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ABSTRACT

Broad clinical application of non-invasive intracranial pressure (ICP) monitoring using computational1

models requires a method of modeling ICP on the basis of easily measured patient data such as2

radial or brachial arterial blood pressure (ABP). These models may be highly complex, rendering3

them too slow for clinical and operational use, or may rely on data that is not consistently available.4

Coupling these models to an upstream vasculature component model decreases data requirements.5

For the purposes of clinical decision support at multi-hour timescales, two natural choices for model6

development are to increase intracranial model complexity or to include feedback mechanisms7

between ICP and vascular model components. We compare the performance of these two approaches8

by evaluating model estimates against observed ICP in the case of a slow hypertensive event from9

a publically available dataset. The simpler model with bi-directional feedback requires minimal10

identifiability and is sufficiently accurate over these timescales, while a more complex is difficult11

and expensive to identify well enough to be accurate. Furthermore, the bi-directional simple model12

operates orders of magnitude faster than the more anatomically accurate model when driven by13

high-resolution ABP. It may also be configured to use lower resolution ABP summary data that is14

consistently clinically available. The simpler models are fast enough to support future developments15

such as patient-specific parametrization and assimilation of other clinical data streams which are16

illustrated during the case of a complex ICP regime for a different patient. We present model17
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comparisons to highlight the advantages of the incorporated simple model and its possible predictive18

power with further optimization.19

Keywords clinical estimation · non-invasive ICP · lumped parameter modelling20

1 Introduction21

Traumatic brain injury (TBI) is a major public health problem. Intracranial hypertension (ICH) is common after TBI22

and can cause secondary injury by decreasing local or global cerebral perfusion[4, 2]. Therefore, clinical management23

of ICH after TBI is an important element of improving patient outcome. Endogenous control of intracranial pressure24

(ICP) includes cerebral autoregulation (CA) mechanisms which, when functioning properly, seek to maintain cerebral25

blood flow (CBF) across a wide range of arterial blood pressure (ABP). The mechanism of CA is to regulate CBF via26

constriction and dilation of local arteries [21], although various other mechanisms are proposed (cf. [3] and references27

therein).TBI is often accompanied by elevated systemic ABP and a loss of cranial volume due to cerebral edema.28

Both of these reduce autonomic ICP regulation: the former may exceed the effective range of CA function, while the29

latter diminishes this range. The Monro-Kellie doctrine [39] postulates a constant volume of intracranial parenchyma30

(functional brain tissue) and fluids, so changes in net blood volume transport yield changes in ICP. Consequently,31

treatment of elevated ICP must also account for changes in systemic ABP, which is the external ICP driver under this32

hypothesis. Clinical protocols therefore seek to control ICP while maintaining cranial perfusion pressure (CPP, the33

difference between ABP and ICP) [28], or risk cerebral hypoxia.34

Important changes in patient ICP occur at minute-to-hour timescales and clinicians need to know about them quickly.35

Decisions regarding escalation of care for TBI patients are often driven by elevated ICP, typically defined as exceeding 2036

mm Hg (1 mm Hg≈ 133.3 Pa) [32]. This underscores the need to monitor ICP and identify critical changes. Importantly,37

this form of clinical decision support will need to predict ICP on timescales on the order of minutes-to-hours rather than38

seconds. Timescales only seconds-long would not provide enough warning for clinicians to intervene.39

The need for ICP estimation: ICP is monitored in situ either using an external ventricular drain (gold-standard) or a40

fiberoptic intraparenchymal catheter. Placement of an ICP monitor is an invasive procedure and exposes patients to41

additional risks such as infection and hemorrhage [34] which may adversely affect outcome. In some patients, the risks42

associated with this monitoring method are outweighted by the benefit of ICP- and CPP-guided therapy, but patient43

selection is critical. Non-invasive ICP (nICP) estimation is less risky than invasive monitoring and could inform patient44

selection and ICP monitor placement timing (e.g. early for those who are predicted to benefit). In addition, nICP45

forecasting paired with invasive ICP monitoring could be a powerful anticipatory clinical decision support tool.46

Generally, nICP estimation involves identifying a relationship between ICP and proxies that may be more easily47

observable in real-time. Such relationships may be explored empirically or on the basis of explicit models representing48

underlying physiology; a recent comprehensive survey of nICP estimation modalities is available [17].49

Data and clinical availability: Estimation of ICP using models and/or proxy data is highly dependent on the50

availability of specific data, which limits its usage. For example, nICP may be statistically estimated from concurrent51

measurements of ABP and CBF velocity from empirical relationships [30] or via physiological parameters [16, 9].52

This velocity data is typically observed via transcranial doppler sonography and is limited by joint availability of the53

sonography apparatus and a trained instrument technician to properly localize observations to the the middle cerebral54

artery (MCA). Such data must then be available in a timely manner at sufficiently high resolution for quality control55

before use in clinical nICP estimation. CBF may also be estimated indirectly by near-infrared spectroscopic analysis of56

cerebral oxygenation which indicates the level of CPP [18]. While nICP may be estimated using a number of different57

modalities, practical considerations such as availability of data and clinical logistics render their applications difficult.58

TBI modeling and decision support: Mathematical models built upon additional physiological components can59

circumvent the strong data requirements by coupling nICP estimation to an upstream hemodynamic model. For example,60

the autoregulatory electrical analog model of [13, 29] is coupled to a hemodynamic model of major vessels above the61

aorta. This approach allows for continued refinement and augmentation of the model by coupling additional components62

to increase physiological fidelity at the expense of computational overhead. Highly complex mathematical models63

such as the low-dimensional whole-body physiological presentation of [20] include lymphatic and venous circulation64

mechanisms. However, such a model is focused on systemic dynamics and may be too coarse or slow for the purpose of65

clinical nICP estimation.66

The current nICP estimation models considered here are not designed with practical, universal applicability, nor67

hours-long simulations in mind. Bridging the gap between current models and clinical need requires that the former be68
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fast enough to produce clinical decision support at timescales relevant for the latter using commonly available data. The69

more anatomically-representative model of [29] estimates nICP from ABP without additional data, but emphasizes70

pulse-scale pressure signals rather than hour-scale dynamics. The fast nICP estimation schemes of [9] track ICP at71

suitable multi-hour timescales, but have stringent requirements for uncommon data which limits applicability. These72

studies (viz. [29, 37] and [16, 9]) and the models developed therein are cited extensively in this document; although73

contrapuntal to one another, they are both foundational to this study.74

Objectives of the paper: The perspective of this work is that ideal clinical support tools for TBI management include75

a model which estimates multi-hour nICP from commonly available data using both internal systemic pressure feedback76

and intracranial (IC, as an adjective) process resolution. Such a model is not currently known. This investigation77

considers two natural first steps toward it: to strongly couple simple ICP estimation schemes to a hemodynamical78

model, or to use a complex ICP estimation model with more accurate representation of IC physiology and its local79

processes. We present advantages and disadvantages of each approach to better inform development toward a tool80

representative of the ideal model.81

This paper has three primary objectives. The first is to extend the nICP estimation framework of [9] by using a82

coupled arterial vasculature model to eliminate its dependence on jointly-measured CBF. The second is to evaluate this83

model in relation to similar approaches for ABP-based nICP estimation over a duration of hours. The third goal is to84

motivate additional model machinery, such as case-specific parameter estimation and inference, needed to implement85

the proposed estimation framework for complex, clinically important situations. These goals aim to develop and validate86

a practical tool capable providing timely support in the clinical decision making process for TBI patients on a broader87

timescale than those considered in the literature. The remainder of this study is organized as follows. Section 2 presents88

the models and method of investigation, describes model experiments, and establishes model assessment criterion.89

Section 3 presents results of the experiments and compares the models, and discusses simulations of more complex90

patient injuries which are poorly simulated without optimization. Section 4 summarizes the analysis and motivates91

ongoing work toward modeling nICP estimation in a particular direction on the basis of results and implications.92

2 Materials and methods93

The comparison of nICP estimation schemes the involves three essential parts – model configurations, aortic inflow data94

which drive the system, and metrics used to compare models on the basis various aspects of performance – which are95

presented in the following sub-sections.96

2.1 Numerical nICP estimation frameworks97

The models considered here are algorithms which transform aortic ABP data into nICP estimates using two components98

which may be coupled or independent. The first component is a vascular hemodynamics model which distributes99

ABP forcing through the systemic arterial network (AN) to the CoW, and is referred to as the AN-CoW. The second100

component, referred to as the intracranial model (ICM), estimates nICP estimates using outflow of the AN-CoW at101

cranial arteries. We evaluated ICMs that either consider the brain as a single compartment or as 6 compartments102

defined by the distributions of the anterior, middle, and posterior cerebral arteries. Considered model formulations are103

differentiated by whether they interact uni- or bi-directionally with the arterial network and by the complexity of the104

ICM component. The following configurations are possible and illustrated in Fig 1:105

