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Summary 

NF-B acts as the master regulator of the transcriptional response to inflammatory signals by translocating 

into the nucleus upon stimuli, but we lack a single-cell characterization of the resulting transcription 

dynamics. Here we show that transcription of NF-B target genes is strongly heterogeneous in individual 

cells but dynamically coordinated at the population level, since the average nascent transcription is prompt 

(i.e. occurs almost immediately) and sharp (i.e. increases and decreases rapidly) compared to NF-B nuclear 

localization. Using an NF-B-controlled MS2 reporter we confirm that the population-level transcriptional 

activity emerges from a strongly heterogeneous response in single cells as compared to NF-B translocation 

dynamics, including the presence of a fraction of “first responders”. Mathematical models show that a 

combination of NF-B mediated gene activation and a gene activity module including a gene refractory 

state is enough to produce sharp and prompt transcriptional responses. Our data and models show how 

the expression of the target genes of a paradigmatic inducible transcription activator upon stimuli can be 

time-resolved at population level and yet heterogeneous across single cells. 

Introduction 

A tight control of gene expression is assumed to be fundamental for any living system, from prokaryotes to 

higher organisms. For this reason, it was surprising to find that the same gene within a clonal population of 

identical cells can be translated into different protein levels (Ko et al., 1990) which can fluctuate in time 

even within the same cell (Elowitz et al., 2002). The development of accurate techniques allowing to 

measure gene expression in single living cells showed that such variability is related to discontinuous 

transcriptional “bursts” (Tunnacliffe and Chubb, 2020), spurts of RNA production interspersed with periods 

of no activity, that emerge from fluctuations of the gene between “active” and “inactive” states, whose 

precise origin is only partially understood (Chong et al., 2014).  

Transcriptional bursts have been observed for a variety of organisms(Golding et al., 2005; Pichon et al., 

2018; Suter et al., 2011), but their functional role is also unclear, although it has been proposed as a natural 

mechanism exploited and controlled by cells to either produce variability or robustness in gene-expression 

programs, presumably in a context-specific way (Raj and van Oudenaarden, 2008). Transcriptional bursts 

are indeed modulated by external stimuli (Molina et al., 2013), by the developmental stage of the organism 

(Muramoto et al., 2012) and by chromatin state(Nicolas et al., 2018). However, we are still far from having 

a complete picture of how the delicate balance between robust control and variability in gene expression  is 

achieved (Raj and van Oudenaarden, 2008).  

Such balance is presumably gene and cell specific, and different for different biological processes. For 

example, the inflammatory response is characterized by a variable degree of transcriptional heterogeneity 

across genes, species and cell types (Hagai et al., 2018), whose connection to the dynamics of 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.174995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.174995
http://creativecommons.org/licenses/by-nc/4.0/


Zambrano et al., 2020 
 

3 
 

transcriptional bursting is unexplored. Transcription in inflammation depends on the dynamics of its master 

regulator (Hayden and Ghosh, 2008): the transcription factor NF-B.  NF-B dimers containing the 

monomer p65 (that we refer to as NF-B in what follows) are activated by re-localizing from the cytoplasm 

to the nucleus upon inflammatory stimuli such as tumor necrosis factor alpha (TNF-). This activation by 

nuclear localization is tightly regulated by a system of negative feedbacks (Hoffmann et al., 2002) so that 

cells display a variety of nuclear localization dynamics of NF-B, including oscillations (Nelson et al., 2004; 

Tay et al., 2010; Zambrano et al., 2014a). Population-level measurements have shown that NF-B dynamics 

lead to different dynamical patterns of mRNA expression (Ashall et al., 2009; Nelson et al., 2004; Sung et 

al., 2009; Zambrano et al., 2016).The NF-B mediated nascent transcriptional response to stimuli at the 

population level is however fast, comparable with the translocation dynamics of NF-B (Hao and Baltimore, 

2013; Zambrano et al., 2016) that peaks at 30 min–1 h depending on the cell line and is accompanied by a 

fast binding of NF-B to the promoter of target genes (Saccani et al., 2001).  

Much less is known about how NF-B dynamics modulates transcriptional variability at single cell level. 

Time-lapse analysis of NF-B translocation, followed by analysis of mRNA expression at a single time-point 

through RNA FISH (Lee et al., 2014)  and  scRNA-seq (Lane et al., 2017)  has  demonstrated that different 

NF-B dynamics translate into specific gene expression programs in single cells. Direct simultaneous 

observation of NF-B dynamics and its gene expression products has so far been carried out at the protein 

level only, using GFP-transgenes (Nelson et al., 2004). More recent studies have begun to interrogate 

systematically how the NF-B mediated transcriptional dynamics is modulated at the single-cell level by 

making use of a destabilized GFP transgene under the control of an HIV-LTR promoter (carrying two binding 

sites for NF-B (Stroud et al., 2009)). In these studies, TNF- induced gene expression has been shown to 

occur in bursts that are tuned by the insertion site of the transgene (Dar et al., 2012) and that are amplified 

by TAT-mediated positive feedbacks upon viral activation (Wong et al., 2018). However, as these assays are 

based on protein reporters with limited temporal resolution, the relationship between NF-B nuclear 

localization and transcriptional dynamics at single cell level and its connection with the population level 

remains unexplored.  

To address this, here we analyzed the cellular response to TNF- at single-cell level in terms of NF-B 

localization and nascent transcription, both for multiple genes in fixed cells (by single-molecule RNA FISH) 

and for a MS2 reporter gene controlled by an HIV-LTR promoter (Tantale et al., 2016) in living cells (by time-

lapse imaging). We find that although different genes are expressed with different degrees of variability, 

they share common average population dynamics of nascent transcription that is prompt (i.e. occurs 

simultaneously with NF-B translocation) and sharp (i.e. it is limited in time and decays faster than NF-B 

nuclear localization).  Live-cell analysis combined with repeated stimulation in microfluidics reveals that the 

population’s sharp response is due to two factors: (i) a fraction of cells – first responders – that respond 
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promptly and synchronously to TNF- and (ii) a characteristic gene inactive time, during which the gene is 

insensitive to reactivation, following each active period. Mathematical modelling shows that indeed only 

the combination of transcriptional activity driven by NF-B localization and a gene activity module including 

a refractory state can recapitulate the promptness and the sharpness of the transcriptional response.  

Our results show how the interaction of NF-B localization dynamics and target gene activity can produce a 

timely and gene-specific collective response upon inflammatory stimuli. 
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Results 

Population-level NF-B-mediated  transcription is prompt and sharp, despite being heterogeneous 

in single cells 

To characterize transcriptional dynamics of inflammatory genes at single-cell level, HeLa cells were exposed 

to TNF- and mature and nascent transcripts of three (Rabani et al., 2011; Sung et al., 2009; Zambrano et 

al., 2016) NF-B target genes (NFKBIA coding for NF-B main inhibitor IB, IL6 for the cytokine IL6 and 

TNF for the cytokine TNF-) at different timepoints (Figure S1A) were quantified  using single molecule 

fluorescence in-situ hybridization (Tsanov et al., 2016) (smFISH, see Methods). smFISH allows counting both 

nascent RNA molecules at active transcription sites  (TS), which appear as 1 or 2 bright dots in the nucleus 

(Figure 1A and Figure S1B), and mature mRNA molecules, which appear  as individual dots scattered in the 

nucleus and in the cytoplasm (Figure 1A and Figure S1B). In response to 10 ng/ml TNF-transcription of 

the three tested genes was induced with different degrees of cell-to-cell variability (Figure 1A and 1B). Such 

variability is captured by the Gini coefficient(Shaffer et al., 2017), a metric that ranges between 0 -when all 

cells express the same number of mRNAs- and 1 -when all mRNAs are detected in just one cell. NFKBIA 

displayed the most uniform expression (Gini ranging between 0.21 and 0.26, comparable to what 

previously reported for housekeeping genes(Shaffer et al., 2017)), while IL6 (Gini from 0.41 to 0.55) and 

TNF (Gini from 0.29 to 0.33)  were more unevenly expressed.  Such different degrees of heterogeneity of 

the analyzed genes can be related to different bursting kinetics (Tunnacliffe and Chubb, 2020).  By fitting 

the distribution of mature RNAs in single cells to a simple negative binomial model (Tunnacliffe and Chubb, 

2020) whose parameters depend on the bursts’ features (Raj et al., 2006) (Figure S1C) we estimate a higher 

relative burst frequency for TNF and NFKBIA than for IL6. The gene activity at single-cell level, estimated as 

the fractions of cells carrying active TS, indeed strongly differed among the genes considered: after 

stimulation NFKBIA TS were detectable in the largest fraction of cells (ranging from 84% at 20 min to 44% at 

3h post TNF-  followed by IL6 TS (ranging from 32% to 21%) and  TNF TS (from 16% to 9%). 

