robustly predict neural activity in the language 217 

network (Wehbe et al., 2020). 218 

Specific models accurately predict reading times. We regressed each model’s last layer’s feature representation (i.e., closest to the 219 

output) against reading times and evaluated predictivity on held-out words. As with the neural datasets, we observed a 220 

Figure 3: Model performance on a next-word-prediction task selectively predicts brain scores. (a) Next-word-prediction task performance was evaluated as 

the surprisal between the predicted and true next word in the WikiText-2 dataset of 720 Wikipedia articles, or perplexity (x-axis, lower is better; training only 

a linear readout leading to worse perplexity values than canonical fine-tuning, see Methods-8). Next-word-prediction task scores strongly predict brain scores 

across datasets (inset: this correlation is significant for two individual datasets: Pereira2018 and Blank2014; the correlation for Fedorenko2016 is positive but

not significant). (b) Performance on diverse language tasks from the GLUE benchmark collection does not correlate with overall or individual-dataset brain 

scores (inset; SI-5; training only a linear readout). (c) Correlations of individual tasks with brain scores. Only improvements on next-word prediction lead to 

improved neural predictivity. 

Figure 4: Behavioral scores, brain scores, and next-word-prediction task performance are pairwise correlated. (a) Behavioral predictivity of each model on 

Futrell2018 reading times (notation similar to Fig. 2). Ceiling level is .76. (b) Models’ neural scores aggregated across the three neural datasets (or for each 

dataset individiually; inset and Fig. S6) correlates with behavioral scores. (c) Next-word-prediction task performance (Fig. 3) correlates with behavioral scores.

Performance on other language tasks (from the GLUE benchmark collection) does not correlate with behavioral scores (Fig. S7). 
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spread of model ability to capture human behavioral data, with models such as GPT2-xl and AlBERT-xxlarge predicting these 221 

data close to the noise ceiling (Fig. 4a; also Merkx & Frank, 2020; Wilcox et al., 2020). 222 

Brain scores correlate with behavioral scores. To test whether models with the highest brain scores also predict reading times 223 

best, we compared models’ neural predictivity (across datasets) with those same models’ behavioral predictivity. Indeed, 224 

we observed a strong correlation (Fig. 4b; r=.65, p<<.0001), which also holds for the individual neural datasets (inset and 225 

Fig. S6). These results suggest that further improving models’ neural predictivity will simultaneously improve their 226 

behavioral predictivity. 227 

Next-word-prediction task performance correlates with behavioral scores. Next-word-prediction task performance is predictive of 228 

reading times (Fig. 4c; r=.67, p<<.0001), in line with earlier studies (Goodkind & Bicknell, 2018; van Schijndel & Linzen, 2018) 229 

and thus connecting all three measures of performance: brain scores, behavioral scores, and task performance on next-word 230 

prediction.  231 

 232 

Model architecture contributes to model-to-brain relationship. The brain’s language network plausibly arises through a 233 

combination of evolutionary and learning-based optimization. In a first attempt to test the relative importance of the models’ 234 

intrinsic architectural properties vs. training-related features, we performed two analyses. First, we found that architectural 235 

features (e.g. number of layers) but neither of the features related to training (e.g. dataset and vocabulary size) significantly 236 

predicted improvements in model performance on the neural data (S10, Table S11). These results align with prior studies that 237 

had reported that architectural differences affect model performance on normative tasks like next-word prediction after 238 

training, and define the representational space that the model can learn (Arora et al., 2018; Fukushima, 1988; Geiger et al., 239 

2020). Second, we computed brain scores for the 43 models without training, i.e. with initial (random) weights. Note that the 240 

predictivity metric still trains a linear readout on top of the model representations. Surprisingly, even with no training, several 241 

models achieved reasonable scores (Fig. 5), consistent with recent results of models in high-level visual cortex (Geiger et al., 242 

2020) as well as findings on the power of random initializations in natural language processing (Merchant et al., 2020; Tenney 243 

et al., 2019; Zhang & Bowman, 2018). For example, across the three datasets, untrained GPT2-xl achieves an average 244 

predictivity of ~51%, only ~20% lower than the trained network. A similar trend is observed across models: training generally 245 

improves brain scores, on average by 53%. Across models, the untrained scores are strongly predictive of the trained scores 246 

(r=.74, p<<.00001), indicating that models that already perform well with random weights improve further with training.  247 

To ensure the robustness and generalizability of the results for untrained models, and to gain further insights into these 248 

results, we performed four additional analyses (Fig. S9). First, we tested a random context-independent embedding with 249 

equal dimensionality to the GPT2-xl model but no architectural priors and found that it predicts only a small fraction of the 250 

neural data, on average below 15%, suggesting that a large feature space alone is not sufficient (Fig. S9a). Second, to ensure 251 

Figure 5: Model architecture contributes to the model-brain relationship. 

We evaluate untrained models by keeping weights at their initial random 

values. The remaining representations are driven by architecture alone 

and are tested on the neural datasets (Fig. 2). Across the three datasets, 

architecture alone yields representations that predict human brain activity 

considerably well. On average, training improves model scores by 53%. For 

Pereira2018, training improves predictivity the most whereas for 

Fedorenko2016 and Blank2014, training does not always change—and for 

some models even decreases—neural scores (Fig. S8). The untrained 

model performance is consistently predictive of its performance after 

training across and within (inset) datasets. 
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that the overlap between the linguistic materials (words, bigrams, etc.) used in the train and test splits is not driving the 252 

results, we quantified the overlap and found it to be low, especially for bi- and tri-grams (Fig. S9b). Third, to ensure that the 253 

linear regression used in the predictivity metric did not artificially inflate the scores of untrained models, we used an 254 

alternative metric – “RDM” – that does not involve any fitting. Scores of untrained models on the predictivity metric 255 

generalized to scores on the RDM metric (Fig. S9d). Finally, we examined the performance of untrained models with a trained 256 

linear readout on the next-word prediction task and found similar performance trends to those we observed for the neural 257 

scores (Fig. S9c), confirming the representational power of untrained representations. 258 

 259 

 260 

 261 

Discussion 262 

Summary of key results and their implications. 263 

Our results, summarized in Fig. 6, show that specific ANN language models can predict human neural and behavioral 264 

responses to linguistic input with high accuracy: the best models achieve, on some datasets, perfect predictivity relative to 265 

the noise ceiling. Model scores correlate across neural and behavioral datasets spanning recording modalities (fMRI, ECoG, 266 

reading times) and diverse materials presented visually and auditorily across three sets of participants, establishing the 267 

robustness and generality of these findings. Critically, both neural and behavioral scores correlate with model performance 268 

on the normative next-word prediction task – but not other language tasks. Finally, untrained models with random weights 269 

(and a trained linear readout) produce representations beginning to approximate those in the brain’s language network. 270 

 271 

Predictive language processing. Underlying the integrative modeling framework, implemented here in the cognitive domain of 272 

language, is the idea that large-scale neural networks can serve as hypotheses of the actual computations conducted in the 273 

brain. We here identified some models—unidirectional-attention transformer architectures—that accurately capture brain 274 

activity during language processing. We then began dissecting variations across the range of model candidates to explain why 275 

they achieve high brain scores. Two core findings emerged, both supporting the idea that the human language system is 276 

optimized for predictive processing. First, we found that the models’ performance on the next-word prediction task, but not 277 

other language tasks, is correlated with neural predictivity (see (Gauthier & Levy, 2019) for related evidence of fine-tuning of 278 

one model on tasks other than next-word-prediction leading to worse model-to-brain fit). Recent preprints conceptually 279 

replicate and extend this basic finding (Caucheteux & King, 2020; Goldstein et al., 2020; Wehbe et al., 2020; Wilcox et al., 280 

2020). Language modeling (predicting the next word) is the task of choice in the natural language processing (NLP) community: 281 

it is simple, unsupervised, scalable, and appears to produce the most generally useful, successful language representations. 282 

This is likely because language modeling encourages a neural network to build a joint probability model of the linguistic signal, 283 

which implicitly requires sensitivity to diverse kinds of regularities in the signal. 284 

Figure 6 (Overview of results): Connecting neural 

mechanisms, behavior, and computational task 

(next-word prediction). Specific ANN language 

models are beginning to approximate the brain’s 

mechanisms for processing language (middle gray 

box). For the neural datasets (fMRI and ECoG 

recordings; top, red), and for the behavioral 

dataset (self-paced reading times; bottom right, 

orange), we report i) the value for the model 

achieving the highest predictivity, and ii) the 

average improvement on brain scores across 

models after training. Model performances on 

the next-word-prediction task (WikiText-2 

language modeling perplexity; bottom left, blue)

predict brain and behavioral scores; and brain

scores predict behavioral scores (circled 

numbers). 
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 285 

Second, we found that the models that best match human language processing are precisely those that are trained to predict 286 

the next word. Predictive processing has advanced to the forefront of theorizing in cognitive science (Christiansen & Chater, 287 

1999; Clark, 2013; Elman, 1990, 1991, 1993; McRae et al., 1998; Rohde & Plaut, 1999; Spivey & Tanenhaus, 1998; Tenenbaum 288 

et al., 2011) and neuroscience (Bastos et al., 2012; Keller & Mrsic-Flogel, 2018; Mumford, 1992; Rao & Ballard, 1999; 289 

Srinivasan et al., 1982), including in the domain of language (Kuperberg & Jaeger, 2016; Levy, 2008a). The rich sources of 290 

information that comprehenders combine to interpret language—including lexical and syntactic information, world 291 

knowledge, and information about others’ mental states (Garnsey et al., 1997; MacDonald et al., 1994; Tanenhaus et al., 292 