#1 AN-CoW 7−→ one-compartment ICM (uni-directional)106

#2 AN-CoW←→ one-compartment ICM (bi-directional)107

#3 AN-CoW 7−→ six-compartment ICM (uni-directional)108

#4 AN-CoW←→ six-compartment ICM (bi-directional)109

In the uni-directional configurations, the AN-CoW boundary outflow at the middle cerebral artery (MCA) is prescribed110

to the ICM as an inflow boundary condition. The AN-CoW calculates this pressure and flow for the entire simulation,111

which is then applied to the ICM. Bi-directional coupling of the AN-CoW and ICM enforces interactive agreement of112

flow volumes and pressures at the components’ interface (enforced as voltage and current electrical conservation).113

Two directions for refining the base model are proposed as possible steps toward achieving a preferred but demanding114

model. Fig 1 shows the relationships of the models using model #1 as the most basic form, with models #2 and #3 as115

parallel steps toward ideal model #4. Models #2 and #3 extend model #1 either by a bidirectionally-coupled interface116

between the AN-CoW and ICM or by increasing the physiological complexity of the ICM component. This approach117
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Figure 1: Conceptual overview of the relation between four models. The single-compartment model forced by
prescribed ABP/CBF is the baseline model for comparison [16, 9] and is labeled as model #1. Model #2 integrates the
lower arterial network forcing and single-component ICM into a common system through bi-directional coupling. In
contrast, the six-compartment ICM [29] increases the physiological fidelity, model complexity, and parametrization
of intracranial processes. Model #3 identifies this multi-compartment ICM uni-directionally coupled with the arterial
forcing network. Model #4 is representative of the multi-compartment ICM fully integrated with the systemic arteries
[29].

also tests which choice yields the highest gain in improvement over model #1 and the the cost of implementing it.118

Model #4 reflects an ultimate goal of a fully-integrated bi-directional model featuring an anatomically accurate ICM.119

However, such a model is not presented here due to its difficult implementation and impractical computational cost120

for the simulation timescales considered. Bi-directional coupling is difficult for multi-compartment models due to121

co-dependency of ICM state and the common pressure at each CoW terminal interface. Solving the nonlinear ICM122

state at each timestep takes several iterations, and each of these iterations requires recalculation of the entire upstream123

AN-CoW system constrained by pressure equality among the interfaces. The modeling framework used in this study is124

shown in Fig 2.125

Each model comprises two separate model components, which are described below. The AN-CoW for resolving126

hemodynamics outside the cerebral territories is presented in 2.1.1, while the ICMs for estimating ICP are presented in127

2.1.2.128

2.1.1 Hemodynamical modeling of sub-cranial arteries129

The AN-CoW model component is responsible for transforming aortic ABP data into flow and pressure at the MCA130

suitable for ICM input, and spatial resolution is unnecessary. Extra-cranial modeling of blood flow is a crucial131

component in nICP estimation models when patient ABP data are representative of lower vasculature states. Only132

terminal interface pressure and associated blood flow are required in this application. Therefore, the AN-CoW is133

modeled by a zero-dimensional framework of electrical analogs [15, 38], which are consistent with the physical134

equations [23]. This so-called lumped parameter approach has several advantges including a relatively small number of135

patient-specific parameters for each vessel and computationally efficient handling of vessel junctions and bifurcations.136

Further, conservation laws reduce at each timestep to algebraic systems rather than high-dimensional nonlinear137

functional representations [25] when spatially resolved.138

The vascular system model is common to the various model configurations, and is shown schematically within Fig 2. The139

AN-CoW model comprised of a subcranial arterial network (green box) and the CoW vessels (pink box) are represented140

using 0D 3-element electrical analogs (white inset box) in MatLab SimuLink. Within it, vessel state variables pressure141

P and flow Q evolve (as voltage and current, respectively) under the influence of local vessel parameters (R,C,Z) and142

states of adjoining vessels. Base values for all vessel-level parameters and boundary conditions were adopted from143

previous studies (viz. [29] and references therein). Explicit definitions of vessel parameters and their relation to physical144

qualities are provided in Zero-dimensional vessel parametrization. Boundary conditions representing unresolved145

downstream vasculature are 3-element Windkessel models. To define AN-CoW outflow boundary conditions, fixed146
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Figure 2: Diagram of model configurations 1–4. Schematic view of the various model configurations where green
and pink boxes identify the AN and CoW model components, respectively, and ICMs at right. The aortic inflow pressure
boundary condition is the sole driver of the system. Purple and orange boxes in the AN identify represented anatomy
for reference. The AN-CoW is structured as in [29], but uses the 3-element (ZRC) electrical representations of vessels
shown in the dashed white box. The single-compartment ICM is shown in the tan box; below it is the illustration of the
6-compartment model from [29]. Configurations #1–4 are distinguished by interactivity of coupling between AN-CoW
and ICM, and by the type of ICM used; these are indicated by uni- and bi-directional green arrows between the model
components.

terminal resistances are set symmetrically for the ACA, MCA, and PCA such that flows target 1.3 ml/s, 2.2 ml/s, and147

1.15 ml/s respectively, as in [29] for adults. In bi-directionally coupled models, CoW terminal vessels connect directly148

with the necessary IC vessels and require ICM pressure and resistance to coordinate with AN-CoW outflow. Specifically,149

the currently known estimates of pressure and resistance within the ICM are applied to the bi-directionally coupled150

MCA. Remaining uncoupled CoW termini are set as in the uni-directionally coupled case.151

The large number of model parameters for the AN-CoW is reduced by considering a uniform scaling parametrization.152

The model of 33 vessels appears to have more than 100 total parameters in the RCZ framework, but each of these values153

are functions of anatomical dimensions length l and radius r. We assumed that vessel dimensions (l, r) scale uniformly154

within the AN and globally parametrized RCZ values according to proportionalities (θl, θr) in relation to the base155

values. This defines a nonlinear transformation of the electrical parameters via (R,C,Z)← θl ·
(
θ−4r R, θ3rC, θ

−2
r Z

)
.156

The remaining parameters – those for 3-element windkessel boundaries and CoW outflow resistance – are handled157

analogously with scalng parameters (ωl, ωr) and Rterm, respectively. Because CoW and adjacent vessel radii are158

approximately adult-sized by about 5 years of age [12], we did not scale vessels within the CoW model component.159

Scaling the reference values en masse is effective within a realistic range of parameter values, as shown in Fig 3. This160

figure summarizes the relative effect of scaling parameters on properties of ICM inflow signals, determined by 500161

simulations of parameters uniformly sampled from 0.5–1.5 for lengths and resistance and 0.9–1.1 for radii. Properties162

of ICM inflow signals are most sensitive to scaling of AN vessel dimensions and are less sensitive to scaling of the163

terminal resistance and AN boundary windkessel values. Scaling of AN vessel dimensions is more influential on the164

ICM than those related to CoW terminal resistance and AN boundary windkessel values. Further details are supplied in165

supplemental Fig 9. This re-parametrization reduces the AN-CoW component identification to five proportionalities166

(θl, θr, ωl, ωr, Rterm). It establishes a simple system-wide control over the vascular properties, improves parameter167

sensitivity, and provides a meaningful path to accurate model identification.168

2.1.2 Intracranial Pressure model components169

The ICM component is the algorithm responsible for estimating nICP from the AN-CoW outflow to cerebral arteries.170

The two ICM configurations considered are a six-compartment model based on [29] and [13] and a single-compartment171

model based on [16] and [9]. In addition to the number of represented cerebral perfusion territories, the models differ172

in their estimation approach. The multi-compartment model is more anatomically accurate and explicitly resolves IC173

hemodynamics with communicating arteries and autonomic pressure regulatory processes. The single-compartment174

approach, in contrast, computes ICP using window-based statistical estimates of IC compliance and pressure determined175
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Figure 3: Ranked sensitivities of AN scaling parameters. Empirical estimates of sensitivity ranking, shown here for
key signal features (mean, variance, and maximum) of MCA pressure (top row) and flow (bottom row), summarize
Monte Carlo experiments using global structured random variations of scaling parameters (vertical axis of each panel)
drawn from uniform distributions. Scaling parameters for the AN are most influential, while variations of terminal
resistance and windkessel scale had a relatively little impact on solutions. Both regression rank and correlation rank
are shown in normalized form. The regression predicts the linear change in MCA signal property with respect to
change in a parameter among all changes in parameters, while the correlation measures the strength of the linear
relationship between pairwise changes in parameter values and changes in MCA signal property. Note that rank ordering
of windkessel dimensions is reversed for variance in MCA signal (center column). One concludes that scaling of vessel
dimension parameters has considerable influence on ICM inflow signals, and provides global control while reducing the
number of parameters needed to specify a patient-specific AN.

through regression of ICM inflow waveform properties. Overview of the multi- and single-compartment ICMs176

occur below under subheadings 2.1.2 and 2.1.2, respectively, with further technical details provided in supplements177

Six-Compartment ICM details and Single-compartment.178

Overview of the six-compartment model The complex model of [13, 29] presents an anatomical layout of the179

main cerebral pathways and their dependent mechanisms. Using six interacting territories, it includes IC pressure180

and perfusion dynamics coupled by communicating arteries, CA processes, and cerebrospinal fluid (CSF) balance.181

CA processes are modeled by internal feedback mechanisms which regulate flow through each compartment via182

vaso-constriction/-dilation [36]. This autonomic control influences the local pressure and flow balances between183

compartments, leading to inter-compartmental blood flow via communicating arteries. IC pressure and compliance are184

non-linearly co-determined by total IC volume changes resulting from CA processes and net fluid (blood + CSF) change.185