Surprisingly, despite the observed heterogeneity in mRNA levels and active TS numbers at single cell level, 

the population average of the nascent transcriptional dynamics was remarkably similar for all genes, 

peaking at 20 min post stimulation as measured by either smFISH (Figure 1D) or intron-targeted qPCR 

(Figure S1D and Methods). Published models for NF-B mediated gene expression suggest that RNAs are 

generated proportionally to NF-B nuclear abundance (Lee et al., 2014; Zambrano et al., 2014b). We tested 

this notion by comparing nascent transcriptional dynamics with the abundance of nuclear NF-B –a 

classical measure of NF-B activation– obtained by immunofluorescence (see Methods) at different time 

points. Similar to previous reports (Lee et al., 2014), nuclear NF-B accumulated rapidly and rather 

homogeneously across the cell population, peaking after 20 minutes and then decreasing in the following 

three hours (Figure 1D and S1E). Surprisingly, following its peak at 20 minutes, average nascent 
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transcription decreased faster than nuclear NF-B abundance (Figure 1D): the time t1/2 for the average 

nascent RNA signal to decrease to half of the peak value is ~30 min, whereas it is ~100 min for the average 

NF-B nuclear localization (Figure 1D).  

Taken together, our data show that the transcriptional activation of NF-B target genes is gene- and cell-

dependent. However, at population level their nascent transcription is prompt, since it peaks synchronously 

with NF-B nuclear localization within our temporal resolution, and sharp, since it decays faster than NF-B 

nuclear localization. We then decided to investigate further how these population-level features emerge 

from single-cell bursting dynamics using a live-cell reporter for nascent transcription.    

A live-cell reporter of NF-B-driven nascent transcription recapitulates the dynamics of endogenous 

genes 

To monitor transcription induced by NF-B in single living cells we used the HeLa 128xMS2 cell line (Tantale 

et al., 2016) (see Methods). Briefly, these cells harbor a single integration of a reporter gene containing 128 

intronic repeats of the MS2-stem loop that are bound by a phage coat protein fused to GFP (MCP-GFP), 

such that bright spot within the nucleus denotes an active TS (Figure 2A). The reporter gene is under the 

control of the HIV-1 LTR, which contains two NF-B binding sites (Stroud et al., 2009); this compares with 

the promoters of classic NF-B targets, which typically harbor from 1 to 5 binding sites (Siggers et al., 2010). 

TNF- stimulation induces transcription, as assessed by PCR after 1 hour of stimulation with 10 ng/ml TNF-

 (Figure S2A). We visualized transcription in our cells using a sensitive widefield microscope (see 

Methods), which allows to visualize both the TS and the single molecules of released transcripts (RNAs, see 

Methods and insets of Figures 2B-C). Similar to what observed for IL6 and TNF, we found active TS in only a 

relatively small fraction of cells (20%) 1 hr after TNF-induction; an additional 20% of cells displayed 

mature RNAs but not active TS (Figures 2C and 2D). This fractional response was confirmed by smFISH using 

probes targeting the MS2 RNA (Figure S2B) and cannot be ascribed to reporter loss, since active TS were 

present in 10 out of 10 clonal sub-populations generated (Figure S2C). Interestingly, as for the endogenous 

genes, a fraction of unstimulated cells (5%) also displayed active TSs while 20% displayed only released 

RNAs  (Figures 2B and 2D), suggesting previous transcriptional activity potentially due to nonzero nuclear 

NF-B basal levels or spontaneous activations, as reported (Zambrano et al., 2014a). Importantly, the 

population average of MS2 nascent transcriptional dynamics is similar that of the selected endogenous 

genes, and specifically displays a prompt and sharp response (Figure S2D). Hence, our MS2 reporter 

reproduces both single-cell and population-level features of endogenous NF-B target genes and thus can 

be considered a faithful tool to study NF-B regulated transcription.  
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NF-B mediated transcriptional response is bursty and shaped by a population of “first responders”  

 

We then used our reporter to characterize nascent transcriptional dynamics by monitoring the TS signal in 

single 128xMS2 cells over time, using a confocal microscope (Figure 3A, upper panels).  We recorded 3D 

stacks of 10 m depth every 3 minutes for 3 hours. A custom software allows to track the cell and detect 

the TS after a high pass filter of the stack maximal projection (see Methods and Fig. S3_1A). The maximum 

signal intensity of the TS is informative of the total TS intensity, since they correlate (see Figure S3_1B), 

while it is independent from the expression level of MCP-GFP in the cell (Figure S3_1C). The TS signal is 

then compared to the MCP-GFP background intensity to distinguish between transcriptionally “active” and 

“inactive” cells (see Methods, Supplementary Methods and Figure S3_1D). Our time-lapse analyses 

showed that the MS2 transcriptional activity induced by TNF-appears as discrete peaks, heterogeneous 

both in height and frequency, confirming experimentally the “bursty” feature that has been postulated 

from indirect measurements (Dar et al., 2012; Wong et al., 2018). In addition, “active” and “inactive” cells 

coexisted both after stimulation Movie S1 and Fig. 3A) or no stimulation (Movie S2 and Fig. 3A). 

We repeated the time lapse imaging of our cells for different TNF- doses and measured TS signals in 

hundreds of cells (Figure 3B). In color-plots, each line corresponds to a single TS observed for 180 minutes 

and the color reflects the TS signal intensity. The measured transcriptional response is strongly 

heterogeneous (Movies S3 to S5), but controlled by TNF-, as the timing, the amplitude and the integrated 

intensity of the detected bursts are modulated by the dose (Figure S3_2A), as reported for bulk populations 

(Tay et al., 2010). Shear stress (Baeriswyl et al., 2019) potentially associated to plain addition of TNF--free 

medium does not lead to observable TS activity (Figure S3_2B).  

Following previous work, we adapted the random telegraph model of transcription (Suter et al., 2011) to 

our MS2 reporter gene (Figure 3C) (see Methods and Supplementary Methods) to determine the timespan 

of gene activations and estimate the evolution of the number of nascent transcripts in time, n(t).  The 

model accounts for the promoter switching between an active and an inactive state with rates     and  

    . Once the promoter is in its active state, new transcripts are generated with a rate equal to    and 

processed/realeased with a rate equal to   . After verifying that the stochastic model could faithfully infer 

gene activation from synthetically generated TS time traces (Figure S3_3A), we fitted our experimental data 

with the model (Figure 3C), by imposing that the average number of transcripts observed after 20 minutes 

of stimulation with TNF- (10 ng/ml) would match with what observed by smFISH (6 RNAs/cell) . In 

agreement with our previous analysis, the amplitude of the first burst is modulated by the dose of TNF-

(Figure 3D) and, more generally, the reporter transcriptional activity (estimated as AUC of n(t)) increases 

upon treatment with TNF- (Figure 3E), due to an increase in the gene activation rate     and a decrease 

in the deactivation rate      (Figure S3_3B). 
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Importantly, we found a fraction of cells responding almost synchronously and within few  minutes after 

TNF- stimulation; this first response occurred earlier upon higher TNF-(Figure 3F).   “First responders”, 

which can be defined as those cells reaching a maximum transcriptional activity before the median value 

(60 mins for 10 ng/ml TNF-, have a stronger transcriptional activity than the other cells (Figure 3G). After 

this first burst of transcription, intrinsic stochasticity dominates the individual cell response, as can be 

quantified by the evolution in time of the coefficient of variation of the number of nascent transcripts n(t). 