1995; Trueswell et al., 1993, 1994)—can be used to make informed guesses about how the linguistic signal may unfold, and 293 

much behavioral and neural evidence now suggests that readers and listeners indeed engage in such predictive behavior 294 

(Altmann & Kamide, 1999; Frank & Bod, 2011; Kuperberg & Jaeger, 2016; Shain et al., 2020; Smith & Levy, 2013). An intriguing 295 

possibility is therefore that both the human language system and successful ANN models of language are optimized to predict 296 

upcoming words in the service of efficient meaning extraction.  297 

 298 

Going beyond the broad idea of prediction in language, the work presented here validates, refines, and computationally 299 

implements an explicit account of predictive processing: for the first time in the neuroscience of language, we were able to 300 

accurately predict (relative to the noise ceiling) activity across voxels as well as neuronal populations in human cortex during 301 

the processing of sentences. We quantitatively test the predictive processing hypothesis at the level of voxel/electrode/fROI 302 

responses and, through the use of end-to-end models, related neural mechanisms to performance of models on 303 

computational tasks. Moreover, we were able to reject multiple alternative hypotheses about the objective of the language 304 

system: model performance on diverse benchmarks from the GLUE suite of benchmarks (A. Wang, Singh, et al., 2019), 305 

including judgments about syntactic and semantic properties of sentences, was not predictive of brain or behavioral scores. 306 

The best-performing computational models identified in this work serve as computational explanations for the entire 307 

language processing pipeline from word inputs to neural mechanisms to behavioral outputs. These best-performing models 308 

can now be further dissected, as well as tested on new diverse, linguistic inputs in future experiments, as discussed below.  309 

 310 

Importance of architecture. We also found that architecture is an important contributor to the models’ match to human brain 311 

data: untrained models with a trained linear readout performed well above chance in predicting neural activity, and this 312 

finding held under a series of controls to alleviate concerns that it could be an artifact of our training or testing methodologies 313 

(Fig. S9). This result is consistent with findings in models of early (Cadena et al., 2019; Cichy et al., 2016; Geiger et al., 2020) 314 

and high-level visual processing (Geiger et al., 2020) and speech perception (Millet & King, 2021), as well as recent results in 315 

natural language processing (Merchant et al., 2020; Tenney et al., 2019; Zhang & Bowman, 2018), but it raises important 316 

questions of interpretation in the context of human language. If we construe model training as analogous to learning in human 317 

development, then human cortex might already provide a sufficiently rich structure that allows for the relatively rapid 318 

acquisition of language (Carey & Bartlett, 1978; Dickinson, 1984; Heibeck & Markman, 1987). In that analogy, the human 319 

research community’s development of new architectures such as the transformer networks that perform well in both NLP 320 

tasks and neural language modeling could be akin to recapitulating evolution (Hasson et al., 2020), or perhaps, more 321 

accurately, selective breeding with genetic modification: structural changes are tested and the best-performing ones are 322 

incorporated into the next generation of models. Importantly, this process still optimizes for language modeling, only 323 

implicitly and on a different timescale from biological and cultural evolutionary mechanisms conventionally studied in brain 324 

and language.  325 

 326 

More explicitly, but speculatively, it is possible that transformer networks can work as brain models of language even without 327 

extensive training because the hierarchies of local spatial filtering and pooling as found in convolutional as well as attention-328 

based networks are a generally applicable brain-like mechanism to extract abstract features from natural signals. Regardless 329 

of the exact filter weights, transformer architectures build on word embeddings that capture both semantic and syntactic 330 

features of words, and integrate contextually weighted predictions across scales such that contextual dependencies are 331 

captured at different scales in different kernels. The representations in such randomized architectures could thus reflect a 332 

kind of multi-scale, spatially smoothed average (over consecutive inputs) of word embeddings, which might capture the 333 

statistical gist-like processing of language observed in both behavioral studies (Ferreira et al., 2002; Gibson et al., 2013; Levy, 334 

2008b) and human neuroimaging (Mollica et al., 2020). The weight sharing within architectural sub-layers (“multi-head 335 
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attention”) introduced by combinations of query-key-value pairs in transformers might provide additional consistency and 336 

coverage of representations. Relatedly, an idea during early work on perceptrons was to have random projections of input 337 

data into high-dimensional spaces and to then only train thin readouts on top of these projections. This was motivated by 338 

Cover’s theorem which states that non-linearly separable data can likely be linearly separated after projection into a high-339 

dimensional space (Cover, 1965). These ideas have successfully been applied to kernel machines (Rahimi & Recht, 2009) and 340 

are more recently explored again with deep neural networks (Frankle et al., 2019); in short, it is possible that even random 341 

features with the right multiscale structure in time and space could be more powerful for representing human language than 342 

is currently understood. Finally, it is worth noting that the initial weights in the networks we study stem from weight initializer 343 

distributions that were chosen to provide solid starting points for contemporary architectures and lead to reasonable initial 344 

representations that model training further refines. These initial representations could thus include some important aspects 345 

of language structure already. A concrete test for these ideas would be the following: construct model variants that average 346 

over word embeddings at different scales and compare these models’ representations with those of different layers in 347 

untrained transformer architectures as well as the neural datasets. More detailed analyses, including minimal-pair model 348 

variant comparisons, will be needed to fully separate the representational contributions of architecture and training.  349 

 350 

Limitations and future directions. 351 

These discoveries pave the way for many exciting future directions. The most brain-like language models can now be 352 

investigated in richer detail, ideally leading to intuitive theories of their inner workings. Such research is much easier to 353 

perform on models than on biological systems given that all their structure and weights are easily accessible and manipulable 354 

(Cheney et al., 2017; Lindsey et al., 2019). For example, controlled comparisons of architectural variants and training 355 

objectives could define the necessary and sufficient conditions for human-like language processing (Samek et al., 2017), 356 

synergizing with parallel ongoing efforts in NLP to probe ANNs’ linguistic representations (Hewitt & Manning, 2019; Linzen et 357 

al., 2016; Tenney et al., 2020). Here, we worked with off-the-shelf models, and compared their match to neural data based 358 

on their performance on the next-word-prediction task vs. other tasks. Re-training many models on many tasks from scratch 359 

might determine which features are most important for brain predictivity, but is currently prohibitively expensive due to the 360 

vast space of hyper-parameters. Further, the fact that language modeling is inherently built into the evolution of language 361 

models by the NLP community, as noted above, may make it impossible to fully eliminate its influences on the architecture 362 

even for models trained from scratch on other tasks. Similarly, here, we leveraged existing neural datasets. This work can be 363 

expanded in many new directions, including a) assembling a wider range of publicly available language datasets for model 364 

testing (cf. vision (Schrimpf et al., 2018, 2020)); b) collecting data on new language stimuli for which different models make 365 

maximally different predictions (cf. vision; (Golan et al., 2019)), including sampling a wider range of language stimuli (e.g., 366 

naturalistic dialogs/conversations); c) modeling the fine-grained temporal trajectories of neural responses to language in data 367 

with high temporal resolution (which requires computational accounts that make predictions about representational 368 

dynamics); and d) querying models on the sentence stimuli that elicit the strongest responses in the language network to 369 

generate hypotheses about the critical response-driving feature/feature spaces, and perhaps to discover new organizing 370 

principles of the language system (cf. vision; (Bashivan et al., 2019; Ponce et al., 2019)). 371 

 372 

One of the major limiting factors in modeling the brain’s language network is the availability of adequate recordings. Although 373 

an increasing number of language fMRI, MEG, EEG, and intracranial datasets are becoming publicly available, they often lack 374 

key properties for testing computational language models. In particular, what is needed are data with high signal-to-noise 375 

ratio, where neural responses to a particular stimulus (e.g., sentence) can be reliably estimated. However, most past language 376 

neuroscience research has focused on coarse distinctions (e.g., sentences with vs. without semantic violations, or sentences 377 

with different syntactic structures); as a result, any single sentence is generally only presented once, and neural responses 378 

are averaged across all the sentences within a ‘condition’ (in contrast, monkey physiology studies of vision typically present 379 

each stimulus dozens of times to each animal; e.g., Majaj et al., 2015). (Studies that use ‘naturalistic’ language stimuli like 380 

stories or movies also typically present the stimuli once, although naturally occurring repetitions of words / n-grams can be 381 

useful.) One of the neural datasets in the current study (Pereira2018) presented each sentence thrice to each subject and 382 

exhibited the highest ceiling (0.32; cf. Fedorenko2016: 0.17, Blank2014: 0.20). But even this ceiling is low relative to single 383 

cell recordings in the primate ventral stream (e.g., 0.82 for IT recordings; Schrimpf et al., 2018). Such high reliability may not 384 

be attainable for higher-level cognitive domains like language, where processing is unlikely to be strictly bottom-up/stimulus-385 
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driven. However, this is an empirical question that past work has not attempted to answer and that will be important in the 386 

future for building models that can accurately capture the neural mechanisms of language. 387 

 388 

How can we develop models that are even more brain-like? Despite impressive performance on the datasets and metrics 389 

here, ANN language models are far from human-level performance in the hardest problem of language understanding. An 390 

important open direction is to integrate language models like those used here with models and data resources that attempt 391 

to capture aspects of meaning important for commonsense world knowledge (e.g., Bisk et al., 2020; Bosselut et al., 2020; Sap 392 

et al., 2019, 2020; Yi et al., 2018). Such models might capture not only predictive processing in the brain—what word is likely 393 

to come next—but also semantic parsing, mapping language into conceptual representations that support grounded language 394 

understanding and reasoning (Bisk et al., 2020). The fact that language models lack meaning and focus on local linguistic 395 

coherence (Mahowald et al., 2020; Wilcox et al., 2020) may explain why their representations fall short of ceiling on 396 