A mathematical description, including a list of physiological and model parameters, is provided in Six-Compartment186

ICM details. The high degree of physiological fidelity resolves IC dynamics at timescales inherited from ABP forcing,187

including the pulsatile ICP waveform [29]. Further, the 6-compartment nonlinear nICP component calculates numerous188

potentially clinically relevant diagnostic variables (List of diagnostic variables in the six-compartment models) during189

simulation.190

Overview of the single-compartment model The single-compartment ICM of [16] is a simple model which estimates191

ICP physiologically rather than modeling it anatomically. Here, nICP is constructed from least-squares estimates of192

bulk IC compliance (C) and resistance (R) over a temporal window containing several cardiac cycles. The algorithm193

follows [16] and [9], and is presented supplementally in Single-compartment. The underlying assumption is that ICM194

parameters are stationary throughout the estimation window. Succinctly, the model first estimates compliance C as a195

scaling factor between total MCA inflow volume and the corresponding pressure change during the systolic upswing of196

each pulse. The estimated compliance identifies blood flow (Q1) through a yet unknown resistance R. The value of R197

is subsequently estimated as the proportion of the change in applied pressure to associated change in flow Q1 through198

the unknown resistance. An nICP may be calculated algebraically as the difference between inflow pressure and the199
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associated pressure lost by flow across the estimated resistance. However, the implementation here defines nICP as the200

mean simulated ICP forecast based on the values of resistance R and compliance C in the previous window.201

The estimation process of this ICM requires no physiological parameters, but does require algorithmic parameters202

that influence model behavior. Two required model hyper-parameters control the length of the temporal window203

over which each estimation occurs and the timestep of parameter updates. The first is limited by the stationarity204

assumption and determines the sample size for the regressions, while the second controls output temporal resolution205

and coupling strength. In models #1 and #2, estimates of IC resistance and compliance inform the simulation of the206

next regressive window. However, the calculated nICP alters the outflow pressure condition at each CoW boundary207

when bi-directionally coupled (model #2). The length of the update timestep therefore affects the temporal coarseness208

of the nICP estimate in each model and also defines the timescale of feedback between the ICM and upstream vascular209

model in the bidirectional one. Single-compartment model simulations use 1 minute windows and 1 minute updates210

unless otherwise specified.211

2.2 Observational Data and Patient Selection212

The models require aortic inflow boundary data (referred to simply as ‘forcing’) pressure (or flow) measurements for213

several hours’ duration and a concurrently observed ICP for evaluation of model output. Additionally, models #1 and214

#2 require that boundary ABP be pulse-resolving. A suitable dataset for this purpose is the CHARIS v1.0.0 collection215

(‘Charis’ hereafter, [19]), which is publicly available online at PhysioNet [10]. These 50 Hz data comprise joint radial216

ABP and ICP timeseries of 13 patients with IC injuries. This study focuses on patient #6 of that data, a 20-year-old male217

with TBI, for model validation. This patient was selected for the simplicity of his injury, cleanliness of joint ABP-ICP218

signal, and representativeness of base parameters (e.g. optimal scaling parameters for the AN-CoW were approximately219

1); he could simulated out-of-the-box. Other patients in the dataset are significantly older or have multiple documented220

brain injuries (e.g. ischemic or hemorrhagic stroke). Also, large scale noise or corrupt signals are common in the221

records of the patients (cf. Fig 10); their ABP and/or ICP data could not be utilized contiguously for 4–6 hours periods222

without extensive and uncertain pre-processing of the available data.223

Using the Charis radial ABP data as aortic inflow in the models introduces errors which are consistent throughout224

all experiments. However, it was freely available and satisfied other aforementioned requirements. This usage is225

obviously incorrect and biases systolic pressure more than diastolic [27, 26].Sophisticated transformations exist [5] for226

reconstructing aortic pressure from radial ABP, but the simple approach taken here avoids uncertainties associated with227

that additional algorithmic processing.228

The six-compartment models (#3, and presumptive #4) can act on many different types of aortic inflow conditions,229

including both raw and mean non-pulsatile forcing. Meanwhile, the simple regressive models depend strongly on230

pulsatile signals at the middle cerebral artery to identify periods of elastic vessel response and maximal resistive flow.231

Fig 4 identifies possible input data sampling frequencies. Given that systole is approximately 1/3 of the cardiac cycle232

(approximately 1 Hz), raw APB data samples should be at minimum 10 Hz to meet these criteria, even if downscaling is233

considered. On the other hand, data with a high sampling frequency is often noisy or inconsistent, and jointly measured234

signals may experience temporal decoupling through instrument clock drift. This implies that such datasets may require235

extensive preprocessing and/or resampling prior to use (cf. [9]).236

An additional mechanism is proposed to define aortic inflow from lower-resolution ABP summary data. As outlined
in the introduction, liberating nICP estimation methods from dependence on high-frequency measurements requires
additional mathematical techniques to estimate them from more commonly available data. Further consideration
is therefore given to ABP forcing in single-compartment models with the aim of using clinical data in continued
development. Specifically, lower-frequency ABP records are assumed to comprise non-overlapping one-minute
averages of systolic and diastolic pressures and heart rate (sp,dp, and hr, respectively). To this end, a representative
portion of raw 50 Hz patient ABP was used to identify static, patient-specific waveform parameters γ for a function of
the form

P̂ (t,X(ti); γ) = X1 · Beta
(
f

(
t

X3
, γ

))
+X2 · Beta

(
f

(
1− t
X3

, γ

))
. (1)

Here the symbol X(ti) = [sp, dp, hr]i identifies the averaged ABP information during interval i of a quaque 1-minute237

(q1m) record, defining values for ti <= t <= ti+1. The function P̂ transforms q1m information into a piece-wise238

uniform patient-specific pulsatile signal at an arbitrary resolution. Inflow signals constructed thusly from Charis ABP239

data are conveniently sampled at 60Hz. In relation to Fig 4, this process maps q1m data (identified by the red mark)240

into the scale useable by models #1 and #2.241
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Figure 4: Timescales of ABP inflow data. The q1m data sampling frequency is indicated in red. Previous studies by
[16, 9] validate the regressive method of the simple ICM using data sampled at 20–70 Hz and 125 Hz. The central
scale is desirable for hour-scale applications as this resolution both qualitatively minimizes computational overhead and
satisfies parameter stationarity. The latter assumption is necessary for the statistical schemes of the single-compartment
models to function properly. The left-most scale offers strong smoothing and low noise, but fails to resolve pulsatile
waveform and violates assumptions of the simple models.

2.3 Measures of Quality and Efficiency for models242

To evaluate each experiment, we calculated three scores for each nICP estimate based on accuracy, precision, and speed243

for simulations over time interval [0, T ]. The symbol nICP* in this discussion indicates nICP debiased against observed244

ICP during the first hour of simulation. Justification for this correction is that skill scores evaluate model ability to track245

variability in recorded ICP data rather than estimate the absolute pressure. It also accounts for the bias induced through246

mis-use of radial ABP as aortic inflow pressure. Each evaluation is applied to an nICP estimate, the score of which is247

then associated to the model which produced it.248

The first score
r1 =

1

T
‖nICP∗ − ICP‖2 (2)

rates the ability of the model nICP to track changes in observed ICP. Normalization by simulation duration T is needed249

to compare experiments of different lengths. This score is the time-average standard error between ICP and model250

estimate, which quantifies how generally inaccurate a model nICP estimate is.251

The second evaluation, with [[·]] denoting the logical test operator, is

r2 =
1

T

N−1∑
i=0

∆ti · [[nICP∗i > 20]]
[[ICPi>20]] (3)

which is the mean percentage of simulation time that nICP correctly agrees with observed criticality (ICP>20 mm Hg)252

over timesteps 0 ≤ i ≤ N . Although seemingly qualitative, it is more clinically relevant than r1 as it quantifies whether253

nICP provides accurate and actionable information to support decision making.254

Finally, the third quantity is simply

r3 =
T

twall
(4)

or the ratio of simulated time interval to elapsed clock time, with r3 > 1 indicating faster-than-real-time forward255

model integration. Values of twall correspond to serial run times calculated using Matlab R2020a on a 2019 model256

iMac Pro with a 3.7 GHz Intel i5 CPU. This final evaluation measures how practical a model is for providing timely257

clinical support as well as its utility in other applications, such as nonlinear parameter estimation or data assimilation258

applications which require extensive, repeated forward model integration.259

The number of necessary parameters required for realistic initialization and the input data fidelity are among other260

aspects not evaluated quantitatively. They are discussed in the context of model utility, but not scored explicitly. Finally,261

all model simulations are initialized with zero-flow within the AN-CoW system. This component is common among262

the various model configurations and its algebraic nature distributes flow instantaneously. A brief spin-up adjustment263
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period occurs during the first 2–3 minutes of simulation (2–3 ICM parameter updates in models #1 and #2) and these264

errors included in skill calculation with negligible impact on comparative assessment.265

3 Results266

3.1 Comparative assessment of model simulations267

We ran model configurations #1–#3 for the first hours of patient #6 record data to evaluate nICP and efficiency on268

the basis of the skills presented above. Fig 5 shows the observed ICP signal along with estimates from each model.269

During the simulated period, patient ICP exhibits variability about ∼20mm for about 2.5 hours, followed by a gradual270

non-monotonic rise to ∼23 mm Hg. Sharp temporary decreases in ICP around 10mins, 75mins, 105mins, and 142mins271

probably result from interventions (mannitol or hyperventilation treatments) to reduce ICP [19]. The observed ICP272

signal used in model evaluation is plotted in solid red. A signal discontinuity near 243.83 minutes, where ICP data273

increases by 5+ mm Hg within one minute, may be due to transducer recalibration. To compensate, observed ICP is274

decreased by ∼2.5 mm Hg after 243.5 minutes. The original unaltered one-minute average ICP observations (dashed275

light red) are shown for reference over the interval 244–360 minutes.