The coefficient of variation has a minimum at 20 minutes (Figure S3_3C), which indicates an early 

synchronous round of transcription in a fraction of cells. The combination of the transcriptional activity of 

these first responders and the increased synchronicity of bursting at approximately 20 min post TNF- lead 

to the observed prompt transcriptional response at population level. 

First responders are not purely stochastic  

We next used our live-cell reporter to characterize to what extent the responses to TNF- were actually 

stochastic. Using our previously described microfluidics setup (Zambrano et al., 2016) , we challenged our 

MS2x128 cells with two independent 1 hour pulses of 10 ng/ml TNF- separated by a 2 hours washout (see 

Methods) and followed TS activity in hundreds of cells (Fig. 4A). Similarly to what we observed for a single 

stimulation, the bursting parameters extracted from this two-pulses experiment were found to be 

modulated by TNF- (Figure S4A). We then determined the fraction of cells responding to the first, to the 

second, and to both pulses (Figure 4B and Movie S6).  A majority of responding cells responded to both 

pulses, and a fraction of cells responded to only one. Surprisingly, the fraction of cells responding to both 

pulses is significantly higher than what could be expected from statistically independent transcriptional 

activations (Figure 4B and Supplementary Methods). Moreover, the maximum TS signal, expressed as 

number of nascent transcripts nmax for each pulse, was higher for cells responding to both TNF- pulses 

than for cells responding to only either one of them (Figure 4C); the AUC behaves analogously (Figure 

S4_B). Further, the timing to the maximum TS signal (tmax) after a TNF- pulse was shorter on average for 

cells that respond to both pulses than for cells that respond to just one (Figure 4D), and similar to the tmax 

of the previously identified “first responders”.  

Overall, our results suggest that despite an intrinsic stochasticity in gene activation (cells can respond to 

either one TNF- pulse or to both) there is a higher than expected proportion of cells that respond to both 

pulses, which excludes the statistical independence of the two responses. The data indicate that some cells 

are in a “first responder” state lasting longer than 180 minutes; first responders are activated faster, higher 

and more often than other cells. 
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The timing of the nascent transcriptional response does not depend on NF-B nuclear localization 

dynamics 

Once we established that the population-level transcriptional response to TNF- is the result of 

heterogeneous transcriptional activation in single cells, we asked whether the latter emerged from 

heterogeneous nuclear localization dynamics of NF-B. We stably transfected our MS2x128 cells with a 

previously validated RFP-p65 construct (Bosisio et al., 2006) (Figure 5A) and measured concomitantly TS 

signal intensity and NF-B nuclear localization (see Methods) in single living cells (see Figure 5A and 

MovieS7). NF-B localization dynamics were similar for all the responding cells (see Methods), as 

previously reported (Lee et al., 2014; Tay et al., 2010), whereas the transcriptional response was 

heterogeneous, as shown in previous experiments (Movies S8-S10). Parameters governing the bursting 

kinetics are similar to those obtained from untransfected cells (Figure S5A), excluding an effect of 

transfection on results. At the single cell level, the change in NF-B nuclear abundance does not correlate 

with the amount of nascent transcription (r2=0.0055) (Figure S5B). Thus, uniform nuclear translocation of 

NF-B drives highly non-uniform transcription at single cell level, which highlights the stochastic nature of 

the transcriptional activation process.  

 

Such time-resolved measurements allowed us to quantify more finely the promptness of the transcriptional 

response. By superimposing the average data for NF-B translocation and MS2 reporter transcriptional 

activity we found that both peak almost simultaneously at about 20 minutes post stimulation (both for 

transfected and untransfected cells, Figure 5B). The timing of the first NF-B nuclear translocation peak 

(typically the only one, see Figure S5C) matched with the timing of the first peak of nascent transcription 

(Figure 5C) for most of the cells previously identified as “first responders”(Figure 5C). Nuclear NF-B is 

therefore the limiting factor for transcriptional activation. This is compatible with the observation that NF-

B can find its targets rapidly (search time ~2 min), as can be derived from recent single molecule imaging 

data(Callegari et al., 2019) (see Supplementary Methods).  We also quantified the sharpness of the nascent 

transcriptional response and of NF-B localization by computing their time t1/2. The TS signal decayed faster 

than NF-B nuclear abundance, in agreement with what observed for endogenous genes by smFISH. Thus, 

sharpness is reproduced faithfully by time lapse imaging of our reporter gene (Figure 5D).  

 

In short, these results illustrate how the nascent transcriptional response to TNF- is more heterogeneous 

than NF-B nuclear localization among the cells in the population. Moreover, a fraction of prompt-

responder cells is responsible for the prompt and sharp transcriptional response emerging at population 

level.  
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A model combining NF-B mediated gene activation and a refractory state recapitulates the prompt 

and sharp nascent transcriptional response  

To gain insights on the origin of the prompt and sharp NF-B mediated transcriptional response, we 

explored mathematical models for NF-B-driven transcription. We performed stochastic and deterministic 

simulations of gene activity (see Supplementary Methods) and compared their results to our experimental 

data. A first candidate for our exploration was the random telegraph model of transcription, where the 

gene switches between on and off states in a purely stochastic fashion, with constant switching rates. This 

model however could not recapitulate our experimental data. For example, the experimentally measured 

gene off-times are described by a unimodal distribution with a shape that varies between unstimulated and 

stimulated conditions (Figure 6A), rather than by the exponential that would be expected from the random 

telegraph model (Model 0, Figure 6B). Two alternative mechanism have been suggested to give rise to 

these unimodal distributions:  a) the presence of a gene refractory state (Molina et al., 2013; Suter et al., 

2011) that prevents the gene from immediately starting a second round of transcription after the first one 

is over and b) an oscillatory transcription activator-dependent modulation of the gene activation 

(Zambrano et al., 2015). As shown below, none of these two models can independently reproduce the 

experimental features that we observed, but their combination can.  

In previous explorations we simulated NF-B response to TNF- using a simple mathematical model 

(Zambrano et al., 2014b) (see Figure 6B and Supplementary Methods); here, we analyzed the 

transcriptional dynamics of a prototypical target gene by modelling different NF-B controlled gene 

activation-deactivation schemes inspired by experimental observations, among which our own. We used 

deterministic modeling to simulate population-average gene activity dynamics (Figure S6A) and stochastic 

modeling to simulate bursty stochastic transcription at single cell level, including the distribution of the off 

times (Figure S6B). The key parameters considered are the gene inactivation (koff) and activation rates (kon), 

which we varied four orders of magnitude around values used in the literature (Tay et al., 2010; Zambrano 

et al., 2014b) (see Supplementary Methods). To constrain our exploration, we modeled first the gene 

activation rate as depending linearly (non-cooperatively) on NF-B nuclear concentration, as proposed in a 

number of models (Tay et al., 2010; Zambrano et al., 2014b) and deduced from previous experiments and 

thermodynamic considerations(Siggers et al., 2010) (Model i, Figure 6B). This model allows to reproduce 

the non-monotonocity of the off times observed experimentally (Figure 6B), as predicted (Zambrano et al., 

2015), but is unable to reproduce the prompt and sharp gene activation observed in our experiments 

(Figure 6C).  

