
A general approach for analysis of physiologically structured

population models: the R package ‘PSPManalysis’

André M. de Roos

Institute for Biodiversity and Ecosystem Dynamics

University of Amsterdam, Amsterdam, The Netherlands

and

Santa Fe Institute, Santa Fe, New Mexico 87501, USA

Email: A.M.deRoos@uva.nl

ORCID ID: https://orcid.org/0000-0002-6944-2048

June 26, 2020

Running head: Steady state analysis of PSPMs

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.174722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.174722
http://creativecommons.org/licenses/by-nc-nd/4.0/


Summary

1. How environmental conditions affect the life history of individual organisms and how these effects

translate into dynamics of population and communities on ecological and evolutionary time scales

is a central question in many eco-evolutionary studies.

2. Physiologically structured population models (PSPMs) offer a theoretical approach to address

such questions as they are built upon a function-based model of the life history, which explic-

itly describes how life history depends on individual traits as well as on environmental factors.

PSPMs furthermore explicitly account for population feedback on these environmental factors,

which translates into density-dependent effects on the life history. PSPMs can thus capture life

histories in quite some detail but lead to population-level formulations in terms of partial differ-

ential equations that are generally hard to analyse.

3. Here I present a general methodology and a R software package for computing how the ecolog-

ical steady states of PSPMs depend on model parameters and to detect bifurcation points in the

computed curves where dynamics change drastically. The package makes specifying the pop-

ulation model unnecessary and only requires a relatively straightforward implementation of the

life history functions as input. It furthermore allows for analysing the evolutionary dynamics and

evolutionary singular states of the PSPMs based on Adaptive Dynamics theory.

4. Given the central role of the individual life history in many studies, there is substantial scope

for using the presented methodology in fields as diverse as ecology, ecotoxicology, conservation

biology and evolutionary biology, where it has already been applied to problems like the evolution

of cannibalism, niche shifts and metamorphosis.
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Introduction

The life history of individual organisms plays a central role in ecology and evolution, determining the1

demography of populations and thereby their persistence and existence. Together with the interactions2

with other species it shapes the dynamics of interacting populations and communities and through mu-3

tation and selection it leads to evolutionary change in species traits. Methodologies to assess how life4

history characteristics translate into consequences at the population level, such as population growth5

rate, are hence a core part of many ecological and evolutionary studies.6

Modelling approaches that describe population and community dynamics explicitly on the basis of in-7

dividual life histories are referred to as structured-population models (Tuljapurkar & Caswell, 1997).8

Matrix models (Caswell, 2001) are the most common type of structured-population models. Matrix9

models describe the population dynamics in discrete time, as do integral projection models (IPMs, Ell-10

ner, Childs, & Rees, 2016). Structured-population models describing dynamics in continuous time11

include stage- (Nisbet & Gurney, 1983) and size-structured population models (Sinko & Streifer, 1969;12

de Roos, Metz, Evers, & Leipoldt, 1990), which both belong to the more general class of physiolog-13

ically structured population models (PSPMs, Metz & Diekmann, 1986; de Roos, 1997). Although all14

structured-population models explicitly include a modeled representation of individual life history, they15

differ in the way they account for this life history (de Roos, 2020). Matrix models and IPMs are primar-16

ily data driven. IPMs, for example, are formulated using (non-)linear relationships that result from fitting17

observational data on the scaling of somatic growth rate and fecundity with individual body size (Rees,18

Childs, & Ellner, 2014). In contrast, PSPMs (Metz & Diekmann, 1986; de Roos, 1997) are formulated19

using a function-based model of the individual life history, which also accounts for the effect of envi-20

ronmental variables, such as food availability and predator density, on this life history (de Roos, 2020).21

For example, individual foraging, growth and reproduction are in many PSPMs described by a dynamic22

energy budget model for individual energetics (Kooijman, 2010). In turn, PSPMs account for how these23

environmental variables are impacted by the population as a whole. PSPMs hence capture with more24

mechanistic detail how individual-level processes, like energetics, together with the interactions of the25

individual with its environment shape the life history and how the feedback of the entire population on26

this environment has a density-dependent impact on that life history. PSPMs are therefore especially27
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suited to analyse how particular mechanisms or aspects of the life history or ecology of an individual28

would affect the population and community dynamics.29

The downside of the increased mechanistic detail of PSPMs is their mathematical tractability (de Roos,30

2020). Where linear algebra offers a rich tool set to analyse matrix models and IPMs, simple PSPMs31

are formulated in terms of the more daunting partial differential equations (Metz & Diekmann, 1986;32

de Roos, 1997). Fortunately, though, a collection of numerical techniques is now available that allows33

for analysing the ecological and evolutionary dynamics of even fairly complicated PSPMs (Hin & de34

Roos, 2019a; ten Brink, de Roos, & Dieckmann, 2019; Chaparro Pedraza & de Roos, 2020). The aim35

of this paper is to provide an introduction to these techniques and to the R package ‘PSPManalysis’36

implementing them. This toolbox includes techniques for the demographic and steady-state analysis37

(Diekmann, Gyllenberg, & Metz, 2003; de Roos, 2008) of PSPMs, which also allow for the analysis38

of evolutionary dynamics of PSPMs, based on the framework of ‘Adapative Dynamics’ (Dieckmann39

& Law, 1996; Metz, Geritz, Meszéna, Jacobs, & van Heerwaarden, 1996; Geritz, Kisdi, Meszéna, &40