Blank2014, which uses story materials and may therefore require long-range contexts. 397 

 398 

Another key missing piece in the mechanistic modeling of human language processing is a more detailed mapping from model 399 

components onto brain anatomy. In particular, aside from the general targeting of the fronto-temporal language network, it 400 

is unclear which parts of a model map onto which components of the brain’s language processing mechanisms. In models of 401 

vision, for instance, attempts are made to map ANN layers and neurons onto cortical regions (Kubilius et al., 2019) and sub-402 

regions (Lee & DiCarlo, 2018). However, whereas function and its mapping onto anatomy is at least coarsely defined in the 403 

case of vision (Felleman & Van Essen, 1991), a similar mapping is not yet established in language beyond the broad distinction 404 

between perceptual processing and higher-level linguistic interpretation (e.g. Fedorenko & Thompson-Schill, 2014). The ANN 405 

models of human language processing identified in this work might also serve to uncover these kinds of anatomical 406 

distinctions for the brain’s language network – perhaps, akin to vision, groups of layers relate to different cortical regions and 407 

uncovering increased similarity to neural activity of one group over others could help establish a cortical hierarchy. The brain 408 

network that supports higher-level linguistic interpretation—which we focus on here—is extensive and plausibly contains 409 

meaningful functional dissociations, but how the network is precisely subdivided and what respective roles its different 410 

components play remains debated. Uncovering the internal structure of the human language network, for which intracranial 411 

recording approaches with high spatial and temporal resolution may prove critical (Mukamel & Fried, 2012; Parvizi & Kastner, 412 

2018), would allow us to guide and constrain models of tissue-mapped mechanistic language processing. More precise brain-413 

to-model mappings would also allow us to test the effects of perturbations on models and compare them against perturbation 414 

effects in humans, as assessed with lesion studies or reversible stimulation. More broadly, anatomically and functionally 415 

precise models are a required software component of any form of brain-machine-interface. 416 

 417 

Conclusions. 418 

Taken together, our findings suggest that predictive artificial neural networks serve as viable hypotheses for how predictive 419 

language processing is implemented in human neural tissue. They lay a critical foundation for a promising research program 420 

synergizing high-performing mechanistic models of natural language processing with large-scale neural and behavioral 421 

measurements of human language comprehension in a virtuous cycle of integrative modeling: testing model ability to predict 422 

neural and behavioral measurements, dissecting the best-performing models to understand which components are critical 423 

for high brain predictivity, developing better models leveraging this knowledge, and collecting new data to challenge and 424 

constrain the future generations of neurally plausible models of language processing.  425 
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Methods 843 

1. Neural dataset 1: fMRI (Pereira2018). We used the data from Pereira et al.’s (2018) Experiments 2 (n=9) and 3 (n=6) (10 844 

unique participants). (The set of participants is not identical to Pereira et al., 2018: i) one participant (tested at Princeton) was 845 

excluded from both experiments here to keep the fMRI scanner the same across participants; and ii) two participants who 846 

were excluded from Experiment 2 in Pereira et al., 2018, based on the decoding results in Experiment 1 of that study were 847 

included here, to err on the conservative side.) Stimuli for Experiment 2 consisted of 384 sentences (96 text passages, four 848 

sentences each), and stimuli for Experiment 3 consisted of 243 sentences (72 text passages, 3 or 4 sentences each). The two 849 

sets of materials were constructed independently, and each spanned a broad range of content areas. Sentences were 7-18 850 

words long in Experiment 2, and 5-20 words long in Experiment 3. The sentences were presented on the screen one at a time 851 

for 4s (followed by 4s of fixation, with additional 4s of fixation at the end of each passage), and each participant read each 852 

sentence three times, across independent scanning sessions (see Pereira et al., 2018 for details of experimental procedure 853 

and data acquisition). 854 

Preprocessing and response estimation: Data preprocessing was carried out with SPM5 (using default parameters, unless 855 

specified otherwise) and supporting, custom MATLAB scripts. (Note that SPM was only used for preprocessing and basic 856 

modeling—aspects that have not changed much in later versions; for several datasets, we have directly compared the outputs 857 

of data preprocessed and modeled in SPM5 vs. SPM12, and the outputs were nearly identical.) Preprocessing included motion 858 

correction (realignment to the mean image of the first functional run using 2nd-degree b-spline interpolation), normalization 859 

(estimated for the mean image using trilinear interpolation), resampling into 2mm isotropic voxels, smoothing with a 4mm 860 

FWHM Gaussian filter and high-pass filtering at 200s. A standard mass univariate analysis was performed in SPM5 whereby a 861 

general linear model (GLM) estimated the response to each sentence in each run. These effects were modeled with a boxcar 862 

function convolved with the canonical Hemodynamic Response Function (HRF). The model also included first-order temporal 863 

derivatives of these effects (which were not used in the analyses), as well as nuisance regressors representing entire 864 

experimental runs and offline-estimated motion parameters. 865 

Functional localization: Data analyses were performed on fMRI BOLD signals extracted from the bilateral fronto-temporal 866 

language network. This network was defined functionally in each participant using a well-validated language localizer task 867 

(Fedorenko et al., 2010), where participants read sentences vs. lists of nonwords. This contrast targets brain areas that 868 

support ‘high-level’ linguistic processing, past the perceptual (auditory/visual) analysis. Brain regions that this localizer 869 

identifies are robust to modality of presentation (e.g., Fedorenko et al., 2010; Scott et al., 2017), as well as materials and task 870 

(Diachek et al., 2020). Further, these regions have been shown to exhibit strong sensitivity to both lexico-semantic processing 871 

(understanding individual word meanings) and combinatorial, syntactic/semantic processing (putting words together into 872 

phrases and sentences) (Bautista & Wilson, 2016; I. Blank et al., 2016; I. A. Blank & Fedorenko, 2020; Fedorenko et al., 2010, 873 

2012, 2016, 2020). Following prior work, we used group-constrained, participant-specific functional localization (Fedorenko 874 

et al., 2010). Namely, individual activation maps for the target contrast (here, sentences>nonwords) were combined with 875 

“constraints” in the form of spatial ‘masks’—corresponding to data-driven, large areas within which most participants in a 876 

large, independent sample show activation for the same contrast. The masks (available from https://evlab.mit.edu/funcloc/ 877 

and used in many prior studies e.g., Jouravlev et al., 2019; Diachek et al., 2020; Shain et al., 2020) included six regions in each 878 

hemisphere: three in the frontal cortex (two in the inferior frontal gyrus, including its orbital portion: IFGorb, IFG; and one in 879 

the middle frontal gryus: MFG), two in the anterior and posterior temporal cortex (AntTemp and PostTemp), and one in the 880 

angular gyrus (AngG). Within each mask, we selected 10% of most localizer-responsive voxels (voxels with the highest t-value 881 

for the localizer contrast) following the standard approach in prior work. This approach allows to pool data from the same 882 

functional regions across participants even when these regions do not align well spatially. Functional localization has been 883 

shown to be more sensitive and to have higher functional resolution (Nieto-Castanon & Fedorenko, 2012) than the traditional 884 

group-averaging approach (Holmes & Friston, 1998), which assumes voxel-wise correspondence across participants. This is to 885 

be expected given the well-established inter-individual differences in the mapping of function to anatomy, especially 886 

pronounced in the association cortex (e.g., Frost & Goebel, 2012; Tahmasebi et al., 2012; Vazquez-Rodriguez et al., 2019). 887 

We constructed a stimulus-response matrix for each of the two experiments by i) averaging the BOLD responses to each 888 

sentence in each experiment across the three repetitions, resulting in 1 data point per sentence per language-responsive 889 

voxel of each participant, selected as described above (13,553 voxels total across the 10 participants; 1,355 average, ±6 std. 890 

dev.), and ii) concatenating all sentences (384 in Experiment 2 and 243 in Experiment 3), yielding a 384x12,195 matrix for 891 

Experiment 2, and a 243x8,121 matrix for Experiment 3. 892 
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To examine differences in neural predictivity between the language network and other parts of the brain, we additionally 893 

extracted fMRI BOLD signals from two other networks: the multiple demand (MD) network (Duncan, 2010; Fedorenko et al., 894 

2013) and the default mode network (DMN) (Buckner et al., 2008; Buckner & DiNicola, 2019). These networks were also 895 

defined functionally using well-validated localizer contrasts (Fedorenko et al., 2013; Mineroff et al., 2018) using a similar 896 

procedure as the one used for defining the language network: combining a set of ‘masks’ with individual activation maps, and 897 

selecting top 10% of most localizer-responsive voxels within each mask. Both networks were defined using a spatial working 898 

memory task (Fedorenko et al., 2011, 2013). For the MD network, we used the hard>easy contrast, and for the DMN network, 899 

we used the fixation>hard contrast. As for the language network, the MD and DMN masks were derived from large sets of 900 

participants for those contrasts, and are also available at https://evlab.mit.edu/funcloc/. The MD network and the DMN 901 

included 29,936 (2,994±230) and 10,978 (1,098±7) voxels, respectively. 902 

 903 

2. Neural dataset 2: ECoG (Fedorenko2016). We used the data from Fedorenko et al.’s (2016) study (n=5). (The set of 904 

participants includes one participant, S2, who was excluded from the main analyses in Fedorenko et al., 2016 due to a small 905 

number of electrodes of interest; because we here used only language-responsiveness as the criterion for electrode selection, 906 

this participant had enough electrodes to be included.) Stimuli consisted of 80 hand-constructed 8-word long semantically 907 

and syntactically diverse sentences and 80 lists of nonwords (as well as some other stimuli not used in the current study). For 908 

the critical analyses, we selected a set of 52 sentences that were presented to all participants. The materials were presented 909 

visually one word at a time (for 450 or 700 ms), and participants performed a memory probe task after each stimulus (see 910 