Figure 5: Observed and estimated nICP for patient #6. Depicted are observed (red) and estimated nICP for Charis
patient #6 using models #1–3. Model #1 (magenta) takes approximately 14 minutes to run from offline-supplied MCA
flow and pressure estimates; it has a bias of 6.6 mm Hg over the first hour. Model #2 (blue) takes approximately 34
minutes to run from ABP forcing including simulation of the AN-CoW; it has a bias of 6.4 mm Hg over the first hour.
Model #3 (green) simulates nICP over 1 hour and takes approximately six hours of clock time; it has a bias of ∼6.4 mm
Hg and requires a variance inflation scaling of 27 to obtain the curve shown. The black inset shows a 30-second interval
of model #3 nICP to illustrate pulse resolution. After initial adjustment of baseline pressure, model #2 outperforms the
other nICP estimates. Model #1 fails to follow the longer-term trend of rising ICP whereas #2 does, suggesting that
bi-directional interaction between components is crucial. The large transient error in model #2 around 180 minutes
results from errors in the ABP inflow.

276

Model comparison is organized below into three subtopics discussing qualitative differences, quantitative differences,277

and observations about resolvable timescales and fidelity.278

3.1.1 Qualitative differences between modeled nICP series279

Models #1 and #2 produce qualitatively different nICP estimates, with the key difference being that model #2 follows280

the multi-hour trend of increasing ICP. Model #1 tracks the observations well until around 2 hours, but it fails to follow281

subsequent rise in observed ICP after the intervention around 142 minutes. The bias of model #1 over this interval is282

approximately -1.8 mm Hg and increases over time. In contrast, model #2 tracks this observed ICP rise, although it283

overestimates ICP by an average of 1.02 mm Hg during 220-360 minutes. Both models #1 and #2 also underestimate284

the ICP local maxima around 130 mins and 160 mins. One concludes that inclusion of bi-directional coupling improves285

estimation of low-frequency ICP signal components that are crucial in applications spanning several hours. Interestingly,286

neither model resolves the 2 mm Hg humplike event of the observed signal occurring during 330–350 minutes of287

the patient record. This feature in the observed ICP could result from a temporary change in patient posture, but no288

corresponding change occurs in the aortic ABP inflow signal (cf. 10, center left panel). This provides evidence that289

changes in ICP not arising from aortic ABP dynamics may not be resolved by simple ICMs.290
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Model #3 is simulated only for the first hour due to slow computation and inaccurate parameters which require291

additional inference to determine. This model is difficult to initialize correctly due to the number of parameters in the292

six-compartment ICM. Exploratory changes in ICM parameters while attempting to obtain realistic behavior often led293

to divergent nICP estimates during the first hour of simulation. This indicates a strong dependence on dynamically294

representative and balanced parameters that must be inferred a priori in a practical implementation. ICM parameters295

representing venous capillary conductance (Gpv) and reference pressure (Picn) were tuned sufficiently to obtain the296

reported nICP estimate. This solution also includes mean variance inflation by an optimal factor 26.3 to account for297

remaining uncalibrated parameters. The modified solution estimates the observed trend well, although the localized298

variance is too small. It also lags the behind observed ICP by approximately 228 seconds. This apparent delay, like299

the reduced variance noted at several timescales, likely reflects poor representation by generic ICM parameters in the300

absence of additional inference. Further attempt to more accurately prescribe these parameters was obstructed by long301

runtimes, which were approximately six hours per simulated hour.302

3.1.2 Quantitative differences between modeled nICP series303

The qualitative advantages of the bi-directional simple model over the uni-directional complex one are borne out by304

model skills r1–r2 shown in Table 1. Comparing scores reveals that model #2 has a practical advantage over model #3305

in terms of identifiability and is able to easily and quickly simulate a six-hour period. Because the longer simulations306

of models #1 and #2, scores are calculated separately for the initial 1-hour period resolved by all three models and307

appear with parentheses. Bi-directional coupling improves simple model accuracy by nearly 30% and makes identifying308

critical ICP 12% more accurate over the 6 hour duration. Over the initial hour, there is a slight loss in accuracy due to309

longer spinup adjustment and a slight improvement in critical ICP identification. This further supports that the feedback310

mechanism improves low-frequency tracking which has no advantage over short timescales. Use of the uni-directionally311

coupled complex ICM in model #1 leads to a marginal (<1%) improvement in critical ICP identification over the base312

model, but incurs a 57% loss of analytical accuracy compared with the base model. Most of this loss is because of313

the ∼4-minute lagged response of the ICM. Accounting for it shows a considerable decrease in error to r1 = 2.75314

accompanied by a loss in specificity to r2 = 0.84. Model ranking of model #2 over model #3 on the basis of skill is315

unchanged for the isolated first hour even with posterior modification of model #3 output.316

Table 1: Model scores for principal comparison.

r1 [accuracy] r2 [precision] r3 [speed]
Model #1 5.01(2.42) 0.877(0.92) 116.129
Model #2 3.53(2.47) 0.97(0.98) 7.356
Model #3 (3.83) (0.883) (0.145)

Scores for simulations of Charis patient #6 during initial hours of data, with best results for each score shown in bold.
Scores r1 and r2 rate the nICP accuracy and ability to identify critical ICP, respectively, while score r3 rates the speed
of the nICP estimation process. Parenthesized entries are calculated using only the first simulated hour.

The most significant quantitative difference between models #2 and #3 for practical nICP estimation is in simulation317

speed (measured by r3). Model #1 is an order of magnitude faster than model #2, but both operate considerably faster318

than real time. Either is suitable for an operational system for clinical support, unlike configuration #3 which is an319

order of magnitude slower than wall time under the same forcing. Other uni-directional simulations of model #3 with320

idealized half-sine wave pulsatile ABP inlet conditions showed that very short timesteps (O(10−4) seconds or shorter)321

were required to achieve convergence during systole. Longer timesteps (O(10−2) seconds) sufficed during constant322

pressure diastolic phase. This suggests that the model requires O(103) evaluations and iterative solution steps to the323

nonlinear system for each simulated cardiac cycle. A previous study ([37]) reported that each cardiac cycle requires 40324

seconds within their highly optimized numerical framework. As their implementation used a one-dimensional AN-CoW,325

r3 = 0.0225 is a lower bound of the speed score for model #4.326

3.1.3 Additional observations and considerations327

It is noteworthy to mention that the physiological ICMs of #3 and #4 do not strictly require pulsatile ABP and may328

instead be forced with mean ABP, which permits larger timesteps during simulation. With pulsatile forcing, they329

necessarily resolve fine timescales (cf. black inset, Fig 5) inherited from the inflow boundary condition and therefore330

require extensive and inflexible computation time. However, the CA response ODE includes a timescale parameter tCA331

which is taken to be 10 seconds by default. These processes are relatively slow and do not respond to inflow changes332

much shorter than 1 minute (exp(tCA/60) ≈ 1.2 minutes). Experiments with model #3 suggest that q1m mean ABP333
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Figure 6: Strong local tracking of ICP signal in model #2 at the expense of computational time. The mean nICP
estimates over 30 second intervals (blue curve) using the output of model #2 (light blue) with raw ABP strongly track
observed ICP (red curve). The modeled simulation includes accurate reproduction of local trends and O(10−2) Hz
waves of the averaged observed ICP. This simulation calculated resistance and compliance parameters at 1 second
intervals using 30-second regression intervals (i.e. with 29 second overlap). The corresponding mean ICPs over those
are plotted as solid curves for comparison with the observed ICP. While four times slower than real time, this simulation
is roughly twice as fast as model #3 under pulsatile aortic inflow and requires no additional data or external inference.

forcing decreases computational overhead considerably (to approximately r3 = 1.15, slightly faster than real time) by334

reducing the numerical stiffness of the system. However, doing so comes at a loss of high-frequency nICP fidelity.335

Some higher-frequency nICP components, on the other hand, can be resolved by the simple models at the expense336

of additional computation time by adjusting hyper-parameters. The efficiency score for models #1 and #2 depends337

on the window length and parameter update interval. Fig 6 shows a portion of a model #2 simulation for Charis338

patient #6 using raw ABP together with a 30 second window and 1 second update period. The 29-second overlap of339

the windows corresponds to 30 seconds of model integration for each simulated second. The computational overhead340

reduces efficiency r3 to approximately 0.25, but there is considerable gain in nICP fidelity at the high frequencies as341

well as strongly improved reduced error (r1) and increased accuracy (r2). This demonstrates a latent ability of model342