Metz, 1998). In addition, the ‘PSPManalysis’ package includes the ‘Escalator Boxcar Train’ (de Roos,41

Diekmann, & Metz, 1992), a numerical integration technique specifically developed for PSPMs.42

To use the ‘PSPManalysis’ package it is not necessary to bother with the population-level representation43

of the model in terms of partial differential equations or the like. The user can concentrate on the life44

history and the ecology of the individual organisms. The necessary ingredients of the model specification45

are conceptually straightforward as they include (i) the individual state variables (traits), such as age or46

body size, that determine the life history; (ii) the environmental variables, such as food availability or47

predation pressure, that impinge on and shape the life history; (iii) the rates of development, reproduction48

and mortality dependent on these individual state and environmental variables; (iv) how an individual49

impacts its environment; and (v) the conditions determining that the environment of the individuals is in50

steady-state. The routines implemented in the ‘PSPManalysis’ package take these individual life history51

ingredients as input and numerically analyse their population-level consequences, both in ecological and52

evolutionary time.53
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Materials and methods54

The individual life history model55

To illustrate the analysis of ecological steady states and the evolutionary analysis of PSPMs with the56

‘PSPManalysis’ package I use the life-history model described in Chaparro Pedraza and de Roos (2020)57

as an example. This model is loosely based on the life history of salmon with individuals starting their58

life in a safe nursery habitat, in which they are protected from predation but suffer from competition for59

resources. At some point during their life the individuals switch to a more risky growing habitat, where60

competition for resources is absent, but individuals are exposed to predation mortality. All equations61

occurring in the model are presented in Table 1, while Table S1 in the supporting information lists all62

parameters with their default values.63

Individuals are in the model characterised by their length ` and their population, to which I will refer64

to as the ‘consumer’ population, is hence length-structured. Migration to the growing habitat and mat-65

uration occur on reaching threshold body sizes, at length ` = `s and ` = `m, respectively. Feeding on66

resources, growth in body size and reproduction are in the model described by the dynamic energy bud-67

get (DEB) model developed by Jager, Martin, and Zimmer (2013). In the nursery habitat the consumers68

compete for a shared resource X at a rate that is proportional to their squared length and to the scaled69

functional response value X/(K +X) (Table 1). In the growth habitat competition is assumed negligi-70

ble and individuals have ad-libitum food. The DEB model predicts individuals under constant resource71

densities to grow in length following a vonBertalanffy growth curve with ultimate body length equal to72

`in f X/(K +X) and `in f in the nursery and growth habitat, respectively (Table 1). Reproduction only73

occurs after individuals have migrated to the growth habitat since `s < `m. Following the DEB model74

adult fecundity is proportional to squared individual length.75

Consumer mortality in the nursery habitat is assumed constant, while in the growth habitat mortality is76

negatively size-dependent, proportional to `−d (Table 1). In Chaparro Pedraza and de Roos (2020) size-77

dependent mortality in the growth habitat is assumed non-dynamic. Here I assume it to be proportional78

to the density of a dynamic, unstructured predator population that forages on consumers of different79

length following a linear functional response and that experiences a constant mortality rate µp. In the80
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model this predator population is represented with its scaled density, which incorporates the (constant)81

conversion efficiency between ingested biomass of consumers and the predator’s numerical response,82

indicated with B (Table 1). The contribution of individual consumers to predator intake equals the83

product of their vulnerability to predation and their biomass `3. Finally, following Chaparro Pedraza84

and de Roos (2020) turn-over of the resource in nursery habitat in the absence of consumers is described85

by a semi-chemostat growth equation.86

This tritrophic interaction between a resource and a size-structured consumer population in a nursery87

habitat, which goes through a habitat shift during its life history and subsequently supports a specialist88

predator population in the growth habitat, is fully determined by 3 life history functions, describing89

development, reproduction and mortality (γ(`,X), β (`), and µ(`,P) in Table 1, respectively), 2 functions90

describing the impact of differently sized consumer individuals on their environment through foraging on91

the resource and contribution to predator food intake (α(`,X) and ε(`), respectively), and by 2 functions92

that determine the dynamics of the shared resource in the nursery habitat and the predator in the growth93

habitat (g(R) and h(B), respectively; Table 1).94

General methodology95

In the context of PSPMs Metz and Diekmann (1986) introduced the fundamental distinction between the96

individual and its environment with accompanying state concepts. The crucial aspect of this distinction97

is that the individual life history is fully determined by the state of the individual in combination with the98

state of its environment. Given a constant environment all individuals are therefore independent, which99

implies that in PSPMs all forms of density dependence operate through the environment. As a further100

consequence, the individual life history functions are the only necessary ingredients for the computation101

of population equilibrium states. I will shortly present the general methodology for computation of102

equilibria in PSPMs here using the tritrophic model introduced above, but it should be stressed that it is103

straightforward to generalise the methodology to far more complex PSPMs (see Diekmann et al., 2003,104

for a detailed discussion).105

Given a constant, equilibrium resource density X̃ in the nursery habitat the individual length in equi-

librium ˜̀(a, X̃) as a function of age a and resource density X̃ is the solution of the ordinary differential
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equation (ODE):

d ˜̀

da
= γ

( ˜̀(a, X̃), X̃
)