Fedorenko et al., 2016 for details of the experimental procedure and data acquisition). 911 

Preprocessing and response estimation: We here provide only a brief summary, highlighting points of deviation from 912 

Fedorenko et al. (2016). The total numbers of implanted electrodes were 120, 128, 112, 134, and 98 for the five participants, 913 

respectively. Signals were digitized at 1200 Hz. Similar to Fedorenko et al. (2016), i) the recordings were high-pass filtered 914 

with a cut off frequency of 0.5 Hz; ii) reference, ground, and electrodes with high noise levels were removed, leaving 117, 915 

118, 92, 130, and 88 electrodes (for these analyses, we were more permissive with respect to noise levels compared to 916 

Fedorenko et al., 2016, to include as many electrodes in the analyses as possible; hence the numbers of analyzed electrodes 917 

are higher here than in the original study for 4 of the 5 participants); iii) spatially distributed noise common to all electrodes 918 

was removed using a common average reference spatial filter between electrodes with line noise smaller than a predefined 919 

threshold (electrodes connected to the same amplifier); and iv) a set of notch filters were used to remove the 60 Hz line noise 920 

and its harmonics. To extract the high gamma band activity—which has been shown to correspond to spiking neural activity 921 

in the vicinity of the electrodes (Buzsáki et al., 2012)—we used a gaussian filter bank with centers at 73, 79.5, 87.8, 96.9, 107, 922 

118.1, 130.4, and 144 Hz, and standard deviations of 4.68, 4.92, 5.17, 5.43, 5.7, 5.99, 6.3, and 6.62 Hz, respectively. This 923 

approach differs from Fedorenko et al. (2016), where an IIR band-pass filter was used to select frequencies in the range of 924 

70-170 Hz, and is likely more sensitive (Dichter et al. 2018). Finally, as in Fedorenko et al. (2016), the Hilbert transform was 925 

used to extract the analytic signal (Lawrence Marple, 1999) (except here, the average of the Hilbert signal across the eight 926 

filters was used as high-gamma signal), z-scored for each electrode with respect to the activity throughout the experiment, 927 

and the signal envelopes were downsampled to 300 Hz for further analysis (we did not additionally low-pass filter at 100 Hz, 928 

as in Fedorenko et al., 2016). 929 

Functional localization: Mirroring the fMRI approach, where we focused on language-responsive voxels, data analyses were 930 

performed on signals extracted from language-responsive electrodes. These electrodes were defined in each participant using 931 

the same localizer contrast as in the fMRI datasets. In particular, we examined electrodes in which the envelope of the high 932 

gamma signal was significantly higher (at p<.01) for trials of the sentence condition than the nonword-list condition (for 933 

details, see Fedorenko et al., 2016). 934 

We constructed a stimulus-response matrix by i) averaging the z-scored high-gamma signal over the full presentation window 935 

of each word in each sentence, resulting in 8 data points per sentence per language-responsive electrode (97 electrodes total 936 

across the 5 participants; 47, 8, 9, 15, and 18 for participants S1 through S5, respectively), and ii) concatenating all words in 937 

all sentences (416 words across the 52 sentences), yielding a 416x97 matrix. 938 
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To examine differences in neural predictivity between language-responsive and other electrodes, we additionally extracted 939 

high gamma signals from a set of ‘stimulus-responsive’ electrodes. Stimulus-responsive electrodes were defined as electrodes 940 

in which the envelope of the high gamma signal for the sentence condition was significantly different (at p<0.05 by a paired-941 

samples t-test) from the activity during the inter-trial fixation interval preceding the trial. This selection procedure resulted 942 

in 67, 35, 20, 29, and 26 electrodes. As expected, this set of electrodes included many of the language-responsive electrodes; 943 

for the analysis in SI-4, we exclude the language-responsive electrodes leaving 105 stimulus- (but not language-) responsive 944 

electrodes. 945 

3. Neural dataset 3: fMRI (Blank2014). We used the data from Blank et al. (2014) (n=5). (The set of participants includes 5 of 946 

the 10 participants in Blank et al., 2014, because we wanted each participant to have been exposed to the same materials 947 

and as many stories as possible; the 5 participants included here all heard eight stories.) Stimuli consisted of stories from the 948 

publicly available Natural Stories Corpus (Futrell et al., 2018). These stories, adapted from existing texts (fairy tales and short 949 

stories) were designed to be “deceptively naturalistic”: they contained an over-representation of rare words and syntactic 950 

constructions embedded in otherwise natural linguistic context. The stories were presented auditorily (each was ~5 min in 951 

duration), and following each story, participants answered 6 comprehension questions (see Blank et al., 2014 for details of 952 

the experimental procedure, data acquisition, and preprocessing). 953 

Functional localization: As in the Pereira2018 dataset, data analyses were performed on fMRI BOLD signals extracted from 954 

the language network. From each language-responsive voxel of each participant, the BOLD time-series for each story was 955 

extracted. Across the eight stories, the BOLD time-series included 1,317 time-points (TRs, time of repetition; TR=2s and 956 

corresponds to the time it takes to acquire the full set of slices through the brain). To align the neuroimaging data with the 957 

story text, we first split the text into consecutive 2-second intervals (corresponding to the fMRI TRs) based on the auditory 958 

recording; if a word straddled boundaries of intervals, it was assigned to the 2s interval in which that spoken word ended. 959 

Each of the resulting intervals thus included a story “fragment”, which could be a full short sentence, part of a longer sentence, 960 

or a transition between the end of one sentence and the beginning of another. Due to the temporal resolution of the HRF, 961 

whose peak’s latency is 4-6 seconds, we assumed that each time-point in the BOLD signal represented activity elicited by the 962 

text fragment that occurred 4s (i.e., 2 TRs) earlier. 963 

We constructed a stimulus-response matrix by i) averaging the BOLD signals corresponding to each TR in each story across 964 

the voxels within each ROI of each participant (averaging across the voxels within ROIs was done to increase the signal-to-965 

noise ratio), resulting in 1 data point per TR per language-responsive ROI of each participant (60 ROIs total across the 5 966 

participants), and ii) concatenating all story fragments (1,317 ‘stimuli’), yielding a 1,317x60 matrix. 967 

 968 

4. Behavioral dataset: Self-paced reading (Futrell2018). We used the data from Futrell et al. (2018) (n=179). (The set of 969 

participants excludes 1 participant for whom data exclusions—see below—left only 6 data points or fewer.) Stimuli consisted 970 

of ten stories from the Natural Stories Corpus (same materials as those used in Blank2014, plus two additional stories), and 971 

any given participant read between 5 and all 10 stories. The stories were presented online (on Amazon’s Mechanical Turk 972 

platform) visually in a dashed moving window display—a standard approach in behavioral psycholinguistic research (Just et 973 

al., 1982). In this approach, participants press a button to reveal each consecutive word of the sentence or story; as they press 974 

the button again, the word they just saw gets converted to dashes again, and the next word is uncovered. The time between 975 

button presses provides an estimate of overall language comprehension difficulty, and has been shown to be robustly 976 

sensitive to both lexical and syntactic features of the stimuli (Grodner & Gibson, 2005; Smith & Levy, 2013, inter alia) (see 977 

Futrell et al., 2018 for details of the experimental procedure and data acquisition.) We followed data exclusion criteria in 978 

Futrell et al. (2018): for any given participant, we only included data for stories where they answered 5 or all 6 comprehension 979 

questions correctly, and we excluded reading times (RTs) that were shorter than 100 ms or longer than 3000 ms. 980 

 981 

We constructed a stimulus-response matrix by i) obtaining the RTs for each word in each story for each participant (848,762 982 

RTs total across the 179 participants; 338 average, ±173 std. dev.), and ii) concatenating all words in all sentences (10,256 983 

words across 485 sentences), yielding a 10,256x179 matrix. 984 

 985 
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5. Computational models. We tested 43 language models that were selected to sample a broad range of computational designs 986 

across three major types of architecture: embeddings, recurrent architectures, and attention-based ‘transformer’ 987 

architectures. Here we provide a brief overview (see Table SI-10 for a summary of key features varying across the models). 988 

GloVe (Pennington et al., 2014) is a word embedding model where embeddings are positioned based on co-occurrence in the 989 

Common Crawl corpus; ETM (Dieng et al., 2019, 20ng dataset) combines word embeddings with an embedding of each word’s 990 

assigned topic; and word2vec (Mikolov et al., 2013)—abbreviated as w2v—provides embeddings which are trained to guess 991 

a word based on its context. lm_1b (Jozefowicz et al., 2016) is a 2-layer long short-term memory (LSTM) model trained to 992 

predict the next word in the One Billion Word Benchmark (Chelba et al., 2014); and the skip-thoughts model (Kiros et al., 993 