#2 to estimate higher frequency components of ICP from ABP without the need for accurate ICM parameter inference343

on the basis of additional data as in model #3.344

3.2 Simple model experiments with low-frequency inflow data345

Models are able to utilize commonly available ABP summary records under appropriate representation. Models #1346

and #2 have stricter expectations of data frequency for accurate pulse resolution, but minute-interval timeseries of347

pressures and heart rate are sufficiently informative to estimate nICP under those models. This is accomplished by348

broadcasting the q1m data onto a representative waveform with constant diastole, systole, and heart rate between349

records, and appropriately downsampling the result for use as model forcing. The patient-specific waveform parameters350

are estimated from a short (5–10 second) interval of high-frequency observed ABP with negligible impact on efficiency351

r3.352

The nICP estimates based on raw and q1m ABP are difficult to distinguish, which shows that q1m ABP can be used353

with little impact on accuracy. Fig 7 shows model #2 nICP estimates of the original (blue dashed) and q1m (γ6,354

solid blue) solutions for patient #6 compared with the ICP observation (corrected at 243.83 minutes as before). The355

skills of the model running under accurately reconstructed q1m data are nearly identical to the original; mean error356

r1 actually increases by about 3% while there is no qualitative difference in clincal accuracy or efficiency. The nICP357

changes resulting from q1m forcing are generally limited to the end of the simulation period (220–360 minutes), and358

the smoother inflow data avoids the inaccurate nICP spike around 175 minutes.359

Patient-specific waveform parameters are not necessary for accurate nICP estimation by the simple models, but q1m360

ABP summaries must include heart rate. The regressive single-compartment model #2 is based only on the peri-systolic361

changes in pressure and flow. One therefore suspects that the patient-specific parameters γ are unnecessary as long as362

the q1m data are accurate. Two additional simulations with model #2 using incorrect q1m transformations are shown in363

Fig 7 and confirm that that patient-specific parametric waveforms are unnecessary in these models. The waveforms364

of Charis patients #8 and #9 clearly differ from those of patient #6 in the post-peak shape, but the associated nICP365
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Figure 7: Model #2 performance using q1m summary ABP data. Various simulations under q1m inflow data are
compared with observed ICP (red curve) and nICP estimate based on raw 50 Hz data (dashed blue). The nICP estimates
using the correct q1m ABP data with both correct (blue) and incorrect (magenta and cyan) waveform parameters are also
shown. Q1m simulations use ABP waveforms formed from q1m summary data projected onto continuous waveform
versions with constant systolic and diastolic peak pressure and heart rate. In the inset figure: solid blue, cyan, and
magenta lines show ABP waveform shapes for patients #6, #8, and #9, respectively. The nICP, plotted in corresponding
colors, based on those waveforms track ICP well and are qualitatively indistinguishable. This shows that q1m ABP is
sufficient for the aortic inflow and that patient-specific parametrization of ABP waveforms has little advantage.

estimates are qualitatively indistinguishable from the correct one. However, further experiments not detailed here366

found that model #2 nICP estimates based on q1m ABP without heart rate data were highly inaccurate due to errors in367

numerical calcuation of the ICM inflow pressure derivative.368

3.3 Summary of assessments and experiments369

What is gained and lost from bi-directional coupling The comparison of models suggests that bi-directional370

coupling is necessary to accurately track ICP trends when using the simple ICM. Inclusion of this feedback mechanism371

is crucial in a clinical setting because the bi-directional form of the model is 10% more accurate in correctly specifying372

critical ICP. The simple ICM, however, is still limited by lack of resolution endogenous IC processes; nICP changes373

still require corresponding changes in the applied ABP inflow. Interactive coupling between the AN-CoW components374

and IC model makes the model more prone to potential instabilities during spinup from rest and during periods of noisy375

ABP inflow data. It is also accompanied by an order of magnitude increase in computation time even when run with376

non-overlapping analysis windows. However, the coupled simple model in this case is still an order of magnitude faster377

than clock time. It has sufficient headroom to accommodate a physiologically-representative IC model of (slightly)378

more complexity (e.g. [7, 35]) and still retain this desirable advantage. The simple model is able to use short update379

steps and overlapping analysis windows to estimate higher frequency (∼ O(10−2) Hz) details of ICP at the expense of380

additional computational time. Model configuration #2 is also able to act on q1m summary ABP data without additional381

patient-specific parameters to produce nICP estimates nearly-equivalent to those generated from raw ABP data.382

What is gained and lost from increasing ICM fidelity Resolving multiple interconnected IC compartments and383

CA feedback mechanisms offers physiological fidelity at the expense of model complexity. Consequently, the nonlinear384

ICM has many parameters which could not be accurately specified from available data without advanced inference385

machinery. Poor identifiability (i.e. dynamically balanced and representative parameters) of the system required ad386

hoc nICP adjustment to obtain realistic results, and may be improved by parameter tuning. The variance-scaled nICP387

matches the observed ICP qualitatively but under-performs the simpler models when the ∼4 minute lag in the response388

signal is accounted for. Simulating the nonlinear ICM toward a solution under pulsatile APB inflow requires many389

iterations and is considerably slower than real time even with uni-directional coupling. This type of simulation resolves390

pulse-scale waves within the nICP pulse waves but, as previously noted by [37], they have unrealistically low amplitude.391

While this type of resolution is valuable for diagnosing changes of IC hemodynamics and CA function [22, 6, 8], it is392

too computationally expensive for simulations of multiple hours. The computational overhead decreases significantly393

with smoother, lower-frequency inflow such as mean ABP where high frequency waves are not resolved. Simulations of394

this type are slightly faster than real time, but are still precluded by the need for ICM parameter estimation. Further395
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exploration of model #3 is needed to evaluate the clinical diagnostic value of simulations driven by non-pulsatile mean396

ABP over multi-hour periods.397

4 Discussion398

This study presents a multi-component modeling approach to non-invasive estimation of intracranial pressure in the399

context of multi-hour timescales relevant for producing actionable clinical information. The purpose was to establish a400

most suitable direction in developing an nICP estimation program that could be applied to commonly available data but401

fast enough to allow inference. The choices were inclusion of interactive coupling between components or use of a402

more complex ICM. The key result is that bi-directional coupling of the simple model is sufficiently fast and accurate in403

test cases and could be implemented using commonly available q1-minute ABP data. The first model component, the404

AN-CoW, uses long-established electrical analog representations to numerically solve pressure-driven resisted flow405

through compliant vessels. It represented hemodynamics from the aortic inflow boundary to the ICM interface at CoW406

termini. The second component, the ICM, models IC processes to obtain non-invasive ICP estimates. Two models407

differing in complexity and mechanistic fidelity were considered for comparison. The AN-CoW and ICM components408

could be coupled uni- or bi-directionally, yielding four possible model configurations. We did not implement a highly409

complex fully-coupled model due to its high computational expense and developmental challenges.410

To establish whether bi-directional coupling or increased ICM complexity was more advantageous, model simulation411

assessed nICP estimation based on accuracy, precision, and speed. A case study involving ABP-based nICP estimation412

for Charis patient #6 during a slow ICH event revealed that the bi-directionally coupled simple model outperformed413

both complex and simple uni-directional models. This comparison included both the ability to track the trend of ICP414

as well as the identification of critical ICP (defined here has ICP> 20 mm Hg). Bi-directional coupling to the arterial415

inflow model was necessary for the simple model (#2) to track the longer-term trend of increasing ICP, but greatly416

increased computational time compared to its uni-directionally version (#1). In both coupling setups, the simple models417

were faster than real-time whereas the uni-directional complex model (#3) took nearly six hours to perform a one hour418

simulation.419

The stronger-performing simple model approach may also used on lower-resolution q1m ABP summary data with no420

patient-specific parametrization of the inflow waveform. Estimates of nICP from the simple bi-directional model (#2)421

using waveform representations of q1m ABP were approximately equal raw 50 Hz ABP. Results showed that nICP422

depended only on accurate representation of systolic and diastolic pressures and heart rate; the post-systole pulse shape423

did not matter. This suggests that coarse clinical q1m data are sufficient drivers for nICP estimation in model #2 either424

via waveform downsampling during the preprocessing stage or as an aortic model component.425

Finally, the computational burden for complex model #3 may be relaxed under mean ABP forcing, but the need for ICM426

parameter identification limits its utility. Model #3 was also difficult to initialize due to strong parameter dependence.427

Computation time was an order of magnitude slower than clock time when forced with pulsatile ABP. Simulation speed428

improved under piece-wise-constant mean (non-pulsatile) ABP forcing, but was only slightly faster than real time.429

Further, some its many ICM parameters may not be stationary over multi-hour timescales and could require dynamical430

estimation. This may explain the difficulty in maintaining non-divergent behavior beyond the first hour of simulation.431

The physiological fidelity offers a potential wealth of clinically useful diagnostic information in the form of internal432

dynamical parameters and clearly should be used in retrospective applications where nICP waveform features may be433

desirable. However, the model provides potentially relevant diagnostic information even under mean ABP forcing and434

this data may be more easily accessible than full ABP series or joint q1m summaries of diastole, systole, and heart rate435

time series.436

The simple models, which rely on statistical analysis of flow and pressure across the middle cerebral artery, are limited437

by strong stationarity assumptions and are also sensitive to noise in ABP inflow data. The clinical value of model438