A recently proposed mechanism that in principle could rapidly shut down transcriptional activity and 

produce “sharpness” is molecular stripping, by which IBactively induces the dissociation of NF-B from 

its binding sites on DNA (Dembinski et al., 2017; Potoyan et al., 2016) (Model ii, Figure 6B). A model based 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.174995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.174995
http://creativecommons.org/licenses/by-nc/4.0/


Zambrano et al., 2020 
 

11 
 

on molecular stripping reproduces the unimodal distribution of the inactivation times (Figure 6B) and we 

could indeed identify a sector of parameter space –low kon and high koff  values– resulting in sharp 

transcriptional responses at the population level (Figure 6B). However, these parameters were not 

compatible with a prompt transcriptional activation, which was found for high kon values instead (see 

purple areas in Figure 6C and examples in Figure S6C). To test these predictions, we co-treated our cells 

with TNF- and cycloheximide (CHX), which blocks protein synthesis and hence IB synthesis and 

stripping. CHX is effective as demonstrated by the progressive decay observed in the nuclear fluorescence 

of MCP-GFP (Movie S11) and by higher NF-B nuclear localization post TNF-stimulation (Figure S6D), as 

expected from blocking IB re-synthesis. However, the TS signal decay after reaching its maximum tmax 

remains almost unchanged by CHX, indicating that it does not depend on IB re-synthesis and stripping 

(Figure S6E).  

Finally, we tested a model that combines the two previously mentioned mechanisms: NF-B mediated 

activation by nuclear translocation and a gene refractory state (Model iii, Figure 6B). As previously 

reported(Molina et al., 2013), such model reproduces the non-monotonous distribution of “off times” of 

our bursty transcription data (Figure 6B). Interestingly, we find a wide region of parameter space 

(characterized by high kon and koff) compatible with both prompt and sharp gene activation (see green 

squared areas in Figure 6C and examples in Figure S6F). Furthermore, the simulated bursts have a structure 

clearly reminiscent of our experimental data, differently from the ones obtained from the other models 

(Figure S6G). Importantly, such model is able to reproduce two key features: (i) the temporal evolution of 

the coefficient of variation of nascent transcription that we observed experimentally, with maximum 

synchronization of the bursts approximately 20 min post-stimulation (Figure S6H), and (ii) the presence of a 

fraction of first responders in the cell population (Figure S6I). When using the experimentally determined 

NF-B nuclear dynamics as input to simulate the gene activation rates of each single cell following the 

scheme of Model iii, we also reproduced a population-level prompt and sharp nascent transcriptional 

response (Supplementary methods and Figure S6J).  

Hence, a refractory gene state is necessary to recapitulate the experimentally determined features of NF-

B mediated nascent transcription upon TNF-, including a prompt and sharp transcriptional response 

emerging from a fraction of first responders.    
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Discussion  

NF-B dynamics is fundamental for the proper temporal development of inflammation. Previous reports 

(Ashall et al., 2009; Nelson et al., 2004; Sung et al., 2009) had shown that the NF-B mediated 

transcriptional response to TNF-can display a variety of dynamics, including genes whose mature 

transcripts peak early (at 30 min) or late (>3 hours), and even oscillating and non-oscillating gene 

expression patterns(Zambrano et al., 2016). We and others (Hao and Baltimore, 2013; Zambrano et al., 

2016) suggested that such mRNA expression patterns arise from a common nascent transcriptional 

response, that peaks typically 20-30 minutes post stimulation. However, all these observations were based 

on population-level transcriptional measures, so how single-cell transcriptional response contributes to 

these features remained an open question that we have addressed in this work. 

Different endogenous genes are expressed with different degrees of variability among individual cells upon 

TNF-, but share a common population-level prompt and sharp nascent transcriptional response. Using 

single-cell smRNA-FISH for three bona-fide NF-B target genes at different time points post TNF- 

stimulation, we found that all of them were expressed heterogeneously across the population, although 

NFKBIA (coding for the inhibitor IB) was expressed more uniformly than IL6 and TNF, coding for 

cytokines. Surprisingly, though, we found that the population dynamics of the nascent transcriptional 

response was very similar for these three genes, in spite of their marked differences in expression level and 

variability at single cell level, with Gini coefficients ranging between 0.2 to 0.5. Concomitant measurement 

of NF-B nuclear localization by immunofluorescence showed that such common nascent transcriptional 

response is prompt, peaking simultaneously to NF-B nuclear abundance, and sharp, decaying faster than 

the peak of NF-B nuclear localization.   

Population-level promptness and sharpness arises from heterogeneous bursting in single cells, including a 

fraction of “first responders”.  NF-B response to TNF- has been described as digital, giving rise to a 

transcriptional output proportional to the fraction of responding cells (Tay et al., 2010), which suggested a 

relatively uniform transcriptional response across the population. Instead, using our MS2 nascent 

transcription reporter we find that a digital activation of NF-B in our cells (100% responding to 10 ng/ml of 

TNF-, assessed by immunofluorescence and live cell imaging) gives rise to an extremely heterogeneous 

transcriptional response. This includes a fraction of “first responders”, cells that reach a maximum 

transcriptional response higher and earlier than the other cells, and are more likely to respond to 

consecutive pulses of TNF-. Interestingly, a fraction of “first responders” was identified when 

studying cellular responses to viral-activated interferon-beta signaling (Patil et al., 2015).  sm-FISH 

data for endogenous genes NFKBIA, IL6 and TNF also confirm a peak of TS activity for a fraction of cells 
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within 20 minutes.  We ascribe the nascent transcriptional response observed at the population level to 

first responders that start transcribing earlier and more strongly than the other cells. Such rapid surge in 

nascent transcription is compatible with a short NF-B search time on chromatin. Hence transcriptional 

initiation can indeed occur nearly simultaneously to NF-B translocation in the nucleus, as we observe 

experimentally in some cells. 

The transcriptional response to TNF- has a stochastic component that is relevant to HIV latency. When 

challenging our cells with two pulses of TNF- we find that while some cells respond to both pulses, some 

will respond just to the first or the second. Our cells harbor an LTR-HIV1 promoter, therefore this 

observation could represent the microscopic equivalent of a recently identified mechanism involved in   

HIV1 latency, by which proviruses not induced after a first stimulation can be induced after by a second one 

(Ho et al., 2013). This mechanism leads to a stochastic latency exit and it is clinically important as it may 

prevent curing patients from the virus by the "shock-and-kill" approach.   

Analysis of transcriptional bursts highlights the existence of a characteristic inactive time after each gene 

activation. Our live cell imaging analysis of nascent transcription shows that after gene activations –during 

which multiple burst of transcription can occur– there is typically a gene inactive time of approximately 25 

minutes. This is characterized by a unimodal distribution of the gene “off” times obtained from our 

stochastic inference framework.  Our previous theoretical work (Zambrano et al., 2015) shows that such 

characteristic unimodal distribution can in principle arise from NF-B-driven gene activation in a gene that 

has just two states (2-states model). The same distributions were observed by others (Molina et al., 2013; 

Suter et al., 2011; Tantale et al., 2016) and modelled by adding an additional gene refractory state (3-states 

model). A study of our gene reporter under the control of HIV TAT protein suggested that a non-permissive 

state on the timescale of tens of minutes can be related to the dissociation of TBP from the promoter 

(Tantale et al., 2016). However, neither the 2-state model (where inactivation is either spontaneous or 

driven by the inhibitor IB through “molecular stripping” (Potoyan et al., 2016)) nor the 3-state model 

(including a refractory state) can reproduce by themselves our key experimental findings of promptness 

and sharpness.   

Only a mathematical model combining both NF-B driven gene activation and a refractory state can 

reproduce experimental observations of promptness and sharpness. Instead, by combining NF-B mediated 

activation and a gene refractory state, the experimentally observed dynamics of transcription are 

reproduced. This model also reproduces other features in our experiments that two-state models cannot, 

such as the existence of “first responders” and a peak of bursting synchrony at 20 minutes post-stimulus. 