2015) is trained to reconstruct surrounding sentences in a passage. For all 38 transformer models (pretrained models from 994 

the HuggingFace library (Wolf et al., 2019)), we only evaluate the encoder and not the decoder; the encoders process long 995 

contexts (100s of words) with a deep neural network stack of multiple attention heads that operate in a feed-forward manner 996 

(except the Transformer-XL-wt103 and the two XLNet models, which use recurrent processing), and differ mostly in the choice 997 

of directionality, network architecture, and training corpora (Table SI-11). We highlight key features of different classes of 998 

transformer models (BERT, RoBERTa, XLM, XLM-RoBERTa, Transformer-XL-wt103, XLNet, CTRL, T5, AlBERT, and GPT) in the 999 

order in which they appear in the bar-plots (e.g., Fig. 2a), except for the three ‘distilled’ models (Sanh et al., 2019), which we 1000 

mention in the end. BERT transformers (Devlin et al., 2018) (n=4; bert-base-uncased, bert-base-multilingual-cased, bert-large-1001 

uncased, bert-large-uncased-whole-word-masking) are optimized to train bidirectional representations taking into account 1002 

context both to the left and right of a masked token. RoBERTa transformers (Liu et al., 2019) (n=2; roberta-base, roberta-1003 

large) as a variation of BERT improve training hyper-parameters such as masking tokens dynamically instead of always 1004 

masking the same token. XLM models (Lample & Conneau, 2019) (n=7; xlm-mlm-enfr-1024, xlm-clm-enfr-1024, xlm-mlm-1005 

xnli15-1024, xlm-mlm-100-1280 , xlm-mlm-en2048) learn cross-lingual models by predicting the next (“clm”) or a masked 1006 

(“mlm”) token in a different language. XLM-RoBERTa (Conneau et al., 2019) (n=2; xlm-roberta-base, xlm-roberta-large) 1007 

combines RoBERTa masking with cross-lingual training in XLM. Transformer-XL-wt103 (Dai et al., 2020) adds a recurrence 1008 

mechanism to GPT (see below) and trains on the smaller WikiText-103 corpus. XLNet transformers (Yang et al., 2019) (n=2; 1009 

xlnet-base-cased, xlnet-large-cased) permute tokens in a sentence to predict the next token. CTRL (Keskar et al., 2019) adds 1010 

control codes to GPT (see below) which influence text generation in a specific style. T5 transformers (Raffel et al., 2019) (n=5; 1011 

t5-small, t5-base, t5-large, t5-3b, t5-11b) train the same model across a range of tasks including the prediction of multiple 1012 

corrupted tokens, GLUE (A. Wang, Singh, et al., 2019), and SuperGLUE (A. Wang, Pruksachatkun, et al., 2019) in a text-to-text 1013 

manner where the task is provided as a text prefix. AlBERT transformers (Lan et al., 2019) (n=8; albert-base-v1, albert-large-1014 

v1, albert-xlarge-v1, albert-xxlarge-v1, albert-base-v2, albert-large-v2, albert-xlarge-v2, albert-xxlarge-v2) use parameter-1015 

sharing and model inter-sentence coherence. GPT transformers (n=5) are trained to predict the next token in a large dataset 1016 

emphasizing document quality (openaigpt (Radford et al., 2018) on the Book Corpus dataset, gpt2, gpt2-medium, gpt2-large, 1017 

and gpt2-xl (Radford et al., 2019) on WebText). Finally, distilled versions of models (Sanh et al., 2019) (n=3; distilbert-base-1018 

uncased, distilgpt2, distilroberta-base) train compressed models on a larger teacher network. 1019 

 1020 

To retrieve model representations, we treated each model as an experimental participant (Figure 1) and ran the same 1021 

experiment on it that was run on humans. Specifically, sentences were fed in sequentially into the model (for Pereira2018, 1022 

Blank2014, and Futrell2018, sentences were grouped by topic / story to approximate the procedure with human participants). 1023 

For embedding and recurrent models, sentences were fed in word-by-word; for transformers, the context before (but not 1024 

after) each word was also fed into the models due to their lack of memory; the length of the context was determined by the 1025 

models’ architectures. For recurrent models, the memory was reset after each story (Pereira2018, Blank2014 and 1026 

Futrell2018), or each sentence (Fedorenko2016). 1027 

 1028 

After the processing of each word, we retrieved (“recorded”) model representations at every computational block (e.g., one 1029 

LSTM cell or one Transformer encoder block). (Word-by-word processing increases computational cost but is necessary to 1030 

avoid bidirectional models, like the BERT transformers, seeing the future.) When comparing against human recordings 1031 

spanning more than one word such as a sentence (Pereira2018) or story fragment (Blank2014), we aggregated model 1032 

representations: for the embedding models, we used the mean of the word representations; for recurrent and transformer 1033 

models, we used the representation of the last word since these models already aggregate representations of the preceding 1034 

context, up to a maximum context length of 512 tokens. 1035 

 1036 
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6. Comparison of models to brain measurements. We treated the model representation at each layer separately and tested 1037 

how well it could predict human recordings (for Pereira2018, we treated the two experiments separately, but averaged the 1038 

results across experiments for all plots except Fig. 2c). To generate predictions, we used 80% of the stimuli (sentences in 1039 

Pereira2018, words in Fedorenko2016 and Futrell2018, and story fragments in Blank2014; Fig. 1) to fit a linear regression 1040 

from the corresponding 80% of model representations to the corresponding 80% of human recordings. We applied the 1041 

regression on model representations of the held-out 20% of stimuli to generate model predictions, which we then compared 1042 

against the held-out 20% of human recordings with a Pearson correlation. This process was repeated five times, leaving out 1043 

different 20% of stimuli each time, and we computed the per-voxel/electrode/ROI mean predictivity across those five splits. 1044 

We aggregated these per-voxel/electrode/ROI scores by taking the median of scores for each participant’s 1045 

voxels/electrodes/ROIs and then computing the median and median absolute deviation (m.a.d.) across participants (over 1046 

per-participant scores). Finally, this score was divided by the estimated ceiling value (see Estimation of ceiling below) to yield 1047 

a final score in the range of [0, 1]. We report the results for the best-performing layer for each model (SI-12) but controlled 1048 

for the generality of layer choices in train/test splits (Fig. S2b,c). 1049 

7. Estimation of ceiling. Due to intrinsic noise in biological measurements, we estimated a ceiling value to reflect how well 1050 

the best possible model of an average human could perform. To do so, we first subsampled—for each dataset separately—1051 

the data with n recorded participants into all possible combinations of s participants for all � ∈ [2, 	] (e.g. {2, 3, 4, 5} for 1052 

Fedorenko2016 with n=5 participants). For each subsample s, we then designated a random participant as the target that we 1053 

attempt to predict from the remaining � − 1 participants (e.g., predict 1 subject from 1 (other) subject, 1 from 2 subjects, …, 1054 

1 from 4, to obtain a mean score for each voxel/electrode/ROI in that subsample. To extrapolate to infinitely many humans 1055 

and thus to obtain the highest possible (most conservative) estimate, we fit the equation � = � × �1 − �� �
��� where x is 1056 

each subsample’s number of participants, v is each subsample’s correlation score and � and � are the fitted parameters for 1057 

asymptote and slope respectively. This fitting was performed for each voxel/electrode/ROI independently with 100 1058 

bootstraps each to estimate the variance where each bootstrap draws x and v with replacement. The final ceiling value was 1059 

the median of the per-voxel/electrode/ROI ceilings �. 1060 

For Fedorenko2016, a ceiling was estimated for each electrode in each participant, so each electrode’s raw value was divided 1061 

by its own ceiling value. Similarly, for Blank2014, a ceiling was estimated for each ROI in each participant, so each ROI’s raw 1062 

value was divided by its own ceiling value. For Pereira2018, we treated the two experiments separately, focusing on the 5 1063 

participants that completed both experiments to obtain full overlap in the materials for each participant, and used 10 random 1064 

sub-samples to keep the computational cost manageable. A ceiling was estimated for all voxels in the 5 participants who 1065 

participated in both experiments. Each voxel’s raw predictivity value was divided by the average ceiling estimate (across all 1066 

the voxels for which it was estimated). For Futrell2018, given the large number of participants and because most participants 1067 

only had measurements for a subset of the stimuli, we did not hold out one participant but rather tested how well the mean 1068 

RTs for one half of the participants predicted the RTs for the other half of participants. We further took 5 random subsamples 1069 

at every 5 participants, starting from 1, and built 3 random split-halves, again to keep computational cost manageable. A 1070 

ceiling was estimated for each participant, and each participant’s raw values were divided by this ceiling. (Note that this 1071 

approach is even more conservative than the leave-one-out approach, because split-half correlations tend to be higher than 1072 

one-vs.-rest, due to a reduction in noise when averaging (for each half).) 1073 

 1074 

8. Language Modeling. To assess the models’ performance on the normative next-word-prediction task, we used a dataset 1075 

of 720 Wikipedia articles, WikiText-2 (Merity et al., 2016), with 2M training, 218k validation, and 246k test tokens (words 1076 

and word-parts). These tokens were processed by model-specific tokenization with a maximum vocabulary size of 250k, 1077 

selected based on the tokens’ frequency in the model’s original training dataset, and split up into blocks of 32 tokens each 1078 

(both the vocabulary size and the length of blocks were constrained by computational cost limitations). We sequentially fed 1079 

the tokens into models as explained in Methods_5 (Computational Models) and captured representations at each step from 1080 

each model’s final layer (penultimate layer before the classifier if the model has a readout). To predict the next word, we fit 1081 

a linear decoder from those representations to the next token over words in the vocabulary (n=50k), on the training tokens. 1082 