#2 becomes more apparent at longer timescales and is 10% better at correctly predicting whether ICP exceeds 20439

mm Hg than model #1. The results were robust under application of a 20Hz low-pass filter to remove noise from440

raw aortic ABP forcing, as relatively little noise was present in data for patient #6. However, other simulations not441

shown here suggest that models #1 and #2 are strongly sensitive to noise in aortic signals driving the system, with442

the latter prone to feedback-driven instabilities as a result of coupling. For example, the errant spike in model #2443

nICP simulation around 175 mins (Fig 5, blue line) results from a brief mis-identification of MCA pressure maxima444

and minima resulting from noisy aortic inflow signals. This effect also presents itself in the model #1 solution (same445

figure, magenta line). The disruption is brief in the absence of interactive coupling, but poor estimates of IC restance446

R and compliance C during the bi-directional simulations inform the following estimation period causing persistent447

errors during subsequent estimation windows. Shorter update periods increase the potential for instability and linearly448

increases computational time (i.e. decreases r3). Use of longer analysis windows to increase the signal-to-noise449
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ratio risks violating the stationarity assumptions for IC resistance, compliance, and ICP in the single-compartment450

configuration. The waveform representation of q1m data is sufficiently smooth to avoid many of these problems; the451

spurious feature around 277 minutes in the γ3-simulation of Fig 7 remains undiagnosed.452

The main results of this work are summarized here:453

1. Inclusion of feedback between ICM and AN-CoW components improves tracking of higher order trends over454

multi-hour timescales. The bidirectionally-coupled single-compartment model #2 features more accurate455

resolution of low-frequency ICP components than the uni-directionally coupled model.456

2. The nICP estimates using q1m ABP data projected onto pulsatile waveforms are qualitatively similar to those457

obtained using high-frequency APB data. However, q1m summary data must include heart rate in addition to458

diastolic and systolic pressures.459

3. Patient-specific waveforms are not required to use q1m ABP as simple model inflow data; the quality of nICP460

depends neither numerically nor empirically on resolving post-systole components of patient waveforms.461

4. Model #2 has stronger potential for multi-hour applications since no parameters are required, can be run using462

commonly available data, and runs about seven times faster than real time.463

5. The large number of parameters within the complex, nonlinear ICM of model #3 suffers from difficult464

identifiability, and poorly-specified parameters led to divergent or unrealistic behavior. It could not be465

adequately configured from available data for stable, multi-hour simulations.466

6. The temporal resolution of model #3 is inherited from the aortic inflow. Under pulsatile APB forcing, it467

resolves nICP waveforms but requires extensive computation time. If properly resolved in amplitude by468

a well-configured and identified model, such waveforms could be used to characterize autoregulatory and469

adaptive capacity.470

7. Near operational nICP estimation speed is plausible with model #3 under forcing by low-frequency or strongly-471

smoothed ABP, but not pulsatile ABP. Without additional time and data for individualized ICM parameter472

inference, clinical application may be limited.473

4.1 Overcoming model limitations: refinement and assimilation474

The simple bi-directional model (#2) is a strong candidate to build upon, but it has limitations. Both models #1 and475

#2 failed to accurately track the ICP trend and variablity of patients suffering intracranial hemorrhage or stroke. The476

presence of raw ABP noise and large waveform variance may play confounding roles in this limitation. It may also be477

that idealized physiology limits simple model applicability, as changes to underlying physiology during more acute478

brain injuries are not representned in the ICM derivation. The simple models base their nICP estimates only on nonlinear479

and statistical relationships between aortic inflow data and resolved/estimated physiology. They also do not account for480

many important aspects crucial to clinical decision making process including patient age; injury mechanism; imaging481

findings; or treatments such as sedation, neuromuscular blockade, osmolar therapy, and ventilation strategy.482

Further investigation is warranted to assess whether simple models can account for changes in ICP dynamics arising483

from unresolved intracranial processes. The MCA pressure and flow used are determined largely (or entirely in484

uni-directional case) from pulsatile aortic inflow, rather than from systemic ABP and localized CBF data streams as the485

formulation of [16] intends. Statistical estimation of bulk physiological parameters (viz. IC resistance R and compliance486

C of models #1 and #2) may not appropriately reflect diminished or exhausted intracranial adaptive capacity. This487

drawback may manifest itself as inaccurate nICP estimates for cases where ICM dynamics are more sensitive to changes488

in those parameters or where the physiological range of those parameters changes. For example, models #1 and #2489

do not impose upper bounds on IC compliance to reflect thresholds of CA processes or other exhausted adaptability.490

Additional joint ABP/ICP clinical data are forthcoming and will allow us to more precisely identify the domain of491

applicability for this model.492

Overcoming model #2 limitations to estimate nICP for some patients may require a more complex ICM or inclusion493

of additional dynamically-controlled parameters. Many patients of clinical concern have more complicated injuries494

including intracranial hemorrhages and strokes, like the other patients in Charis dataset. The recorded ABP-ICP495

timeseries of these patients include periods of complex and more rapidly evolving ICP regimes. One such critical ICH496

period is evident for patient #5, a 21 year-old female with TBI and subdural hematoma, whose ICP rises concerningly497

from 21 mm Hg to 29 mm Hg over a 47 minute period (Fig 8, red line). The median amplitude within the observed498

ICP q1m mean is about 0.47 mm Hg relative to its ∼11 minute moving average, which is four times larger than in the499

record of patient #6 presented previously (c.f. Selected Charis patient joint ABP-ICP timeseries. Fifty Hz ABP (left500
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Figure 8: An illstrated complex case application: patient #5. The observed ICP signal for Charis patient #5 during
record hours 30–34 is shown in red, with the dark red line indicating q1m average ICP as in previous figures. Signal
noise and high-frequency variability are much stronger than in the records of patient #6, yielding a less smooth observed
mean ICP. Slow wave pressure dynamics are observed during this period, but they are absent from the model #2 solution
using optimized scaling parameters alone (blue curve). This nICP estimate is relatively constant with small variance
(∼1 mm Hg) until 160 minutes into the simulation. The estimate also misses the onset of the ∼7 mm Hg ICH event
during 100–140 minutes and begins to track it only after ICP begins to fall. Model experiments using additional
non-stationary gain applied to inflow show improved trend tracking during these more dynamic regimes. The nICP
estimate is improved greatly using gain parameters specified at 30 minute intervals (magenta curve), resulting from the
addition of eight independent parameters. The large pressure event 40 minutes sooner in this simulation, but still fails
to capture shorter-term ICP dynamics around 20–80 minutes. A similar gain specified at 10 minute intervals greatly
improves the nICP estimation (cyan curve, using 24 parameters rather than 8) of the ICH event along with other smaller
features including initial waves in the first 100 minutes.

column) and associated ICP (right column) for Charis patients #1, #5, #6, #8, and #9 (rows top to bottom, respectively,501

labeled at left). Vertical axes corresponds to pressure measurements in mm Hg and horizontal axes show time in hours.502

Blue regions outline the raw pulsatile signal, with the red curve identifying the signal smoothed over 2 minute window503

by a cubic polynomial filter to illustrate the scale of local signal variability. Patient #6 was chosen for benchmarking on504

the basis of low noise in joint ABP-ICP signals and interpretability of ICP dynamics over a several-hour time period.505

Patient #5 was chosen for idealized optimizability experiments due the timescale of ICP dynamics continuity over a506

multi-hour interval, and the decorrelation between ABP and ICP during this period. Patients #8 and #9 are included here507

since their ABP waveform shapes strongly contrast those of patient #5 (cf. Figure 7 inset)). Similar variability exists508

even in the q1m average ABP inflow signal, and may confound model performance. The quality of nICP estimates509

for such cases benefits from well-optimized optimization model components, but may require additional machinery to510

drive model dynamics beyond its inherent ability. Two possible directions of ongoing research are motivated within the511

modeling framework presented.512

Increased sophistication A simple model of increased complexity may account for changes in ICP that arise from IC513

mechanisms, widening the applicability of the framework of model #2. To broaden the scope of potentially modelable514

cases, other lumped parameter ICMs which offer both increased physiological fidelity and low-computational overhead515

may be considered. In particular, two simple models which offer increased IC process resolution and relevant internal516

parametrization for more detailed clinical diagnostics for CA function assessment have been presented by [35] and [7].517