Overall, our model illustrates how a simple 3-state dynamics can produce a heterogeneous transcription 

activity at single-cell level and at the same time a sharp population-level transcriptional output.  
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Sharp and prompt nascent transcriptional responses emerging from a fraction of “first responders”: a 

general feature for inducible transcription factors? Previous population-level work on transcription 

suggested that gene-specific NF-B driven expression profiles are mostly controlled by mRNA processing 

and degradation (Hao and Baltimore, 2013, 2009), while nascent transcription dynamics are shared among 

the different genes (Zambrano et al., 2016). Our work reinforces this viewpoint with a single-cell 

perspective, since we show how such similar nascent transcriptional dynamics emerge from prompt and 

bursty transcription in single cells. If mRNA degradation controls the temporal evolution of gene 

expression, a prompt and sharp peak of nascent transcription is a better-suited input to generate gene-

dependent expression profiles as compared to a slowly varying transcriptional activity. The observed 

refractory state might have evolved from the necessity of sharpening the inherently stochastic 

transcriptional process, providing an opportunity window of decision (Zambrano et al., 2016). Furthermore, 

it is enough to provide a fraction of “first responders”, which might be useful to temporally stratify the 

population response to stimuli. 

Other inducible transcription factors such as p53 have similar search times (Loffreda et al., 2017) to the one 

we calculated for NF-B and produce population-level gene-independent nascent transcription dynamics 

and gene-specific mRNA profiles due to differential RNA degradation (Hafner et al., 2017; Koh et al., 2019; 

Porter et al., 2016). It is then tempting to speculate that other transcription factors that need to respond 

rapidly to intracellular (e.g. p53) (Hafner et al., 2017) or extracellular cues (e.g. STAT3, GR),(Alonzi et al., 

2001; Stavreva et al., 2019) might exploit a similar design principle to produce a time-resolved, prompt and 

sharp nascent transcriptional response. 

In conclusion, our data and models show how the expression of NF-B target genes can be coordinated at 

cell population level and yet be heterogeneous across single cells, and further provide a framework for 

understanding how transcription factors can achieve prompt and sharp transcriptional responses. 
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Figure legends 

Figure 1. Nascent transcription of NF-B target genes is prompt and sharp. A. Exemplary smFISH 

acquisitions using probes targeting NFKBIA, IL6 and TNF RNAs 20 min after induction with TNF- Maximum 

projection, scale bar 10 m. B. Mature MS2 transcripts per cell measured at different times following TNF-

Also displayed is the Gini coefficient measured at 20’, 1 hour and 3 hour after stimulation, as an estimate 

of the heterogeneity in the cell-by-cell expression of the three targets (ncells =219, 270, 250, 206 for 0’, 20’, 1 

hour, 3 hours; IL6: ncells =187, 193, 220, 220 for 0’, 20’, 1 hour, 3 hours; TNF: ncells =117, 90, 157, 140 Kruskal-

Wallis test (KW), * p<0.05, ** p< 0.01, *** p<0.001, **** p<0.0001). C.  Fraction of cells with either 0,1,2 or 

>2 active transcription sites for MS2 measured by smFISH (ncells, statistical tests and p-value thresholds as in 

Figure 1B). D. Average number of nascent transcripts per cell measured by smFISH (black, error bars: SEM. 

ncells, as in Figure 1B-C, KW test – not shown - provides the same pair-wise p-values as in Figure 1C) and 

normalized nuclear- NF-B fluorescence intensity. The transcriptional peak is prompt, as it is almost 

simultaneous to that of NF-B nuclear localization within our temporal resolution, and sharp, since it is 

sharper than the peak of NF-B nuclear localization, as evaluated by linear interpolation as the time t1/2 

between maximal activation,       , and            (right panel, error bars calculated by computing 

the minimal and maximal slope of the lines passing through the 20’ and 1h time-points). 

Figure 2. Probing NF-B transcription in single cells using a MS2 reporter. A. The MS2 reporter of TNF- 

induced transcriptional activity. 128 MS2 stem loops RNAs are transcribed by the gene under the control of 

the NF-B controlled LTR-HIV1 promoter, RNAs are bound by constitutively expressed MCP-GFP protein. As 

a result, a bright spot appears in the cell nuclei. B. Representative image of unstimulated cells observed 

with a high illumination microscope, allowing to observe cells with a visible active TS (inset, red frame), 

cells with single RNAs but no visible active TSs (inset, green frame) and none observed (inset, blue frame). 

C. Same for stimulated with 10 ng/ml of TNF-. D. Quantification of the fraction of cells with visible RNAs 

and visible TSs show statistical difference between TNF treatment or no treatment (mean and SD of 2 

independent experiments is plotted, t-test). 

Figure 3. Live cell imaging of MS2 reporter for different doses and stochastic modeling highlights a dose-

dependent bursting behavior and the existence of a fraction of first responders to TNF-. A. Exemplary 
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images of a cell stimulated with 10 ng/ml TNF- and acquired with our live cell imaging setup (maximum 

projection, scale bar 10 m). Arrows indicate the detected TS signal. Tracks show TS signal for unstimulated 

and stimulated cells, either displaying bursts (green) and no bursts (red). Transcribing TS are identified by 

having signal above or below the threshold (dashed black line) established as four times the standard 

deviation of the background signals. B. TS signal for hundreds of cells, either unstimulated or stimulated 

with 1 or 10 ng/ml TNF-, sorted for increasing TS signal. C. Scheme of the simple mathematical model of 

nascent transcription n(t) with the activation and inactivation rates of the gene (kon and koff), the RNA 

accumulation rate (  ) and the RNA release rate (  ). Example of the inferred transcript levels n(t) from a 

time series of TS signal. D. Transcriptional activity during the first burst, and E. Transcriptional activity 

during the whole time course inferred as area under the curve (AUC) of n(t), for the three doses of TNF. F.  

Distribution of the timing of the maximum TS signal, indicating that for 10 ng/ml TNF- there is a fraction of 

cells displaying a prompt response. G. The peak transcriptional activity nmax is higher in first responders. In 

all panel, statistical significance is calculated with pairwise Kolmogorov-Smirnov tests. 

Figure 4. Pulsed TNF- stimulation shows that transcriptional bursts are not purely stochastic. A. TS signal 

for hundreds of cells for after two pulses of one hour of 10 ng/ml TNF- separated by a two hours washout, 

sorted for increasing TS signal. Cells are clustered as non-responding – within 90 minutes of each pulse– 

responding to only one of the two pulses or responding to both pulses.  B. Fraction of cells responding to 

none of the TNF- pulses, just the first or just the second (mean and standard deviation of 3 independent 

experiments), and predicted fraction for statistically independent activation (random). C. Maximum TS 

signal (in number of transcripts) after the first and second pulse for the sub-populations identified above. 

Cells responding to both TNF pulses display a stronger response to both the first and the second pulse. 

D. The timing of the maximum of the TS signal after each TNF- pulse, indicating that cells that are primed 

to response do so more quickly upon the first pulse that the remaining populations, in particular those 

responding only to the first or the second.  

Figure 5. Simultaneous imaging of NF-B translocation and MS2 transcriptional activity highlights the 

promptness and sharpness of the transcriptional response. A. Top: exemplary images of cells stimulated 

with 10 ng/ml TNF- before and after 30 minutes stimulation with 10 ng/ml TNF-. Note the activation of 

NF-B in all the cells, while the TS appears active in the indicated ones (arrows) at that specific time point. 

Bottom: TS signal activity and nuclear NF-B activation for hundreds of cells sorted for increasing TS signal. 

B. Plot of the normalized average TS signal for three experiments of (green, standard deviation is 

represented), superimposed with the average NF-B nuclear intensity assessed by live cell imaging (red) 

with standard deviation inferred from imaging data. The dark green line represents the TS activity of 

transfected cells, within the range of variability observed for untransfected cells. The plot indicates that 

both signals peak simultaneously but TS activation decrease more sharply. C. The quantification of the 
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timing of the first maximum of NF-kB nuclear localization and of TS activity, showing that the medians are 

similar but the latter is more heterogeneous with prompt and late responders. D. Estimation of the 

variability of the decay time t1/2 for the TS signal and NF-B nuclear localization, obtained from panel B. The 

decay time of the transcription signal is much lower than that of NF-B, indicating a sharper response. 