This decoder is trained with a cross-entropy-loss � = − ∑ ��� log �  !"#

∑  !$#%$
& (�  where ���  is the true label for class c and sample 1083 

i, and ���  is the predicted probability of that class; the linear weights are updated with AdamW and a learning rate of 5e-5 in 1084 
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batches of 4 blocks until convergence as defined on the validation set. Importantly, note that we only trained weights of a 1085 

readout decoder, not the weights of models themselves, in order to maintain the same model representations that we used 1086 

in model-to-brain and model-to-behavior comparisons. The final language modeling score is reported for each model as the 1087 

perplexity, i.e. the exponent of the cross-entropy loss, on the held-out test set. We ensured that our pipeline could 1088 

reproduce the lower perplexity values in e.g. (Radford et al., 2019) by fine-tuning the entire model and increasing the batch 1089 

size. To be able to test all models under the same conditions and with fixed representations that were used for brain 1090 

prediction, we however had to use a lower batch size and only train a linear readout without fine-tuning which leads to the 1091 

lower perplexity scores reported in Fig. 3. T5-11b is not part of this analysis because of lack of computational resources to 1092 

run the model. 1093 

 1094 

9. Statistical tests. As a primary metric, model-to-brain predictivity scores are reported as the Pearson correlation coefficient 1095 

(denoted by “r”). These correlation scores were obtained from aggregating over individual per-voxel/electrode/ROI scores. 1096 

To avoid the assumption that the neural scores are Gaussian distributed, we aggregated these per-voxel/electrode/ROI scores 1097 

by taking the median of scores for each participant’s voxels/electrodes/ROIs and then computing the median and median 1098 

absolute deviation (m.a.d.) across participants.  1099 

In addition to reporting an aggregated score across datasets, we show individual scores per dataset (visualized as bar plot 1100 

insets). To obtain an error estimate for the correlation scores, we report the bootstrapped correlation coefficient, as 1101 

computed by leaving out 10% of the scores and computing the r-value on the remaining 90% held-out scores (over 1,000 1102 

iterations). 1103 

All p-values less than 0.05 are summarized with one asterisk, p-values less than 0.005 with two asterisks, p-values less than 1104 

0.0005 with three asterisks, and p-values less than 0.00005 are denoted by four asterisks. 1105 

For interaction tests, we used two-sided t-tests with 1,000 bootstraps and 90% of samples per bootstrap. 1106 

 1107 
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 1142 

 1143 

Figure S1: Ceiling estimates for neural and behavioral datasets. Due to intrinsic noise in biological measurements, we 1144 

estimated a ceiling value to reflect how well the best possible model of an average human could perform, based on sub-1145 

samples of the total set of participants (see Methods-7). For each sub-sample, � − 1 participants are used to predict a held-1146 

out participant (except in Futrell2018, where this is done on split-halves, as described in the text). Each dot represents a 1147 

correlation between the average scores of the � − 1 participants and the left-out participant for a random sub-sample of the 1148 

number of participants  �  indicated on the x-axis. We then bootstrapped 100 random combinations of those dots to 1149 

extrapolate (gray lines) the highest possible ceiling if we had an infinite number of participants at our disposal. The parameters 1150 

of these bootstraps are then aggregated by taking the median to compute an overall estimated ceiling (dashed gray line with 1151 

95% CI in error-bars). We use this estimated ceiling to normalize model scores and here also report the number of participants 1152 

at which the estimated ceiling would be met (which show that for Pereira2018 and Futrell2018, the number of participants 1153 

we have is at and close to the asymptote value, respectively). Ceiling levels are .32 (Pereira2018), .17 (Fedorenko2016), .20 1154 

(Blank2014), and .76 (Futrell2018). 1155 

 1156 

Figure S2: Scores generalize across metrics and layers. a) Model scores on each dataset generalize across different choices 1157 

of a similarity metric; here we plot the predictivity metric used in the manuscript on the x-axis against a model-to-brain 1158 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2020.06.26.174482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.174482
http://creativecommons.org/licenses/by/4.0/


28 

 

similarity metric based on representational dissimilarity matrices (RDMs) between models and neural representations on the 1159 

y-axis. Like in the predictivity metric, stimuli along with corresponding model activations and brain recordings were split 5-1160 

fold but we then only compared the respective test splits given that the RDM metric does not employ fitting. Specifically, we 1161 

followed (Kriegeskorte, 2008) and computed the RDM for each model’s activations, and a separate RDM for each brain 1162 

recording dataset, based on 1 minus the Pearson correlation coefficient between pairs of stimuli; then, we measured model-1163 

brain similarity via Spearman correlation across the two RDMs’ upper triangles. The RDM score for one model on one human 1164 

dataset is then the mean over splits. We ran each model and compared resulting scores with the primarily used scores from 1165 

the predictivity metric. Correlations for models’ scores between the predictivity and the RDM metrics are: Pereira2018 r=.57, 1166 

p<0.0001; Fedorenko2016 r=.40, p<.01; Blank2014 r=.38, p<.05. b) Model scores per layer generalize across dataset splits; for 1167 

every layer in each model we plot its brain score (using the predictivity metric) on two experimental splits (experiment 2 and 1168 

3) of the Pereira2018 dataset. Scores are very strongly correlated (r=.95, p<<0.000001), indicating that choosing a model’s 1169 

layer on a separate dataset split will generalize to a held-out test split. c) Choice of layer generalizes across dataset splits; for 1170 

each model we plot the difference between its score on Pereira2018 experiment 3 when choosing the layer on experiment 3 1171 

directly (i.e. the max due to layer choice on “test set”) and its score on experiment 3 when choosing the layer on experiment 1172 

2 (choice on “train set”). The layer is chosen based on the model’s maximum score across layers on the respective dataset 1173 

split. Deviations between choosing the layer on a train or test set are minimal with error bars overlapping 0, indicating that 1174 

there is no substantial difference between the two choices. 1175 

  1176 
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Figure S3: Brain surface visualization of model predictivity scores. Plots show surface projections of volumetric individual 1177 

language-responsive functional ROIs in the left and right hemispheres (LH and RH) for five representative participants from 1178 

Pereira2018. In each voxel of each fROI, we show a normalized predictivity value for two models that differ substantially in 1179 

their ability to predict human data: GloVe (first two columns) and GPT2-xl (second two columns; for GPT2-xl, we show 1180 

predictivity values from the overall best-performing layer, in line with how we report the results in the main text). (Note that 1181 

the voxel locations are identical between GloVe and GPT2-xl, and are determined by an independent functional language 1182 

localizer as described in the text; we here illustrate the differences in predictivity values, along with showing sample fROIs 1183 

used in our analyses). Predictivity values were ceiling-normalized for each participant and each of 12 ROIs separately (a slight 1184 

deviation from the approach in the main analysis, which was designed to control for between-region differences in reliability). 1185 

The data were analyzed in the volume space and co-registered using SPM12 to Freesurfer’s standard brain CVS35 (combined 1186 

volumetric and surface-based (CVS)) in the MNI152 space using nearest neighbor interpolation and no smoothing. The ceiled 1187 

predictivity maps for the language localizer contrast (10% of most language-responsive voxels in each ‘mask’; Methods-1) 1188 

were projected onto the cortical surface using mri_vol2surf in Freesurfer v6.0.0 with a projection fraction of 1. The surface 1189 

projections were visualized on an inflated brain in the MNI152 space using the developer version of Freeview (assembly March 1190 

10th, 2020). The bar plots in the rightmost column show the normalized predictivity values per ROI (median across voxels) in 1191 

the language network for GPT2-xl. Error bars denote m.a.d. across voxels. The distribution of predictivity values across the 1192 

language-responsive voxels, and the similar predictivity magnitudes across the ROIs in the bar graphs, both suggest that the 1193 

results (between-model differences in neural scores) are not driven by one particular region of the language network, but are 1194 

similar across regions, and between the LH and RH components of the network (see also SI-4). 1195 

 1196 
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SI-4 – Language specificity  1197 

In the analyses reported in the manuscript, we focused on the language-responsive regions / electrodes. Here, for two 1198 

datasets, we investigated the model-brain relationship outside the language network in order to assess the spatial specificity 1199 

of our results, i.e., to test whether they obtain only, or more strongly, in the language network compared to other parts of 1200 

the brain. For both datasets, we report analyses based on raw predictivity values, without normalizing by the estimated noise 1201 

ceiling because the brain regions of the language network differ from other parts of the brain in how strongly their activity is 1202 

tied to stimulus properties during comprehension (e.g., I. A. Blank & Fedorenko, 2017, 2020; Diachek et al., 2020; Shain et al., 1203 

2020; Wehbe et al., 2020). This variability is important to take into account when comparing between functionally different 1204 

brain regions/electrodes because we are interested in how well the models explain linguistic-stimulus-related neural activity. 1205 

When we normalize the neural responses of a non-language-responsive region/electrode using a language comprehension 1206 

task, we’re effectively isolating whatever little stimulus-related activity this region/electrode may exhibit, putting them on 1207 

~equal or similar footing with the language-responsive regions/electrodes. (For completeness and ease of comparison with 1208 

the main analyses, we also report analyses based on normalized predictivity values.) 1209 