(1)

with initial condition ˜̀(0, X̃) = `0. Similarly, denoting the equilibrium predator density in the growth

habitat as P̃, the probability for an individual to survive up to age a, which I indicate with F(a, X̃ , P̃), is

the solution of the ODE:

dF

da
= −µ

( ˜̀(a, X̃), P̃
)
F
(
a, X̃ , P̃

)
(2)

with initial condition F(0, X̃ , P̃) = 1. Notice that survival depends on both resource and predator density106

in equilibrium, as the resource density determines how quickly individual consumers grow and hence107

how long they experience low mortality in the nursery habitat and the predator density influences their108

survival in the growth habitat.109

The expected reproduction rate by a consumer individual at a particular age equals its fecundity times

the probability it survives up to that age. Accumulating these reproductive contributions by integration

over all possible ages that individuals can reach results in the following expression for the expected

number of offspring produced by a single consumer individual throughout its lifetime, indicated with

R0, as a function of resource density X̃ and predator density P̃:

R0
(
X̃ , P̃

)
=
∫

∞

0
β
( ˜̀(a, X̃)

)
F
(
a, X̃ , P̃

)
da (3)

Obviously, the equilibrium state of the size-structured consumer population is determined by the con-110

dition R0(X̃ , P̃) = 1, implying that every newborn consumer is expected to just replace itself during111

life.112

For the resource density in the nursery habitat to be in equilibrium the resource turn-over should balance

total resource consumption by all consumers in the nursery habitat. The latter equals the product of the

amount of resources that an individual consumer is expected to consume during its life time and the

consumer population birth rate, which I will indicate with b̃. The expected lifetime consumption by an

individual is an integral similar to the expression above for R0 but involving the foraging rate α(`,X)

as opposed to the fecundity β (`). The steady-state condition for the resource is hence given by the
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condition:

G
(
b̃, X̃ , P̃

)
= g(X̃)− b̃

∫
∞

0
α
( ˜̀(a, X̃), X̃

)
F
(
a, X̃ , P̃

)
da = 0 (4)

in which the integral represents the expected lifetime resource intake by a single consumer.113

Lastly, the predator population in the growth habitat is in steady state when its numerical response B

equals its per-capita mortality rate µp. Given the scaling of the predator population density such that

its numerical response equals its functional response, the quantity B equals the product of the consumer

population birth rate b̃ and the expected amount of biomass that a consumer individual during its lifetime

contributes to the per-capita food intake rate of the predator. The latter is given by an integral similar to

the expression for R0 in equation (3) but involving the function ε(`) as opposed to the fecundity β (`).

The steady-state condition for the predator is given by the condition:

H
(
b̃, X̃ , P̃

)
= b̃

∫
∞

0
ε
( ˜̀(a, X̃)

)
F
(
a, X̃ , P̃

)
da − µp = 0 (5)

The integral in the above expression represents the expected lifetime contribution by a consumer to the114

food intake of a single predator.115

Even though the ODE (1) for the growth in length is in the current model sufficiently simple to allow for116

an explicit expression for the length at age `(a, X̃) in equilibrium, analytical evaluation of the integrals117

in the expressions for R0(X̃ , P̃), G
(
b̃, X̃ , P̃

)
and H

(
b̃, X̃ , P̃

)
is not possible because of the dependence of118

consumer mortality on length. Hence, steady states of the PSPM can only be computed by solving the119

equilibrium conditions (eqs. (3), (4) and (5)) numerically and iteratively for the unknown variables b̃,120

X̃ and P̃. Solving such a system of (non-linear) equations can be achieved by standard methods, such121

as the Newton-Raphson method (Press, Flannery, Teukolsky, & Vetterling, 1988), but for the fact that122

it is impossible to derive explicit expressions for the integrals in the functions R0(X̃ , P̃), G
(
b̃, X̃ , P̃

)
and123

H
(
b̃, X̃ , P̃

)
even in a model as simple as the one discussed here. Definitely, the same holds for more124

complex PSPMs as well.125

The key idea to address this issue, originally proposed by Kirkilionis et al. (2001), is to consider the

integrals occurring in the equilibrium conditions as a function of the upper limit of the integration and
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define the following functions:

R0(a, X̃ , P̃) =
∫ a

0
β
( ˜̀(ζ , X̃)

)
F
(
ζ , X̃ , P̃

)
dζ

I1(a, X̃ , P̃) =
∫ a

0
α
( ˜̀(ζ , X̃), X̃

)
F
(
ζ , X̃ , P̃

)
dζ

I2(a, X̃ , P̃) =
∫ a

0
ε
( ˜̀(ζ , X̃)

)
F
(
ζ , X̃ , P̃

)
dζ

The value of these integrals can then be computed by numerically integrating the system of ODEs:



d ˜̀

da
= γ

( ˜̀(a, X̃), X̃
) ˜̀(0, X̃) = `0

dF

da
= −µ( ˜̀(a, X̃), P̃)F(a, X̃ , P̃) F(0, X̃ , P̃) = 1

dR0

da
= β ( ˜̀(a, X̃))F(a, X̃ , P̃) R0(0, X̃ , P̃) = 0

dI1

da
= α( ˜̀(a, X̃))F(a, X̃ , P̃) I1(0, X̃ , P̃) = 0

dI2

da
= ε( ˜̀(a, X̃))F(a, X̃ , P̃) I2(0, X̃ , P̃) = 0

(6)

for the length ˜̀(a, X̃) at age a, survival F(a, X̃ , P̃), expected cumulative reproduction R0(a, X̃ , P̃), ex-

pected cumulative resource ingestion I1(0, X̃ , P̃) and expected biomass contribution to the predator food

intake I2(0, X̃ , P̃) of a consumer individual up to age a (The ODEs for these last 3 quantities are derived

by differentiating their integral expressions with respect to a). Using these quantities the steady-state

conditions of the PSPM can be expressed as:



R0(∞, X̃ , P̃) = 1

b̃ I1(∞, X̃ , P̃) = g
(
X̃
)

b̃ I2(∞, X̃ , P̃) = µp

(7)

The Newton-Raphson method can be used to solve this system of equations iteratively for the unknown126

variables b̃, X̃ and P̃, but for every evaluation of these equations the ODEs (6) have to be integrated127

numerically. This integration in theory has to proceed until infinite age but in practice integration is128

stopped when the probability to survive F(a, X̃ , P̃) has dropped below some very low value (e.g. 1.0 ·129
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10−9).130

The methodology discussed above is sufficiently general that it can be applied to a wide range of PSPMs,131

including those with finitely many individual and environmental state variables and with individuals that132

are born with finitely many different states at birth (Diekmann et al., 2003). The R package ‘PSP-133

Manalysis’ uses this methodology to compute steady states of PSPMs but also implements pseudo-134

arclength continuation techniques to compute steady state curves as a function of 1 or 2 model param-135

eters (Kuznetsov, 1998, Chapter 10). The results section illustrates how to use this curve continuation136

approach for model analysis. While computing such curves the ‘PSPManalysis’ package furthermore137

detects certain bifurcation points, which are points along a curve where the nature of the computed equi-138

librium undergoes a qualitative change. As illustrated in the results section, such a qualitative change139

could refer to whether or not a particular equilibrium state can or can not be invaded by a population.140

For the detection of these bifurcation points the ‘PSPManalysis’ package again uses the techniques and141

tests presented in Kuznetsov (1998, Chapter 10).142

Diekmann et al. (2003) discuss that the approach to compute steady states of PSPMs can also be used

to analyse evolutionary dynamics using the theory of Adaptive Dynamics (Dieckmann & Law, 1996;

Metz et al., 1996; Geritz et al., 1998). Adaptive dynamics theory explicitly relates evolution by natural

selection to population dynamics by considering whether rare mutant phenotypes can invade and take

over a resident population. The invasion fitness of such rare mutants is determined by their population

growth rate under the environmental conditions imposed by the population with resident phenotype.

Because the quantity R0(∞, X̃ , P̃)− 1 has the same sign as this mutant invasion fitness, it can be used

as fitness proxy (Diekmann et al., 2003; Durinx, Metz, & Meszéna, 2007). Therefore, the sign of the

selection gradient is determined by the derivative of R0(∞, X̃ , P̃) with respect to a model parameter

representing a life history trait. I will focus below on the length to switch to the growth habitat `s.

Endpoints of evolution in `s, also referred to as evolutionarily singular strategies or ESSs then satisfy

the condition

dR0(∞, X̃ , P̃)
d`s

= 0

which implies that the invasion fitness reaches a maximum or minimum and the selection gradient van-143

ishes for the given set of environmental conditions X̃ and P̃. The characteristics of the ESS can be144
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determined on the basis of second-order derivatives of R0(∞, X̃ , P̃) with respect to the life history pa-145

rameter as explained in detail by Geritz et al. (1998). Furthermore, the fitness gradient dR0(∞, X̃ , P̃)/d`s146

also determines the rate at which the life history trait `s changes over evolutionary time following the147

‘canonical equation of Adaptive Dynamics’ derived by Dieckmann and Law (1996).148

Detailed introductions to the theory of adaptive dynamics are found in Dieckmann and Law (1996), Metz149

et al. (1996), Geritz et al. (1998), Durinx et al. (2007), and Lion (2018). The ‘PSPManalysis’ package150

implements the techniques and conditions from adaptive dynamics discussed in these publications to151

locate ESSs and to identify their properties; for example, by classifying them as a ‘continuously stable152

strategy’, which refers to an ESS to which the life history trait evolves and is furthermore evolutionary153

stable, or as ‘branching point’, where evolutionary branching or diversification can occur (see Geritz et154

al., 1998, for details). For this purpose the ‘PSPManalysis’ package computes the first and second-order155

derivatives of R0(∞, X̃ , P̃) with respect to a life history parameter through numerical differentiation.156

Model implementation for ‘PSPManalysis’157

The life history model presented in Table 1 has to be implemented in an R script to be analysed with158

the ‘PSPManalysis’ package. The implementation requires the specification of 3 vectors and 4 functions159

(see Table 2). The vectors define the model dimensions, the environmental state variables and the model160

parameters, whereas the functions define the right-hand side of the ODEs (6), their starting values and161

the boundaries of the different stages in the life history as well as the last two of the conditions (7)162

that determine the steady states of the environmental variables. In the Supporting Information this163

implementation of the example model in R is discussed in more detail.164

Although the life-history model to be analysed can be specified in R, the entire ‘PSPManalysis’ package165

is written in the C language. The package is designed in such a way that implementation of the life166

history model in C is also possible and in fact preferable. The implementation of the example model167

used in this paper in the C language is included in the Supporting Information to this paper as a C header168

file (with extension .h). The implementation in C has a similar, self-explanatory layout as the model169

implementation in R shown in Table 2 and adaptation of the implementation for another PSPM should170

only require basic knowledge of the C language. Specifying the model definition in R may be more171
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straightforward, but comes at a substantial computational cost: Using the model implementation in C172