Figure 6. Identification of a minimal mathematical model recapitulating NF-B mediated transcription 

dynamics. A. Example of the inferred transcript levels n(t) given a TS signal time series. The off times toff are 

computed as described (top). Unimodal distribution of the off times obtained from our experimental data 

(bottom). B. Scheme of a simple mathematical model where gene activation is modulated by NF-B while 

inactivation is governed by the concentration of the inhibitor IB. Different possible mechanisms of 

activation of the target gene are considered. The classical telegraph model of transcription (Model 0) with 

constant activation and inactivation rates gives rise to exponential distribution of the off times (inset) so 

cannot describe experimental data. Based on the literature and our observation we propose alternative 

models: linear activation (Model i), molecular stripping (Model ii) and gene with a refractory state (Model 

iii). All of them reproduce the unimodal distribution of toff (insets). C. We screened the timing of the peak of 

the gene activity (top panels) and the sharpness (bottom panels) of the peak for Models i to iii, two orders 

of magnitude above and below reference values (kon,0 and koff,0). The color-code indicates the promptness 

and the sharpness of the peak, respectively, as compared to the peak of nuclear NF-B. Model i does not 

give prompt and sharp responses. Model ii gives prompt responses in a region that does not overlap with 

the region giving a sharp response, both highlighted with a purple square. Finally, Model iii with NF-B 

mediated activation and a refractory state is the only one giving parameters combination (high kon and koff) 

leading to a prompt and sharp transcriptional response, highlighted with a green square. 
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STAR Methods 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal Anti-p65  Santa Cruz 

Biotechnology 

Cat# sc-372; 

RRID:AB_632037 

Goat anti-Rabbit Secondary antibody, Alexa 633 Invitrogen Cat# A-21070; 

RRID:AB_2535731 

Chemicals, Peptides, and Recombinant Proteins 

TNF-recombinant protein R&D systems Cat#: 210-TA 

Experimental Models: Cell Lines 

Hela Flp-In MS2x128 Tantale et al., 2016  

Oligonucleotides 

smiFISH probes for IL6, and NFKBIA: See Table S1 Lee et al., 2014 

Genewiz 

 

smiFISH pronbes for TNF, see Table S1 Genewiz  

Recombinant DNA 

NF-B-RFP Bosisio et al., 2006,  

Software and Algorithms 

Matlab Mathworks Inc.  

FISH-Quant Mueller et al., 2013  

Stellaris Probe Design Tool LGG Biosearch tech.  

 

Resource Availability 

Lead Contact  

The lead contact for this study is Samuel Zambrano (zambrano.samuel@hsr.it) .  

Materials Availability 

All unique reagents generated in this study are available from the corresponding authors with a completed 

Material Transfer Agreement. 

Data and Code Availability 

The stochastic simulation and inference software is available at: https://github.com/MolinaLab-IGBMC/  All 

the software generated is provided upon request.  

Experimental Model and Subject Details 

A clonal population of HeLa Flp-in H9 cells constitutively expressing MCP-GFP and with a single integration 

of  the HIV-1 reporter gene was created using the Flip-In system (Life Technologies, Carlsbad, USA) as 
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previously described (Tantale et al., 2016). Cells were cultured in phenol-red free DMEM, supplemented 

with 10% FCS, 1% L-Glutamine and Pen/Strep at 37°C with humidified 5% CO2.  Hygromycin (150 μg/ml, 

Sigma Aldrich, St. Louis, USA) to guarantee the continuity of Flp-In integrants. The isolation of individual 

clones has been obtained by limiting dilution in a 96 well plate. Cells stably expressiong RFP-p65 were 

generated after transfection with the plasmid described in (Bosisio et al., 2006), antibiotic selection and 

sorting. 

TNF- α: Mouse recombinant TNF-α (R&D Systems, Minneapolis, USA) was diluted in cell culture medium 

prior to the injection.  CHX was used at 5mg/ml and diluted in cell culture medium concomitantly to TNF-α. 

Methods Details 

Immunofluorescence 

HeLa 128xMS2 plated on glass coverslips were induced with 10 ng/ml of TNF- and where specified treated 

with CHX. At the indicated time points coverslips were fixed in 4% paraformaldehyde for 10 min a room 

temperature (RT), washed with 150mM of NH4Cl for 15 min and permeabilized with 0.1% Triton X-100. 

Coverslips were blocked in PBS 5% BSA 20% FBS for 1 hour at RT and probed with a p65 antibody (SC-372, 

Santa-Cruz Biotechnology Inc, Dallas, USA) diluted 1:200 at 4 °C overnight. Coverslips were washed three 

times in washing buffer (PBS 0,2% BSA 0,05% Tween-20) and incubated for 1 h a RT with the secondary 

anti-rabbit antibody AlexaFluor 633 (Life Technologies) diluted 1:1000. All the antibodies were diluted in 

washing buffer. Following DNA staining with 1 µg ml−1 Hoechst 33342 (Hoechst AG, Frankfurt, Germany) in 

PBS, the coverslips were mounted on glass slides using Vectashield (Vector Laboratories, Peterborough, UK) 

mounting media. Nuclear concentration was quantified for hundreds of cells from these images using 

previously described MATLAB routines (Zambrano et al., 2014a), available upon request.  

PCR 

For RNA isolation cell culture samples were collected in Trizol (Invitrogen) and purified using Nucleospin 

RNA kit (Macherey Nagel, Duren, Germany). RNA quantity and purity was checked using a NanoDrop 

fluorometer (Thermo Fisher Scientific, Walrtham, USA) and to control the integrity of total DNA an aliquot 

of the samples was run on a denaturing agarose gel stained with SYBR Safe (Thermo Fisher Scientific). To 

assess co-transcriptional or post-transcriptional splicing, RT was performed with either oligo-dT or with 

random primers using High Capacity cDNA Reverse transcription kit (Thermo Fisher Scientific). Competitive 

3-primers PCR was performed as described in (Tantale et al., 2016).  

qPCR  

RNA was extracted and quantified as described above. Reverse transcription of 2 μg of RNA was performed 

according to the manufacturer's instructions using the QuantiTect reverse transcription kit (Qiagen, Hilden, 

Germany). The PCR reaction were done in LightCycler 480 SYBR Green I Master mix (Roche, Basel, 
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Switzerland). Melting curve analyses were carried out to ensure product specificity, and data were analyzed 

using the 2−ΔΔCt method. Relative nascent RNA expression levels were normalized to 

glyceraldehyde3′phosphate dehydrogenase (GAPDH). The primers used for qPCR were: NFKBIA-FW: 5’-

ACCTGGCCTTCCTCAACTTC-3’; NFKBIA-REV: 5’-AGGATGTGGGCTGATGTGAA-3’; IL6-FW: 

TGTGAAAGCAGCAAAGAGGC-3’; IL6-REV: 5’-TGCATGCAAGAGGGAGAAGT-3’; MS2-unspliced-FW: 5’-

AATGGGCAAGTTTGTGGAATTGGTT-3’; MS-2-spliced-FW: 5’-CGAACAGGGACTTGAAAGCGA-3’; MS2-

REV: 5’- GATACCGTCGAGATCCGTTCA-3’. 

smFISH  

In-situ hybridization was carried out according to the  smiFISH (single molecule inexpensive FISH) approach 

where unlabeled primary probes are prehybridized to a secondary common fluorescently labelled probe 

(Tsanov et al., 2016). Primary smiFISH probes for NFKBIA and IL6 were designed as in (Lee et al., 2014). 

smiFISH probes for TNF, were designed with the Stellaris FISH online tool (LGC Biosearch Technologies, 