 1210 

Fedorenko2016: The scores obtained from language-responsive electrodes were compared to those obtained from stimulus-1211 

responsive electrodes, excluding the language-responsive ones (see Methods-2), for all 43 models. The number of language-1212 

responsive electrodes across five participants was 97, and the number of stimulus-, but not language-, responsive electrodes 1213 

across the participants was comparable (n=105). The analysis was identical to the main analysis (see Methods), besides 1214 

omitting the ceiling normalization for the raw predictivity analyses. As described in Methods, normalization was performed 1215 

for each electrode in each participant separately. 1216 

For raw predictivity, neural responses in the language-responsive electrodes were predicted 49.21% better on average across 1217 

models than the non-language-responsive electrodes (independent-samples two-tailed t-test: t=3.4, p=0.001). (For 1218 

normalized predictivity, neural responses in the language-responsive electrodes were predicted 59.26% better on average 1219 

across models than the non-language-responsive electrodes (t=2.24, p=0.03).) 1220 

 1221 

Pereira2018: The scores obtained from the language network were compared to those obtained from two control networks: 1222 

the multiple demand (MD) network and the default mode network (DMN) (see Methods), for all 43 models. The number of 1223 

voxels in the language network across participants was, on average, 1,355 (± 7 SD across participants), and the average 1224 

number of voxels in the MD network and the DMN was comparable (MD: 2,994±230); DMN: 1,098±7). The analysis was 1225 

identical to the main analysis (see Methods), besides omitting the ceiling normalization for the raw predictivity analyses. For 1226 

the normalized predictivity analyses, the network predictivity values were normalized by their respective network ceiling 1227 

values. 1228 

For raw predictivity, neural responses in the language network ROIs were predicted 16.96% better on average across models 1229 

than the MD network ROIs (independent-samples two-tailed t-test: t=2.26, p=0.03) and numerically (14.33%) better than the 1230 

DMN ROIs (t=1.78, p=0.08). (For normalized predictivity, neural responses in the language network ROIs were predicted 1231 

numerically (6.47%) worse on average than the MD network ROIs (t=-0.92, p=0.36) and also numerically (1.05%) worse than 1232 

the DMN ROIs (t=-0.31, p=0.76).) 1233 

 1234 

These results suggest that—when allowing for inter-regional differences in the reliability of language-related responses—the 1235 

model-to-brain relationship is stronger in the language-responsive regions/electrodes. However, we leave open the possibility 1236 

that language models also explain neural responses outside the boundaries of the language network, perhaps because these 1237 

models capture some parts of our general semantic knowledge, which is plausibly stored in a distributed fashion across the 1238 

brain. For example, several earlier studies used simple embedding models to decode linguistic meaning from fMRI data (e.g., 1239 

Wehbe et al., 2014; Huth et al., 2016; Anderson et al., 2017; Pereira et al., 2018) and reported reliable decoding not only 1240 

within the language network, but also across other parts of association cortex. Given that we know that different large-scale 1241 

cortical networks differ functionally in important ways (e.g., see Fedorenko & Blank, 2020, for a recent discussion of the 1242 

language vs. MD networks), it will be important to investigate in future work the precise mapping between the language 1243 

models’ representations and neural responses in these different functional networks. 1244 

 1245 
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SI-5 – Model performance on diverse language tasks vs. model-to-brain fit  1246 

To test whether the next-word prediction task is special in predicting model-to-brain fit, we used the Pereira2018 dataset to 1247 

examine the relationship between the models’ performance on diverse language processing tasks from the General Language 1248 

Understanding Evaluation (GLUE) benchmarks (Wang et al., 2018) and neural predictivity. We used a subset of the high-1249 

performing, transformer models (n=30 of the 38 where we could find published commitments of which features to use for 1250 

GLUE). The GLUE benchmark encompasses nine tasks that can be classified into three categories: single-sentence judgment 1251 

tasks (n=2), sentence-pair semantic similarity judgment tasks (n=3), and sentence-pair inference tasks (n=4). The two single-1252 

sentence tasks are both binary classification tasks: models are asked to determine whether a given sentence is grammatical 1253 

or ungrammatical (Corpus of Linguistic Acceptability, CoLA (Warstadt et al., 2018)), or whether the sentiment of a sentence 1254 

is positive or negative (Stanford Sentiment Treebank, SST-2 (Socher et al., 2013)). In the semantic similarity tasks, models are 1255 

asked to assert or deny the semantic equivalence of question pairs (Quora Question Pairs, QQP (Chen et al., 2018)) or sentence 1256 

pairs (Microsoft Research Paraphrase Corpus, MRPC (Dolan & Brockett, 2005)), or to judge the degree of semantic similarity 1257 

between two sentences on a scale of 1-5 (Semantic Textual Similarity Benchmark, STS-B (Cer et al., 2017)). Lastly, the 1258 

benchmark contains four inference tasks, of which we include three (following Devlin et al., 2018), we exclude the Winograd 1259 

Natual Language Inference, WNLI, task; see (12) in https://gluebenchmark.com/faq). In two of these tasks, models are asked 1260 

to determine the entailment relationship between sentences in a pair using either tertiary classification: entailment, 1261 

contradiction, neutral (Multi-Genre Natural Language Inference corpus, MNLI (Williams et al., 2018)), or binary classification: 1262 

entailment or no entailment (Recognizing Textual Entailment, RTE (Dagan et al., 2006, Bar Haim et al., 2006, Giampiccolo et 1263 

al., 2007, Bentivogli et al., 2009)). And in the third inference task, the Question Natural Language Inference, QNLI, task 1264 

(Rajpurkar et al., 2016, White et al., 2017, Demszky et al., 2018), models are presented with question-answer pairs and asked 1265 

to decide whether or not the answer-sentence contains the answer to the question. 1266 

In order to evaluate model performance on GLUE benchmark tasks, each GLUE dataset was first converted into a format that 1267 

is compatible with transformer model input using functionality from the GLUE data processor provided by Huggingface 1268 

transformers (https://huggingface.co/transformers/). In particular, each set of materials is represented as a matrix that 1269 

includes the following dimensions: item (and sentence for multi-sentence materials) ID, ID for each individual word (with 1270 

reference to the vocabulary used by the transformer models), the label (e.g., grammatical vs. ungrammatical), and the 1271 

‘attention mask’ which specifies which part(s) of the sentences the model should pay attention to (e.g., some ‘padding’ is 1272 

commonly used to equalize the lengths of sentences/items to the target length of 128 tokens (again constrained by 1273 

computational cost), and the attention mask is set to include only the actual words in the materials, and not the padding, and 1274 

in some models to further constain which parts of the input to attend to—e.g., in GPT2 models, the rightward context is 1275 

ignored). Next, each GLUE dataset was then fed into each model to obtain a sequence of hidden states at the output of the 1276 

last layer of the model. Following default settings from Huggingface transformers, from these hidden states, we then 1277 

extracted the token of interest: for bidirectional models such as BERT, this was the first input token—a special token ([cls]) 1278 

that is appended to each item and designed for sequence classification tasks, and for unidirectional models such as GPT-2, 1279 

XLNet or CTRL, this token corresponded to the last attended token (e.g., the last word/word-part in the sentence). In order 1280 

to ensure a fair comparison between the models and to avoid the skewing of representations by individual task pre-training, 1281 

dense linear pooling projection layers (specific to some transformer) are disregarded. Finally, we fit a linear decoder from the 1282 

features of the extracted tokens of interest to the task label(s). For tasks with two or more labels, a cross-entropy loss function 1283 

is used; for the task that uses a rating scale, the decoder is trained with a mean-square error (MSE) loss function. Similar to 1284 

the next-word prediction task, the linear weights are updated with the AdamW optimizer and a learning rate of 5e-5 in batches 1285 

of 8 blocks until convergence as defined on the validation set. Importantly, and also similar to the next-word-prediction task, 1286 

we only trained weights of a readout decoder, not the weights of models themselves, in order to maintain the same model 1287 

representations that we used in model-to-brain and model-to-behavior comparisons. To account for potential bias in the 1288 

GLUE datasets, multiple metrics within tasks, as well as different metrics across tasks are reported in the GLUE benchmark. 1289 

Following standards in the field, we follow GLUE evaluation metrics (A. Wang, Singh, et al., 2019) and report the final task 1290 

score as accuracy for SST-2, MNLI, RTE, and QNLI, Matthew's Correlation for CoLA, the average of accuracy and F1 score for 1291 
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MRPC, and QQP, and the average of Pearson and Spearman correlation for STS-B. The results are shown in Fig. S5. None of 1292 

the tasks significantly predicted neural scores, suggesting that next-word prediction may be special in its ability to predict 1293 

brain-like processing. As with language modeling, we were unable to evaluate T5-11b on these benchmarks due to lack of 1294 

computational resources. 1295 

 1296 

Figure S5: Performance on next-word prediction selectively predicts model-to-brain fit. Performance on GLUE tasks was 1297 

evaluated as described in SI-5. Only the next-word prediction correlations but none of the GLUE correlations were significant. 1298 

 1299 
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Figure S6: Models’ neural predictivity for each dataset is correlated with behavioral predictivity. In Fig. 4b, we showed that 1300 

the models’ neural predictivity (averaged across the three neural datasets: Pereira2018, Fedorenko2016, Blank2014) 1301 

correlates with behavioral predictivity. Here, we show that this relationship also holds for each neural dataset individually: 1302 

Pereira2018: p<0.0001, Fedorenko2016: p<0.01, Blank2014: p<0.01. 1303 

Figure S7: Performance on GLUE tasks does not predict model-to-behavior fit. In Fig. 4c, we showed a significant positive 1304 

correlation of next-word prediction performance with predictivity on behavioral reading times. Here we test whether 1305 

performance on GLUE tasks predicts behavioral scores (performance on GLUE tasks was evaluated as described in SI-5). Only 1306 

the next-word prediction correlations but none of the GLUE correlations were significant. Notations as in Figure 3 for the 1307 