rather than the R implementation decreases the computational time for the results presented in the next173

section with a factor 40-50.174

Results175

Bifurcation analysis of ecological steady states176

The main purpose of the ‘PSPManalysis’ package is to compute the steady states of a PSPM as a func-177

tion of one of the model parameters, which I from here on refer to as the bifurcation parameter. This not178

only requires the ‘PSPManalysis’ package implementing the methodology, but also a strategy to execute179

the computations in a comprehensive manner. Figure 1 shows the equilibrium bifurcation curves of the180

example model as a function of Xmax. The figure itself was produced using basic plotting commands181

in R on the basis of data computed with the main function called PSPMequi provided by the ‘PSPM-182

analysis’ package. A total of 3 computational steps were needed to generate the data for Figure 1 with183

the ‘PSPManalysis’ package. Here I discuss these computational steps in broad terms, focussing on the184

computational strategy rather than on the relevant R commands, which are discussed in more detail in185

the supporting information.186

Key to the computation of steady state curves as a function of model parameters is a good starting point.187

For the example model we can start the computations at the trivial steady state (b̃, X̃ , P̃) = (0,Xmax,0),188

which will be the only steady state for maximum resource densities close to 0, because consumers then189

do not encounter sufficient resources to reach the length at maturation (note the maximum length equal190

to `in f X/(K+X)). As a first step to generating the data for Figure 1 this resource-only equilibrium with191

zero density of both the length-structured consumer and predator was computed for increasing values of192

the bifurcation parameter Xmax, starting from Xmax = 0.1. The result is the curve section with increasing193

equilibrium densities X̃ at low values of Xmax in Figure 1. This computational step would be superfluous194

as the value of this steady state is known exactly as (b̃, X̃ , P̃) = (0,Xmax,0), but for the fact that the195

function PSPMequi in the ‘PSPManalysis’ package with which this computational step is carried out,196

locates a bifurcation point along the curve. It labels this bifurcation point with the string "BP #0",197
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indicating that this bifurcation point represents a branching point (also called transcritical bifurcation198

point (Kuznetsov, 1998)) for the structured population with index 0 (the consumer population; because199

the ‘PSPManalysis’ package is written in C, indices conform to the C convention, in which the first200

element of a vector has index 0 rather than index 1 such as in R). From the output of the function201

PSPMequi it can be inferred that for Xmax values to the left of this branching point consumers can not202

establish themselves in the computed, resource-only equilibrium, because their lifetime reproductive203

output R0 is below 1, whereas they can for values to the right of it. These steady states to the left and204

right of the bifurcation point are therefore stable and unstable (saddle points), respectively.205

Step 2 of the computations uses the bifurcation point located in the first computational step as starting206

point to compute the curve of consumer-resource steady states as a function of Xmax. The resulting curve207

corresponds to the part of the equilibrium curves shown in Figure 1 with constant resource density,208

linearly increasing densities of consumer biomass in the nursery and growth habitat and zero density for209

the unstructured predator. In this curve the PSPMequi function detects a branching point (or transcritical210

bifurcation point) for the environment variable with index 1 (the unstructured predator population),211

which it labels as "BPE #1" (see Figure 1). The consumer-resource steady states to the right of this212

branching point can be invaded by the unstructured predator population, as indicated by the positive213

per-capita growth rate that the function PSPMequi produces as output. Predators can hence increase in214

abundance from low densities for higher Xmax-values. In contrast, predators have a negative per-capita215

growth rate and can thus not invade the consumer-resource steady state for Xmax-values to the left of216

the branching point labeled "BPE #1" in Figure 1, which may therefore represent a stable equilibrium.217

Whether or not these steady states are indeed stable or, alternatively, cycles in consumer and resource218

abundance occur can only be investigated using numerical studies of the dynamics, because appropriate219

test functions that detect transitions from stable equilibrium states to limit cycles (occurring at so-called220

Hopf bifurcation points (Kuznetsov, 1998)) are currently not available for PSPMs.221

The last step of the analysis uses the detected branching point for the unstructured predator population222

to start a computation of the steady states with positive predator density as a function of Xmax. The223

result of this computation is a folded curve of steady state values which extends to a minimum just be-224

low Xmax = 4. This point at which the equilibrium curve doubles back on itself is another bifurcation225
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point called limit point (or saddle-node bifurcation point Kuznetsov, 1998) and labeled by the func-226

tion PSPMequi with "LP" (see Figure 1). Ecologically, this minimum value of Xmax represents the227

persistence boundary of the unstructured predator population whereas the branching point detected in228

step 2 and labeled "BPE #1" represents the predator’s invasion boundary. In between the persistence229

and invasion boundary two steady states are possible: a consumer-resource steady state that can not be230

invaded by the predator and a predator-consumer-resource equilibrium. On the basis of the general bi-231

furcation theory presented in Kuznetsov (1998) it can be inferred that the part of the predator-consumer-232

resource equilibrium curve between the two bifurcation points represents unstable equilibrium states233

(saddle points).234

Because they represent the invasion and persistence boundary of the predator, it may be ecologically235

relevant to assess how the location of the bifurcation points labeled "BPE #1" and "LP" depends on236

other model parameters. The PSPMequi function therefore also allows for the computation of these237

bifurcation points as a function of a second model parameter. Figure 2 shows the location of these two238

bifurcation points as a function of the maximum resource density Xmax and the predator mortality rate239