Oddeson, UK). A FLAP sequence was appended at the 3’ of each probe. The complementary FLAP probes, 

labelled with Cy5, were hybridized to primary probes as described in (Tsanov et al., 2016).  Cells were fixed 

in 4% PFA for 10 min at RT, then washed twice in PBS and permeabilized in cold 70% EtOH at -20 °C 

overnight. The day after, coverslips were washed twice with washing buffer I (10% Saline Sodium Citrate 

(SSC) in RNase-free water) and once in washing buffer II (10% SSC, 20% formamide solution, diluted in 

RNase-free water). Cells were incubated overnight with the hybridized flap-structured duplex in a 

humidified chamber at 37 °C. The probes were diluted 1:100 in the hybridization buffer (10% (w/v) of 

dextran sulfate, 10% of SSC-20× buffer and 20% formamide in Rnase-free water). Following the 

hybridization, cells were washed twice in buffer II in the dark for 30 min at 37 °C, then washed in PBS for 5 

min and stained with 1 µg/ml Hoechst 33342 in PBS. The coverslips were then mounted on glass slides 

using Vectashield (Vector Laboratories, Peterborough, UK) mounting media.  The sequences of the probes 

used for smiFISH are provided in Supplementary Table 1. For the MS2 transcripts only,  smFISH was carried 

out using the protocol and the probes described in (Tantale et al., 2016). 

Imaging was performed on a custom-built widefield microscope with single molecule sensitivity, by using a 

led source for illumination (Excelitas Xcite XLED1, Qioptiq, Rhyl, UK), a 60x 1.49NA Olympus objective 

(Olympus Life Science, Segrate, IT), and an Hamamatsu Orca Fusion sCMOS detector (Hamamatsu 

Photonics Italia S.r.l, Arese, Italy) resulting in a pixel size equal to 108nm. For every field a z-stack series of 

images were acquired with 0.3 µm step size, to count the number of mature RNAs for each cell.   

Live cell imaging  

Widefield Microscopy. 3D Stacks were collected using the microscope described above, using a step-size of 

0.3 µm, a 100x 1.49 NA objective and a Photometrics Evolve EM-CCD camera (Teledyne Technologies Inc., 
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Thousand Oaks, USA) resulting in a pixel size of 158 nm. The microscope was equipped with a temperature 

and CO2 control for this purpose (Okolab, Naples, Italy).  Confocal microscopy: 16 bit- 1024x1024 pixels 

images were acquired using 63X objective on a Leica SP5 (Leica Microsystems, Wetzlar, Germany) confocal 

microscopy with temperature and CO2 control, as described elsewhere (Sung et al., 2009). For each time 

point of our time-lapse (sampled every 3 minutes) and for each position of the sample considered we 

collected z-stacks composed by up to 16 slices, with a step of 0.7 m, to acquire the whole thickness of the 

sample.   

Microfluidics  

We used the CellASIC® ONIX Microfluidic Platform as described previously (Zambrano et al., 2016): cells 

were plated one day before the experiment in CellASIC™ ONIX M04S-03 Microfluidic Plates, consisting of 

microfluidic wells connected through channels to a series of reservoirs (inlets) containing media with 

selected concentrations of TNF- stimuli that can be flown through the chambers.  To avoid cell stress or 

toxicity, the microfluidic plates are primed with 10%FCS in DMEM for 2–4 hr before cell plating. Then the 

medium from different inlets flow following a programmed sequence through the channels around the 

microfluidic wells and diffuse through a perfusion barrier protecting the cells, minimizing the undesirable 

effect of shear stress. The flow rate obtained of 10 l/h across the small volume of the well (less than 1 l) 

allows a replacement of the medium in contact with the cell within minutes.  

Quantification and Statistical Analysis 

Automated analysis of smFISH data. 

The smFISH data displayed in Figure 1 were analyzed using the Matlab-based software FISHquant (Mueller 

et al., 2013). Mature RNA were identified as 3D gaussian spots with peak intensity above an arbitrary 

threshold, which was kept constant for all the stacks belonging to the same RNA specie. Nascent RNAs at 

active TS were quantified by identifying the sites of nascent transcription as bright nuclear foci, setting the 

threshold so that no more than four actively transcribed loci could be found within each nucleus. For each 

of the transcription sites the amount of RNA was calculated by comparing the integrated intensity of the 

site with the average integrated intensity of the spots identified as mature RNAs. Active TS displaying less 

than two transcripts were filtered out from subsequent analysis as they are practically indistinguishable 

from released mature. The smFISH stacks are displayed as maximal projections. Distributions of mature 

RNAs in Figure S1C were fit via a negative binomial model that – under the assumption of the random 

telegraph model (Raj et al., 2006) - provide the probability of observing a certain number of RNAs per cell 

     as function of the relative burst frequency      and burst size   as: 
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 Details on the statistical analysis are reported in the relevant figure legends.  

Automated analysis of live-cell imaging data. 

To study TS activity dynamics, time lapse of the z-stacks are maximal-projected and filtered. The nuclei are 

segmented using the MCP-GFP signal and using a low-pass filter the TS are detected as bright spots (red 

arrows in Supplementary Figure S3_1 (A)). The information is combined to track the TS within each cell and 

to obtain the TS signal dynamics for hundreds of cells. To quantify NF-B nuclear localization dynamics in 

living cells, we use the same nuclear mask as for the MCP-GFP signals and quantify the nuclear 

concentration of NF-B normalized by the cytosolic fluorescence intensity (Ashall et al., 2009; Nelson et al., 

2004; Zambrano et al., 2016). Responding cells are those reaching a nuclear to cytosolic NF-B ratio greater 

than one. Routines are available upon request and run on Matlab R2015.  

Stochastic fitting and mathematical modelling. 

Detailed information is provided in the Supplementary Methods.  

Stochastic fitting:  Briefly, we adapted our algorithms (Molina et al., 2013; Suter et al., 2011) to compute 

the likelihood of the time traces obtained, considering the TS signal and the standard deviation of the 

background, compared to those generated by a simple stochastic gene expression telegraph-like model. In 

such model, the gene can switch between and active and inactive state and transcription occurs in bursts 

only during the active periods.  MCMC sampling from the posterior distribution was performed to estimate 

to infer gene activity, the signal-to-transcripts scaling, the rates of accumulation and release of new 

transcripts   and     and the rates of the gene activation process kon and koff. Calibration was performed 

by imposing an average value of the number of nascent transcripts at t=20 min equal to the value observed 

by smFISH. Deterministic mathematical model of NF-kB mediated gene activation was performed using a 

simple model of NF-kB dynamics using the core negative feedback of the system. ODE simulations were 

performed using matlab. Stochastic simulations: we developed a C++ software, hysim, able to run 

stochastic simulations using the Gillespie algorithm. We used such software to generate trajectories of the 

stochastic version of the biochemical networks analyzed using the deterministic approach.  We used a 

similar approach to obtain nascent transcription simulation taking as an input the NF-B nuclear 

localization dynamics in single cells.  
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Supplementary Information 

Figure S1, related to Figure 1. 

Figure S2, related to Figure 2. 

Figure S3_1, related to Figure 3 

Figure S3_2, related to Figure 3 

Figure S3_3, related to Figure 3 

Figure S4, related to Figure 4. 

Figure S5, related to Figure 5. 

Figure S6, related to Figure 6. 

Table S1, related to Figure 1. List of smiFISH probes used in the paper. 

Supplementary Methods. 

Movie S1, related to Figure 3. Exemplary time-lapse acquisition for cells treated with 10ng/ml TNF-

Shown are maximal projections. 

Movie S2, related to Figure 3 Exemplary time-lapse acquisition for untreated cellsShown are maximal 

projections. 

Movie S3, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows a prompt response in minutes upon stimulation. 

Movie S4, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows a late response. 

Movie S5, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows no response. 

Movie S6, related to Figure 4. Exemplary time-lapse acquisition for cells treated with two pulses of 

10ng/ml TNF-as described in figure 4Shown are maximal projections. 