GLUE average (a) and individual tasks (b). 1308 
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Figure S8: Model architecture contributes to brain predictivity and untrained performance predicts trained performance. 1309 

In Fig. 5, we showed that untrained models already achieve robust brain predictivity (averaged across the three neural and 1310 

one behavioral datasets). Here, we show that this relationship also holds for each dataset individually: Pereira2018: 1311 

p<<0.00001, Fedorenko2016: p<0.05, Blank2014: p<0.00001. 1312 

Figure S9: Controls for untrained models. a) Neural and behavioral scores of GPT2-xl, the best-performing model, with vs. 1313 

without training, and of a random embedding of the same size. A large feature size alone is not sufficient: a random 1314 

embedding matched in size to GPT2-xl scores worse than untrained GPT2-xl in all four datasets (3 neural, and 1 behavioral). 1315 

These results suggest that model architecture critically contributes to model-to-brain and model-to-behavior fits. b) Overlap 1316 

of bi- and tri-grams in train/test stimuli splits of benchmarks is minimal, and despite single-word overlap memorization of 1317 

per-word responses is insufficient (a). c) The relationship between model performance with vs. without training on the 1318 

wikitext-2 next-word-prediction task. Consistent with model performance with vs. without training on neural and behavioral 1319 

datasets (Fig. 5), untrained models perform reasonably well. Training improves scores by 80% on average, and most 1320 

prominently for GPT models, in teal (where the quality of the training data is optimized; see Computational models in 1321 

Methods). GPT’s poor performance on next-word prediction might be explained by very high representational similarities 1322 

across words pre-training in its last layer (Ethayarajh, 2019). d) Scores for untrained models obtained via linear predictivity 1323 

generalize to scores obtained via RDM correlations. The RDM metric does not use any fitting. Correlations for untrained 1324 

models’ scores between the predictivity and the RDM metric are: Pereira2018 r=.67, p<0.000005; Fedorenko2016 r=.45, 1325 

p<.005; Blank2014 r=.08, n.s. See Fig. S2 for details on the RDM metric. 1326 

 1327 

SI-10 – Effects of model architecture and training on neural and behavioral scores 1328 

 1329 

The 43 language models included in the current study span three major types of architecture: embedding models, recurrent 1330 

models, and attention-based transformer architectures. However, in addition to this coarse distinction, the individual models 1331 

vary widely in diverse architectural and training features. A rigorous examination of the effects of different model features 1332 

on model-to-brain/behavior fit would require careful pairwise comparisons of minimally different models, which is not 1333 

possible for ‘off-the-shelf’ models without extremely expensive re-training from scratch under many/all possible 1334 

combinations of architecture, training diet, optimization objective, and other hyper-parameters. However, we here undertook 1335 

a preliminary exploratory investigation. In particular, for a subset of model features (Table SI-9), we computed a Pearson 1336 

correlation between the feature values and the averaged model score across all four datasets (3 neural, and 1 behavioral). 1337 

We included five architectural features. Three features were continuous: i) number of hidden layers, which varied between 1 1338 
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and 48 (mean 16.02, std. dev. 11.02); ii) number of features (units across considered layers), which varied between 300 and 1339 

78,400 (mean 20,971.26, std. dev. 18,362.91); and iii) the size of the embedding layer, which varied between 128 and 48,000 1340 

(mean 872.28, std. dev. 744.33). And the remaining two features were binary: iv) uni- vs. bi-directionality (32/43 models were 1341 

bi-directional), and v) the presence of recurrence (5/43 models had recurrence). And we included two training-related 1342 

features: i) training data size (in GB), which varied between 0.2 and 336 (mean 351.06 std. dev. 726.81); and ii) vocabulary 1343 

size, which varied between 30,000 and 3,000,000 (mean 223,096.95 std. dev. 561,737.36). All training data numbers were 1344 

taken from the original model papers, and if training data was specified in tokens, a conversion rate of 4 bytes per token was 1345 

used. We further excluded the multilingual XLM and BERT models when examining the effect of training data size, because 1346 

those numbers could not be confidently verified. For comparison, we also included performance on the next-word-prediction 1347 

task that we examined in the main text. 1348 

 1349 

The results are shown in Fig. S10. As expected—given the results reported in the main text for the individual datasets (Fig. 3, 1350 

4c)—next-word prediction performance robustly predicts model-to-brain/behavior fit (r = 0.49, p < 0.01). These results 1351 

suggest that optimizing for predictive representations may be a critical shared feature of biological and artificial neural 1352 

networks for language. How do architectural and training-related features compare to next-word-prediction task 1353 

performance in their effect on neural/behavioral predictivity? Two architectural size features are most correlated with model 1354 

performance: number of hidden layers (r = 0.56, p < 0.001), and number of features (r = 0.68, p << 0.0001). This is expected 1355 

given that the most recent models with the highest performance on linguistic tasks are also the largest ones that researchers 1356 

are able to run on modern hardware. The two training-related features—training data size and vocabulary size—are 1357 

significantly negatively correlated with model performance. To rule out the possibility that the negative effect of training-1358 

related features is driven by models with relatively small training datasets and vocabulary size (e.g., ETM; Table S11) that have 1359 

low brain/behavior predictivity, we ran an additional analysis considering only transformer models (n=38): even in these 1360 

generally highly predictive models, more training data (r = -0.29, p = 0.11 [not plotted]) or larger vocabulary size (r = -0.21, p 1361 

= 0.25 [not plotted]) do not appear to be beneficial, although the negative correlations are non-significant. 1362 

 1363 

Does the collection of model designs investigated in this paper inform the hyperparameters that should be optimized for in 1364 

any new model to achieve high predictivity? To provide a preliminary answer to this question, we performed an exploratory 1365 

analysis in the form of stepwise forward model selection and examined (a) the most parsimonious model that explains the 1366 

data, and (b) how much variance the selected features explain cumulatively (Fig. S10b). High overall explained variance 1367 

indicates that the combination of features selected by the model is predictive of model performance, whereas low overall 1368 

explained variance indicates that crucial predictive hyperparameters are still being neglected. In the forward regression 1369 

analysis, we add predictors based on the highest R2-adjusted value of the new model, as long as variance increases by adding 1370 

a new factor. This analysis revealed that adding training dataset size and recurrence does not lead to variance increase. 1371 

Significance markers indicate the p-value for significance of adding each term, and for each regression step we plot the added 1372 

explained variance (in R2-adjusted) of the variable chosen by the model. The overall cumulative R2-adjusted value of the 1373 

selected model is 0.822. 1374 
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 1375 

Figure S10: Effects of model architecture vs. training on neural and behavioral scores. a) We compared the effects on neural 1376 

and behavioral scores (the averaged model score across all four datasets) of three kinds of features: (i) architectural 1377 

properties, (ii) training-dependent variables, and, for comparison, iii) performance on the next-word-prediction task examined 1378 

in the main text (Fig. 3, 4c). b) Alternative combination of predictors with stepwise forward regression model. New predictors 1379 

are added based on the highest R2-adjusted value of the new model, as long as variance increases by adding a new factor 1380 

(thus excluding training dataset size and recurrence). Significance markers indicate the p-value for significance of adding 1381 

model terms. For each regression step, we plot the added explained variance (in R2-adjusted) of the variable chosen by the 1382 

model. The overall cumulative R2-adjusted value of the selected model is 0.822. As in a), the preferred explanatory variable is 1383 

the number of features. Stepwise forward regression based on significance leads to the same model-choice. Note that, as 1384 

above, t5-11b is excluded for regression based on next-word-prediction, and multilingual models are excluded for regression 1385 

on training size.   1386 

 1387 

 1388 

  1389 
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Table S11: Overview of model designs. 1390 

 1391 

  1392 
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Figure S12: Distribution of layer preference (best performing layer) per voxel for GPT2-xl for Pereira2018. A per-voxel per-1393 

participant raw predictivity value (as opposed to overall ceiled predictivity scores in Fig. 2c) was obtained in the language 1394 

network by computing the mean over cross-validation splits and experiments. For each voxel, the layer with the highest 1395 

predictivity value was estimated as the “preferred” layer (argmax over layer scores). As in the main analyses, the voxels in the 1396 

language network were included. Zero on the x-axis corresponds to the embedding layer of the model. The upper plot is 1397 

averaged across all participants in Pereira2018 (n=10). The lower panel shows the participant-wise layer preference for five 1398 

representative participants. Across participants, most voxels show the highest predictivity value for later layers of GPT2-xl. 1399 

Within participants, the layer preference across voxels varies but is often clustered around particular layers. Investigations of 1400 

how predictivity fluctuates across model layers, and/or between the language network and other parts of the brain, is left for 1401 

future work. 1402 

 1403 

 1404 
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1405 
Figure S13: Brain scores of each model’s best, first, and last layer. To test the importance of intermediate representations, 1406 

we directly compared layer performances at the beginning and end of each model with the model’s best-performing layer. In 1407 

nearly all networks with multiple layers, both the token embedding (first layer) as well as the task-specific output (last layer) 1408 

underperform significantly compared to the respective best layer. This suggests that the combination of architecture and 1409 

weights in the networks is a major driver for brain-like representations, beyond potential semantic information that is already 1410 

present in the model input codes. Lexical similarity determined by optimizing for next-word prediction present in the output 1411 

layer is also not sufficient, instead pointing to intermediate representations as the most predictive (see also Fig. 2c). 1412 
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