Both are directly representable within the electrical analog framework electrical circuit forms are presented in [11] and518

contain internal CA mechanisms. Either may easily fit bi-directionally within the existing framework as alternate ICM519

components with sufficiently fast algorithms for the predictive desire discussed above. These models (and variations520

thereof utilizing the statistical simplification of [16]) are part of continuing development within the general purview of521

this research.522

Additional Parametrization Another method of applying the simple model to complex cases involves augmented523

boundary control as a proxy for unresolved processes within a statistical parameter estimation scheme. While patient-524

specific optimization is beyond the scope of this study, additional experiments applying the model to ABP-ICP timeseries525

of interest show that model #2 is sufficiently robust to track ICP throughout these complex regimes. This requires the526

addition of optimized scaling parameters and non-stationary modulation of the relationship between ABP inflow at the527
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aorta and the ICM inflow from the middle cerebral artery. Fig 8 compares observed ICP to nICP estimates obtained528

from simulations employing independent modulation parameters in addition to partially optimized scaling. Here, the529

optimized scaling parameters are (θl, θr, ωl, ωr, Rterm) = (0.8, 1, 0.84, 0.93, 1). Simulations shown in the figure use a530

low-frequency non-stationary gain parameter to vary ABP inflow within the model. Specifically, the inflow source is531

adjusted by a gain parameter G:ABP(t)← ABP(t) · (1 +G(t)). The gain is specified as a piece-wise linear function532

at regular intervals with |G(t)| ≤ 0.15. This low-dimensional representation of G is effectively determined by a set533

of discrete parameters, which are potentially estimable from other patient record data. Determining values of gain534

G would involve placing the current ABP-to-nICP model within the framework of a data assimilation system, which535

provides a meaningful way of automatically constraining uncertainties due to inaccurate parameters and unresolved536

physiology. Such systems require extensive computational overhead, although some methods such as the empirical537

Kalman-type methods can take advantage of parallelization to maintain quasi-operational estimation provided that the538

underlying nICP estimation model is sufficiently fast. rheological parameters deoxyribonucleic acid Fig 8 illustrates539

the potential of this approach by including two additional model #2 simulations (magenta and cyan curves) using 8540

and 24 equally-spaced control points to linearly vary ABP inflow signal. In the absence of this additional control, the541

scale-parameter optimized model (blue curve) fails to track major waves in observed ICP and is likely of little clinical542

value. The simulation using 8 additional parameters is more dynamic and resolves a portion of the hypertensive event543

over 130–150 minutes, but misses its onset and underestimates peak pressure by over 1.5 mm Hg. The mean error r1544

decreases from 8.75 to 6.85 using this additional control. The simulation using 24 additional parameters improves545

nICP estimation further, qualitatively matching the rising trend of observed ICP from 100–150 minutes as well as the546

quantitative value of the maximum pressure. The r1 score is 5.6 under this stronger control, although much of the error547

is attributed to the consistent positive bias of about 0.7 mm Hg during the final hour of simulation. Either of these548

solutions is expected to be clinically useful as they indicate the presence of these dynamics which could not be resolved549

by the model from ABP alone. This example suggests that the model is capable of reproducing observed ICP from550

ABP for complex cases with additional non-stationary parametric optimization, and motivates ongoing work in that551

direction. Practical applications require estimation of these additional parameters whereas they were specified a priori552

in this illustration. Nevertheless, this example further underscores the need for simple, fast models to meet the goal of553

providing timely, relevant nICP estimation over multi-hour timescales.554

4.2 Forecast potential for clinical support555

A model-based forecast system based on bi-bidirectionally coupled model #2 can potentially inform clinicians of556

possible impending problems by extrapolating parameter and dynamical trends into the future. Such a system would557

greatly benefit both clinical decision support and care-level logistics by indicating possible changes in patient status558

with sufficient lead time to adjust room, equipment, and staff. This may also give practitioners advance warning with a559

time frame for planning treatments, permitting earlier and lower-risk interventions to combat IC hypertension. Recent560

works [1, 31, 33, 40] include machine-learning approaches to ABP prediction, and could be used in conjunction with561

the presented methods for short-term prediction of nICP. The application of these algorithms to low sample-rate q1m562

ABP records has not been reported in the literature.563

The speed of model #2 indicates it is a plausible candidate for use within a statistical estimation and forecast scheme564

which requires many forward model integrations. The accurately identified parameters together with acceptable565

simulation speed adds the possibility of practical forecast capabilities on the basis of trends in diagnostically computed566

model parameters. For the applications discussed in this work, distributional trends and higher order moments in567

ICM resistance and compliance may be inferred from robustly optimized model #2 simulations of a patient’s relevant568

history. This statistical information may then be utilized to predict possible future ICP outcomes under current ABP569

measurements or ABP forecast, potentially providing valuable and timely clinical decision support for caretakers and570

facility management.571

4.3 Ongoing work572

The original hypothesis was that the high degree of physiological fidelity of the complex multi-compartment model573

would provide the most diagnostic information from available data. It also had numerous model parameters which574

could be inferred from patient data in the longer view of the research program, which is to aid in patient-specific clinical575

support. This work began with an attempted implementation of model #4 using a spatially-resolved vascular system as576

in [29], which had recently been used within a data assimilation system [37]. We adopted the 0D AN-CoW to eliminate577

complicated propagation of waves across AN-CoW bifurcations and to increase computational speed. This choice did578

not easily allow for bi-directional coupling with the nonlinear ICM. These difficulties with bi-directional coupling579

arose from enforcing CoW-ICM pressure and flow agreement during the iterative solution of the complex ICM. MCA580

boundary outflow of the AN-CoW was saved for offline development of model #1 and for offline debugging of the581
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stand-alone ICM of model #4, which became model #3. However, solving the complex non-linear ICM system by582

iterative means was slow, and difficult to initialize from available data due to strong parameter dependence. The simple583

model #1 was easily coupled bi-directionally to the AN-CoW system, becoming model #2. This incorporated model584

was found to better track lower-frequency trends in ICP and could resolve higher-frequency ICP waves with additional585

computational cost. The lack of sophistication and parametrization within the simpler schemes motivates the need586

for additional external parameters to control the solution in more complex patient cases. This work describes these587

developments and informs possible directions of ongoing research toward the ultimate goal of developing operational588

nICP estimation suitable for clinical use.589

The need for additional inference is clear for application of models #2 and #3, but there are substantive differences590

in methodology and potential benefits. The simple model #2 lacks parameters and therefore requires no additional591

data, but is limited to applications where there is a strong correlation between systemic ABP and ICP response. To592

overcome that limitation, use of a more sophisticated ICM or augmentation with external parametric control over ABP593

inflow are proposed above (subsection 4.1). On the other hand, model #3 has numerous internal parameters which594

need to be properly inferred for meaningful simulations, but has the advantage of very strong parameter interpretability.595

Lack of physical meaning for proposed control parameters of model #2 limits the quality of information an optimized596

solution may produce beyond improving nICP estimation, while the investment of time to infer parameters in model597

#3 yields a wealth of clinically relevant knowledge. Furthermore, patient-specific parameters in the ICM of model598

#3 are numerous and interacting, but are also presumed to be stationary and thus potentially inferable from historical599

data using traditional methods (e.g. MCMC estimation or optimization). In contrast, the control mechanism proposed600

for model #2 requires only a few parameters, but they are distributed in time with unknown temporal correlations. A601

plausible method of estimation in this situation is via ensemble filtering, but the necessary mapping between typical602

clinical data and the control parameters is currently unknown and requires further development. Given that estimation of603

nICP is the primary objective of this project and inference requires many repeated simulations, continued development604

of inference machinery for model #2 is likely the best choice.605

The long term vision of this project remains the development of a bi-directionally coupled model with anatomical606

fidelity (i.e. model #4) fast enough for pre-emptive diagnostic use. One path toward this goal is a hybridization of607

methodologies that integrates an ICM of intermediate complexity under piece-wise stationarity assumptions akin to608

those of the simple models. Possible ICMs include those mentioned previously and a simplified (e.g. linearized)609

counterpart of model #3. This should reduce the burden of computational time of the complex model and allow it to be610

more easily coupled interactively to the upstream vascular component. Such a model would further benefit from highly611

interpretable inference based on data available when administering care, with the additional advantage of supporting612

summary ABP inflow. A remaining question is whether a model formulated in this way can be made fast enough to613

provide timely and clinically actionable information.614
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SI-1]Detailed Model Descriptions716

4.4 Zero-dimensional vessel parametrization717

Physical parametrization of vessel-level hemodynamics in the AN-CoW involves vessel dimensions (cross-sectional
area A0 and length l), material properties (vessel linear compliance ∂P/∂A, vessel elasticity constant β, and blood
density ρ), and a friction scaling term (χ, which depends on vessel mechanical properties and flow profile [14]). A local
elastic pressure model P = P (A;β,A0) is adopted from [24], where

∆P = β/
(
A
−1/2
0 −A−1/2

)
(5)

where ∆P is the change in internal pressure with respect to transmural vessel pressure. Parameters defining the
passive electrical components of each vessels are resistance R, capacitance C, and inductance Z. These may be define
approximated [23] from the physical parameters according to

R =
ρχ

A2
0

· l (6)

C = 2
A

3/2
0

β
· l (7)

Z =
ρ

A0
· l, (8)

respectively. The relationship between A and vessel radius r is elementary.718
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4.5 Six-Compartment ICM details719

The six-compartment model [29] is computationally centered at the the distal cerebral arterial bed represented by the
complaint structures Cd$X ) of each of the 6 territories visible in Figure 2. The physiological model combines Laplace’s
for law balancing wall tension with arterial pressure. Representations for tension as functions of pressure P gives:

Pd = Pe −
Qd
2Gd

(9)

Pdrd − Pic (rd + hd) = Te + Tv + Tm (10)

Te = hd ·
(
σe0

[
exp

(
Kσ

rd − rd0
rd0

)
− 1

]
− σcoll

)
(11)