µp. For values in the region of parameter space between the two lines in Figure 2 two steady states240

occur that are potentially stable, a tritrophic steady steady state with predators and a consumer-resource241

steady state that predators can not invade. This region of bistability is larger at higher rates of predator242

mortality.243

Evolutionary analysis244

A particular strength of the ‘PSPManalysis’ package is that it can also be used to calculate evolutionary245

singular strategies (ESSs) using the framework of Adaptive Dynamics (Dieckmann & Law, 1996; Metz246

et al., 1996; Geritz et al., 1998). The package therefore allows studying questions about the evolution of247

life history traits in a context with population and community feedback on the environment in which the248

evolutionary process takes place. Figure 3 provides as an example the equilibrium bifurcation curves of249

the example model as a function of the individual length at the habitat switch `s. Because it influences250

the extent of resource competition and predator vulnerability an individual experiences throughout life,251

this trait can be expected to be under strong selection. The data shown in Figure 3 have been computed252
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as before with the function PSPMequi, which can also produce as output the value of the selection253

gradient, that is, the derivative dR0(∞, X̃ , P̃)/d`s of the lifetime reproductive output R0 with respect to254

the life-history parameter `s (see bottom panel of Figure 3). In the absence of the predator selection255

for a smaller size at habitat shift occurs, but in the presence of the predator the function PSPMequi256

detects an evolutionary singular state (ESS), which it labels as "CSS #0" on the basis of the second-257

order derivatives of R0 with respect to `s. The label indicates that the ESS is convergent stable, such258

that the value of `s will evolve toward the `s value of this CSS, while after fixation mutants with slightly259

different values of `s will not be able to invade (see Geritz et al., 1998, for further details about the ESS260

classification).261

Once an evolutionary singular strategy has been detected the function PSPMequi can be used to con-262

struct a pairwise invasibility plot (PIP; Van Tienderen & de Jong, 1986; Geritz et al., 1998), that is, a263

graph of the sign of a mutant’s invasion fitness as a function of the life-history trait value of both the264

resident and the mutant (Figure 4, left panel). Starting from the CSS detected in Figure 3 the function265

PSPMequi was used to compute a boundary with zero mutant fitness as a function of the resident and266

mutant life-history trait value. This boundary corresponds to the curve separating regions with positive267

and negative mutant fitness in the PIP shown in Figure 4 (left panel).268

Finally, the ‘PSPManalysis’ package also includes a function PSPMevodyn, which can be used to sim-269

ulate the dynamics of evolving life-history parameters over evolutionary time (Figure 4, right panel).270

These evolutionary dynamics are described by the canonical equation of Adaptive Dynamics (Dieck-271

mann & Law, 1996). The trajectory of `s over evolutionary time shown in Figure 4 (right panel) con-272

firms that the individual length at the habitat switch evolves to the value of the convergent stable ESS273

shown in Figure 3, but since the function PSPMevodyn can not simulate combined mutant and resident274

dynamics, it is not possible to verify whether or not evolutionary branching is possible at this ESS.275

The results shown in Figure 3 and 4 were on purpose computed with a low value of Xmax = 0.5, as the276

default value of Xmax = 5.0 results in a more complicated, and hence also more intriguing evolutionary277

outcome of the selection process in `s (Figure 5). For this value of Xmax the range of `s over which both278

a consumer-resource equilibrium and a predator-consumer-resource equilibrium occur is more extensive279

and the evolutionary singular state (classified by the PSPMequi function as an evolutionary repellor and280
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labeled "ERP #0") now occurs on the part of the curve representing saddle-node steady states of the281

predator, consumer and resource. This state is hence ecologically unstable and thus unreachable. As282

before smaller values of `s are selected for in the absence of the predator, as this reduces competition283

for resources among consumers. In the presence of the predator, however, larger values of `s confer284

a selective advantage. As a consequence, with predators present evolution will result in larger values285

of `s until the limit point is reached around `s = 22.5, at which point the predator goes extinct and the286

community collapses to a consumer-resource equilibrium. After predator extinction, the direction of287

evolution reverses and smaller values of `s are selected for until the value of this life-history parameter288

reaches the bifurcation point labeled "BPE #1" in Figure 5, below which the predator can once again289

invade the consumer-resource equilibrium. From Figure 5 it can hence be inferred that over evolutionary290

time cycling will occur between a consumer-resource steady state and a steady state with predator, driven291

by the selection process in `s. Simulating the evolutionary dynamics with the PSPMevodyn function292

following the canonical equation of Adaptive Dynamics would, however, not reveal such evolutionary293

cycling as this function can not switch between the two ecological steady states.294

Discussion295

This paper outlines a general methodology for the analysis of PSPMs, presents a strategy how to apply296

this methodology to ecological and evolutionary questions and introduces a R package that implements297

the numerical tools required by this methodology. This methodology has been used to gain insight about298

how individual development affects the ecological dynamics of size-structured populations and commu-299

nities (de Roos & Persson, 2013). More recently, it was applied to a variety of evolutionary problems,300

ranging from the evolution of ontogenetic niche shifts (ten Brink & de Roos, 2017), metamorphosis301

(ten Brink et al., 2019), cannibalism (Hin & de Roos, 2019a), ontogenetic size-scaling (Hin & de Roos,302