Tv =
hdη

rv0
· drd
dt

(12)

Tm = T0(1 +M) exp

(
−
∣∣∣∣rd − rmrt − rm

∣∣∣∣nm
)

(13)

where subscripts e, d correspond to the proximal and distal arterial beds. Values of Pe correspond to interface pressure720

between the vascular network and the ICM at CoW outflows, whose character varies depending on the coupling method.721

Values of Qd and ∆Qcoll represent flows determined by transported fluid balances of each cerebral compartment.722

The tension term Tm models cranial auto-regulation (CA) through modulation of the state-dependent variable M ∈
[−1, 1] determining vaso-dilation/constriction of effective vascular radius rd of each compartment. CA is modeled by
the dynamics of a feedback mechanism ξ that aims to relax the distal lumped flow Qd to a target flow Qn over timescale
tCA with gain factor; the adjustment ODE determines M as:

tCA
dξ

dt
= −ξ +KCA

Qd −Qn
Qn

(14)

M =
e2ξ − 1

e2ξ + 1
(15)

The volume balance for each territory is given in terms of its effective vascular radius rd:

dVk
dt

= 2Kvrdk
drdk
dt

= Gdk (Pek − 2Pdk + Pek) + ∆Qcollk , k = 1 . . . 6 (16)

where Gdk = Kgkr
4
dk

.723

The collateral flow volumes ∆Qcollk are determined by pressure-difference-driven flows between adjacent compartments724

(see Eqns.25[29]).725

Once blood flow distribution of each compartment is represented, the common ICP value Pic for the component is the
solution to the differential equation

Cic
dPic
dt

=
6∑
k=1

(
dVk
dt

+ Ifk

)
− I0. (17)

However, the undetermined ICP influences both CSF outflow Io and the bed-wise CSF production rates Ifk as well as
the the intracranial compliance Cic. Equation (17) must therefore be solved with the nonlinear terms (for k = 1 . . . 6)

Cic =
[
Ke |Pic − Picn|+ C−1m

]−1
(18)

Io = Go(Pic − Ps) · [[Pic > Ps]] (19)
If = Gf (Pc − Pic) · [[Pc > Pic]] (20)

with double brackets denoting test operators.726

4.5.1 Numerical Implementation727

The system is represented numerically as{
ξt+1 = (1−∆t)ξt + ∆tKCA(Qtd./Qn − 1))

P t+1
ic = P tic + ∆t

[
−I0(P tic) +

∑
1:6

(
dV
dt (rtd, r

t−1
d )− If (P tic, P

t
c )
)] (21)
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Table 2: List of required primitive parameters in the six-compartment ICM. Parameters indicated by * may vary between
each compartment.

Symbol Description units
Gf * CSF formation conductance (ml/s)/mm Hg
Gpv venous bed capillary conductance (ml/s)/mm Hg
hd0 lumped distal vessel wall base thickness cm
σe0 passive elastic tension scale parameter mm Hg
Kσ growth rate of elastic tension with vessel radius -
rd0 reference vessel radius for Te cm
σcoll maximal negative vessel tension mm Hg
T0 * maximum tension for active tension mm Hg cm
rm * maximal force smooth muscle radius [36] cm
rt * “campanular" relationship scale parameter cm
nm * “campanular" relationship shape parameter [36] -
η arterial wall viscosity mm Hg s
tCA * CA feedback timescale s
KCA * CA feedback gain factor mm Hg−1
Qn * CA feedback target flow rate ml/s
Ke P−1ic :Cic ratio parameter ml−1
Cm Cic bounding parameter ml/mm Hg
Picn Pic offset parameter mm Hg
Kv Volume:radius gain parameter (ideally π-times-length) cm
Kg * territory conductance:radius4 (i.e. Gd/r4d) proportion -
GcAA anterior distal flow conductance (ml/s)/mm Hg
GcPP posterior distal flow conductance (ml/s)/mm Hg
Go CSF outflow conductance (ml/s)/mm Hg
Ps sagittal sinus pressure mm Hg
G[L/R]AM flow conductance between A/M compartments (ml/s)/mm Hg
G[L/R]MP flow conductance between M/P compartments (ml/s)/mm Hg

Table 3: List of diagnostic variables in the six-compartment models

Symbol Description units
Cic Intracranial compliance ml/ mm Hg
rd Representative vessel radius cm
Q[L/R]AM distal flow between A/M compartments ml/s
Q[L/R]MP distal flow between M/P compartments ml/s
QcAA anterior distal flow ml/s
QcPP posterior distal flow ml/s

and solved by minimizing the nonlinear function R(x) = |M(x)x− b(x)| where

x =

 rdPicPd
Pc

 , b(x) =

∆Qcoll − Pe(x)Gd(x)
Te + Tm
−GpvP t+1

ic
rtd

 , (22)

and

M(x) =

 2Kv
drd
dt (x) 1 2Gd(x) −Gd(x)

Pd(x)− P tic σv + P tic 0 0
0 0 Gd(x) −Gpv −Gd(x)
1 −∆t 0 0

 (23)

and is initialized using known or computed values at t.728

The entry-wise values of the optimum x provide updated values of its constituents at time t+ 1. The last row of the729

system enforces a finite difference approximation to dr/dt, but it makes the system explicitly ∆t-dependent.730
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4.6 Single-compartment731

The single compartment model[16] seeks to identify IC compliance and resistance by regressing features of the forcing
waveforms across temporal intervals. In particular, IC inflow Q and P are represented here in electrical analog form
(see Figure 2. The principal assumptions are that ICP, IC resistance C, and IC resistance R are constant over the
regression interval, in which case the system reduces to an RC circuit with governing equation

Q(t) =
P (t)− ICP

R
+ C · d

dt
(P (t)− ICP ) . (24)

During each systolic upswing {ta <= t <= tb}, flow through the resistance is assumed to be small and the entire flow
is stored compliantly; therefore, the value of C is estimated by regressing the net inflow volume against the change in
pressure during that interval:

C ≈ [P (tb)− P (ta)]
† ·
[∫ tb

ta

Q(t) dt

]
, (25)

with (·)† indicating the pseudo-inverse/least-squares matrix. Identification of intervals {[ta, tb]} proceeds by identifying732

roughly the times of minimum and maximum applied pressure.733

With the ICM inflow decomposed into resistive and capacitive flows, the former flow is calculated using the estimate of
C

Q1(t) = Q(t)− C dP (t)

dt
. (26)

ICP, assumed to be constant over the interval, is the difference between applied pressure P (t) and the pressure lost to
forcing resisted flow:

ICP = P (t)−R ·Q1(t). (27)
Evaluating at pairs of nearby times t1, t2 eliminates ICP , and the value of R is determined by regressing the change in
pressure against the corresponding change in resistive flow:

R ≈ [Q1(t2)−Q1(t1)]
†

[P (t2)− P (t1)] . (28)

Model #2 uses estimated values of R and C to estimate nICP directly via Equation (27)[16], whereas model #3 updates734

R and C and simulates nICP.735

SI-2736

Additional Figs, etc737
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Figure 9: Monte Carlo sensitivity experiments Monte Carlo sensitivity experiments performed on the base AN-
CoW components with fixed ICP and IC parameters shows how scaling parameters (in columns, at bottom) affect IC
component boundary forcing. Each 1-minute simulation (blue points) used artificial ABP forcing in the form of a 1Hz
cycle comprised of a 0.15 second sinusoidal systolic upswing to 125 mm Hg followed by a 0.15 second return to 80
mm Hg diastole. The top three rows correspond to values of the mean, variance, and maximum of MCA pressure, and
the bottom rows correspond to MCA flow. Columns, left to right, correspond to scale parameters for vessel length,
vessel radius, windkessel length, and windkessel radius. Red lines establish the relationship between changes in scale
parameters and the response in MCA signal properties; their slopes are used in the regression ranking of Figure 3.
Random joint variations of each scale parameter (and terminal resistance scaling, not shown) sampled and assigned
to 500 simulations via Latin hypercube sampling. Uniform sampling distribution ranges were [0.5, 1.1] for lengths,
[0.9, 1.1] for radii, and [0.5, 2] for resistance, with weak and positive covariances (0.5) assumed between lengths (and
radii) in an attempt to preserve anatomical fidelity.
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Figure 10: Selected Charis patient joint ABP-ICP timeseries. Fifty Hz ABP (left column) and associated ICP (right
column) for Charis patients #1, #5, #6, #8, and #9 (rows top to bottom, respectively, labeled at left). Vertical axes
corresponds to pressure measurements in mm Hg and horizontal axes show time in hours. Blue regions outline the raw
pulsatile signal, with the red curve identifying the signal smoothed over 2 minute window by a cubic polynomial filter
to illustrate the scale of local signal variability. Patient #6 was chosen for benchmarking on the basis of low noise in
joint ABP-ICP signals and interpretability of ICP dynamics over a several-hour time period. Patient #5 was chosen for
idealized optimizability experiments due the timescale of ICP dynamics continuity over a multi-hour interval, and the
decorrelation between ABP and ICP during this period. Patients #8 and #9 are included here since their ABP waveform
shapes strongly contrast those of patient #5 (cf. Figure 7 inset).
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