2019b) and the timing of habitat shifts (Chaparro Pedraza & de Roos, 2020). Given the importance303

of the individual life history for many eco-evolutionary questions and the importance of environmental304

feedback on this life history (Lion, 2018), however, there is scope to apply the methodology to a wide305

range of eco-evolutionary problems.306

Physiological structured population models are key to the presented methodology. In contrast to for307
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example integral projection models (Ellner et al., 2016) PSPMs are not directly based on observational308

life history data. Such data, however, are often collected under at most a few different sets of environ-309

mental or density-dependent conditions and hence offer limited information about how the individual310

life history changes under environmental feedback. In contrast, PSPMs are based on a functional model311

of the individual life history that mechanistically accounts for the interplay between the life history and312

the environment (de Roos, 2020). PSPMs therefore often address the question how the individual life313

history is shaped by both individual traits and environmental, density-dependent impacts. The current314

paper shows that to address such questions it suffices to specify only the model of the individual life315

history model dependent on individual traits and environmental variables. Formulating a population-316

level model is not required as the translation to the population level is sufficiently generic that it can be317

abstracted into a software approach.318

The capabilities of the ‘PSPManalysis’ package are more extensive than highlighted in this paper. Next319

to the routines for the bifurcation analysis of ecological steady states, the package includes routines320

for the demographic analysis of PSPMs (following de Roos, 2008), the simulation of the ecological321

dynamics of structured populations (de Roos et al., 1992), the computation of evolutionary singular322

states as a function of parameters and the computation of the individual life history under different323

environmental conditions. All procedures use the same specification of the individual life history, such324

as the one shown in Table 2, which moreover has a generic structure that is readily adapted to many325

different life history models. Other methods for the bifurcation analysis of PSPMs do exist (Breda,326

Diekmann, Gyllenberg, Scarabel, & Vermiglio, 2015; Gyllenberg, Scarabel, & Vermiglio, 2018) and327

can handle more complex bifurcations, such as Hopf bifurcation points, that can not be detected and328

analysed with the ‘PSPManalysis’ package, but these methods always have to be specifically tailored329

to the particular PSPM. The generic and easy-to-adapt implementation of the life history model is the330

key aspect of the ‘PSPManalysis’ package that makes it useful for a wide range of eco-evolutionary331

problems.332

Theoretical studies in ecology and evolutionary biology often aim for deriving analytical insight, as such333

insight is considered to apply more generally to a wide range of systems. The complexity of models that334

can be investigated analytically is, however, severely limited. For example, conditions determining335
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the equilibrium of a size-structured consumer-resource system and its stability can be derived analyt-336

ically only if mortality is size-independent and an explicit expression for the size-at-age relationship337

is available (de Roos et al., 1990). The derived conditions are themselves, however, not transparent338

and nevertheless have to be solved numerically. To facilitate mathematical analysis structured mod-339

els are then often simplified, for example by replacing size-dependent life history functions with far340

easier age-dependent ones. Size-dependent and age-dependent life histories (and hence size-structured341

and age-structured population models) are however fundamentally different from each other, if growth342

in body size and hence the progression through ontogeny depends on environmental factors like food343

availability (de Roos & Persson, 2013). Often the choice is hence between a simple model for which344

analytical results are possible or a model with a more faithful representation of the complexity of real345

life histories that can only be investigated numerically. In this context the power of numerical bifur-346

cation analysis (Kuznetsov, 1998) has received too little attention. It offers a more powerful approach347

than brute-force numerical simulations of dynamics, as it provides more comprehensive insight about348

the different types of stable dynamic patterns that can occur for given combinations of model parame-349

ters. The very essence of bifurcation theory furthermore guarantees that these dynamic patterns occur350

over at least a range of parameter values, lending the results some measure of generality. Methodology351

and software for the numerical bifurcation analysis of models in terms of ODEs have been available for352

a while (Dhooge, Govaerts, & Kuznetsov, 2003), the ‘PSPManalysis’ package is intended to provide353

some of the same capabilities for the general class of PSPMs and thereby facilitate investigating ques-354

tions about the relationship between complex individual life histories and the dynamics of populations355

and communities on both ecological and evolutionary time scales.356
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Data accessiblity360

No experimental or empirical data are used or collected in this study. The ‘PSPManalysis’ package can361

be installed from CRAN using the command:362

install.packages("PSPManalysis")363

The most recent version can always be installed using the command:364

devtools::install_bitbucket("amderoos/PSPManalysis", subdir = "R/",365

build_vignettes = TRUE)366

The Supplementary Information contains:367

1. Table S1 with model parameters and their default values.368

2. A discussion of the implementation of the life history model of Chaparro Pedraza and de Roos369

(2020) in the R script called "Salmon.R" (also shown in Table 2).370

3. A discussion of the R commands used to generate the data for the figures in this paper.371

4. The R script called "EcoFigures.R" with the R code to generate Figures 1 and 2.372

5. The R script called "EvoFigures.R" with the R code to generate Figures 3, 4 and 5.373

6. The C header file called "Salmon.h" with the C implementation of the life history model of374

Chaparro Pedraza and de Roos (2020).375
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Tables449

Table 1: Model functions of the individual life history model of Chaparro Pedraza and de Roos (2020).

Function Description

Life history functions

γ(`,X) =


ξ

(
`in f

X
K +X

− `

)
` < `s

ξ (`in f − `) otherwise
Growth rate in length

β (`) =

Bmax`
2 ` > `m

0 otherwise
Fecundity

µ(`,P) =

µ1 ` < `s

µ2 +φ`−dP otherwise
Mortality

Impacts on the environment

α(`,X) =


Imax

X
K +X

`2 ` < `s

0 otherwise
Foraging on resource in nursery habitat

ε(`) =

φ`3−d ` > `s

0 otherwise

Contribution to predator numerical re-
sponse

Functions related to the environment

g(X) = ρ (Xmax −X) Resource turn-over rate

h(B) = B−µp
Predator per-capita growth rate as a
function of the numerical response B
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Table 2: The implementation in R of the individual life history model of Chaparro Pedraza and de Roos
(2020) for the analysis with the ‘PSPManalysis’ package.

PSPMdimensions <- c(PopulationNr = 1, IStateDimension = 2,
LifeHistoryStages = 3, ImpactDimension = 5)

EnvironmentState <- c(X = "GENERALODE", P = "PERCAPITARATE")

DefaultParameters <- c(Rho = 0.01, Xmax = 5.0,
K = 1.0, Imax = 0.0025, Bmax = 0.002725,
L0 = 2.0, Ls = 20.0, Lm = 30.0, Linf = 115.0,
Xi = 0.00051, Mu1 = 0.002, Mu2 = 0.006,
D = 0.75, Phi = 0.001, Mup = 0.006)

StateAtBirth <- function(E, pars) {
with(as.list(c(E, pars)),{

c(Age = 0.0, Length = L0)
})

}

LifeStageEndings <- function(lifestage, istate, birthstate, BirthStateNr, E, pars) {
with(as.list(c(E, pars, istate)),{

maturation = switch(lifestage, Length - Ls, Length - Lm, -1)
})

}

LifeHistoryRates <- function(lifestage, istate, birthstate, BirthStateNr, E, pars) {
with(as.list(c(E, pars, istate)),{

list(
development = c(1.0,

switch(lifestage, Xi*(Linf*X/(K+X) - Length),
Xi*(Linf - Length), Xi*(Linf - Length))),

fecundity = switch(lifestage, 0, 0, Bmax*Length^2),
mortality = switch(lifestage, Mu1, Mu2 + Phi*P*Length^(-D),

Mu2 + Phi*P*Length^(-D)),
impact = switch(lifestage,

c(Imax*X/(K+X)*Length^2, 0, Length^3, 0, 0),
c(Imax*X/(K+X)*Length^2, Phi*Length^(3-D), 0, Length^3, 0),
c(Imax*X/(K+X)*Length^2, Phi*Length^(3-D), 0, 0, Length^3))

)
})

}

EnvEqui <- function(I, E, pars) {
with(as.list(c(E, pars)),{

c(Rho*(Xmax - X) - I[1], I[2] - Mup)
})

}
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Figure 1: Steady state densities of the unstructured predator population (top panel), the length-structured
consumer population in the nursery and growth habitat (middle panel) and the basic resource (lower
panel) in the example model (see Table 1) as a function of the maximum resource density Xmax. All
other parameters have default values (Table S1 in the supporting information). See the main text for
details about the bifurcation points labeled "BP #0" (branching point for structured population with
index 0), "BPE #1" (branching point for the environmental variable with index 1) and "LP" (limit
point). Solid lines represent possibly stable equilibria, dashed lines represent saddle points. The curve
sections with unstable resource-only and consumer-resource steady states that can be invaded by the
structured consumer and unstructured predator, respectively, have been omitted for clarity.
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Figure 2: Location of the bifurcation points shown in Figure 1 as a function of the maximum resource
density Xmax and the predator mortality rate µp. Only the location of the bifurcation points labeled
"BPE #1" (branching point for the environmental variable with index 1) and "LP" (limit point) are
shown, as the location of the bifurcation point labeled "BP #0" (branching point for structured popu-
lation with index 0) is independent of the predator mortality rate µp. All other parameters have their
default values (Table S1 in the supporting information).
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Figure 3: Steady state densities of the unstructured predator population (top panel) and the length-
structured consumer population in the nursery and growth habitat (middle panel), as well as the selection
gradient on the individual length at habitat switch `s in the example model (see Table 1) as a function
of this length at habitat switch `s. Maximum resource density Xmax = 0.5, all other parameters have
their default values (Table S1 in the supporting information). See the main text for details about the
bifurcation points labeled "BPE #1" (branching point for the environmental variable with index 1) and
"LP" (limit point) and the evolutionary steady state labeled "CSS #0" (convergent stable evolutionary
state for structured population with index 0). Solid lines represent possibly stable equilibria, dashed lines
represent saddle points. The curve sections with unstable resource-only and consumer-resource steady
states that can be invaded by the structured consumer and unstructured predator, respectively, have been
omitted for clarity.
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Figure 4: Left: Pairwise invasibility plot showing combinations of the resident and mutant value of the
length at habitat switch `s with positive and negative invasion fitness of the mutant. Right: Simulation of
the dynamics of the evolving value of the length at habitat switch `s over evolutionary time as predicted
by the canonical equation of Adaptive Dynamics (Dieckmann & Law, 1996).
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Figure 5: As Figure 3 but for Xmax = 5.0. The point labeled "ERP #0" refers to an evolutionary repellor
for the structured population with index 0 (see main text for details). Notice the opposing signs of the
selection gradient in the consumer-resource and predator-consumer-resource equilibrium, which predicts
that evolutionary cycling will occur for the body length at habitat switch `s between the bifurcation points
labeled "BPE #1" and "LP" resulting in repeated invasion and extinction of the predator population.

29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.174722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.174722
http://creativecommons.org/licenses/by-nc-nd/4.0/