Movie S7, related to Figure 5. Exemplary simultaneous acquisition of NF-kB translocation (left) and MS2 

transcription dynamics (center, maximum projection shown). The overlay of the two channels is also 

shown. 

Movie S8-S10, related to Figure 5. Exemplary single-cell analysis of the MS2 signal intensity (left, displayed 

in green in the plot) and NF-kB translocation (center, displayed in red in the plot) in a single cell upon 

treatment with 10ng/ml.  
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Movie S11, related to Figure 6. Exemplary time-lapse acquisition for cells treated with TNF-CHXShown 

are maximal projections. 
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Supplementary methods of “First
responders shape a prompt and sharp

NF-κB-mediated transcriptional response
to TNF-α” by Zambrano et al. (2020)

A. Stochastic model for parameter inference

To estimate transcriptional kinetic parameters and gene activity patterns of single cells, we devel-
oped a stochastic model of transcription combined with a Bayesian inference approach similar as
in [1]. Briefly, we described MS2 locus as a stochastic system that is characterized by two random
variables, the gene state g that indicates whether the gene is transcriptionally active (g = 1, Gon
in the main text) or inactive g = 0 (Goff in the main text) and the number of nascent transcripts n
on the TS. Thus, transcription at the MS2 locus can be described as a stochastic process emerging
from the following set of biochemical reactions:

1. Gene activation and deactivation: ḡ
kg→ g, where k1 is the activation (kon in the main text)

rate when the gene is inactive (g = 0) and k0 (koff in the main text) is the inactivation when
the gene is active (g = 1).

2. Linear increase in the number of transcripts on the TS: n
k+→ n+ 1.

3. Linear decrease in the number of transcripts on the TS: n
k−→ n− 1, where ke is an effective

elongation rate.

Note this model is a concise simplification of transcription where many complex processes
are described by single effective reactions. Indeed, the rates kon and k+ summarize chormatin
remodeling, transcription factor binding, preinitation complex formation and RNA polymerase
initiation. In turn, k− represents transcript elongation, splicing and termination. Importantly, we
chose linear increase and decrease of the number of transcripts based on the results shown in Ref.
[2]. In short, since RNA polymerases travel in convoys, the transcription site (TS) displays peaks
of intensity that increase and decrease linearly, and whose slopes depend on the elongation rate
and on the interspace between polymerases. Finally, we assumed that the MCP binding/unbinding
process to the MS2 loops is fast compared to the elongation of transcripts and therefore is not
explicitly modeled. In spite of all these simplifications, the model is able to accurately fit the data
and provide information about the dynamics of gene activation/inactivation.

The chemical master equation describing the stochastic dynamics of the system can be written
as,

dPng
dt

= kgPnḡ + k+Pn−1g + k−Pn+1g − (kḡ + k+ + k−)Png (1)

1
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which, truncating the system at a sufficiently large number of transcripts nmax = 100, can be
expressed in matricial form,

dP

dt
= KP. (2)

This truncated master equation is then a linear system of ordinary differential equations and there-
fore can be easily solved numerically by calculating the exponential of the rate matrix K. Thus
the propagator of the stochastic system is obtained as:

P (ng|n0g0) =
(
eKt
)
ng,n0g0

(3)

which describes the transition probability from a initial state (n0, g0) to a final state (n, g) in a
given time t.

A.1. Noise model

The next key ingredient for our inference approach is to introduce a noise model that relates the
state of the system at given time with the measured fluorescence signal. A simple but reasonable
and convenient choice is to assume that the expected amount of signal s is proportional to the
number of nascent transcripts n plus a background signal level b. Furthermore, we assumed that
the fluctuations around the expected mean are Gaussian distributed with a standard deviation σ.
Under these assumptions the noise model can be expressed as,

P (s|n) =
1√

2πσ2
e−

(s−(b+αn))2

2σ2 (4)

where α is the scaling factor that relates the number of nascent transcripts with the expected
observed fluorescence signal. Equation 4 can be considered as the emission probability, i.e. the
probability that the system emits a signal s given that is in the state n. Note again that this simple
model does not take into account the MCP dynamics which can be an additional source of noise.

A.2. Inference

The propagator of the system and the noise model introduced above allow us to calculate the
probability of observing an experimental time series consisting ofN measurements of MS2 signal
S = {s1, s2, ..., sN} given the model parameters Θ = {α, σ, kg, k+, k−}. Indeed, this probability
can be expressed as the product of the probability of the signal S given that the system went
through a particular state trajectory times the probability of that trajectory and then summing over
all possible trajectories, i.e:

P (S|Θ) =
∑

Λ

P (S|ΛΘ)P (Λ|Θ) =
∑

Λ

∏
i

P (si|ni)P (nigi|ni−1gi−1) (5)

Importantly, the noise model and the propagator can be considered as emission and transition
probabilities of a Hidden Markov Model and therefore we can use linear programming to effi-
ciently sum over all possible state trajectories [1]. Then, assuming that cells are independent of
each other, the probability of observing the signal of C cells D = S1, S2, ..., SC can be written as:

P (D|Θ) =
∑
n

CP (Sn|Θ) (6)

Then, applying Bayes’ theorem we can obtain a posterior distribution over the parameters Θ given
the data D:

P (Θ|D) ∝ P (D|Θ)P (Θ) (7)

2
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where we used a scale invariant prior for the parameters, i.e P (θ) = 1/θ. Finally as the posterior
probability over the parameters cannot be calculated analytically we used Markov Chain Monte
Carlo (MCMC) to sample it and to obtain average and standard deviations for each parameter.

Once the model parameters are estimated we can again apply Bayes’ theorem to obtain a prob-
ability distribution over the hidden state trajectories given a time series of MS2 signal S:

P (Λ|SΘ) =
P (S|ΛΘ)P (Λ|Θ)

P (S|Θ)
(8)

Notice that the number of possible trajectories grows exponential with the number of data points.
However, we can use HMM tools to calculate efficiently the trajectory Λ∗ that maximize the
distribution [1].

In conclusion using stochastic modeling of biochemical reaction in combination with a Bayesian
inference approach we were able to estimate effective transcriptional parameters and temporal
profiles of gene activity.

A.3. Statistical independence of the response to consecutive pulses of
TNF-α

Using the approach above it is possible to estimate the periods of gene activation/inactivation
within certain time interval. In particular, in our experiments in which 1 hour 10 ng/ml TNF-
α pulses are followed by 2 hours washouts we can estimate the probability of having a gene
activation in certain time intervals after each TNF-α pulse .

We can call p1 to the fraction of cells displaying a burst at most 2 hours after the beginning of
the first TNF-α pulse, and p2 to the fraction of cells displaying a burst at most 2 hours after the
beginning of the second pulse. Both can be readily estimated from our data. If both events are
independent, the fraction of cells displaying no bursts should be (1− p1) · (1− p2), those with a
burst only after the first TNF-α pulse should be p1 · (1− p2), while the fraction of cells displaying
a burst only after the second TNF-α pulse should be (1 − p1) · p2. Finally, the fraction of cells
with a burst after each TNF-α pulse is p1 · p2. We calculated such theoretical distribution for three
independent experiments and found that it clearly departs from the distribution observed in the
experiments.

B. Deterministic and stochastic modelling NF-κB - mediated
transcription

B.1. Model of the NF-κB system

For our qualitative exploration of NF-κB mediated transcription we used a simple model of the NF-
κB system able to recapitulate the essential features of NF-κB nuclear localization dynamics upon
TNF-α [3]. In such model for simplicity it is considered that we can either have free NF-κB (hence
nuclear and transcriptionally active) or forming a complex with the inhibitor IκB, NF-κB:IκB
(the cytosolic and transcriptionally inactive form). We represent their copy number as NFκB and
NFκB : IκB. The total amount remains unchanged, so NFκB + NFκB : IκB = NFκBtot.
An external signal (for us, TNF-α) can lead to the activation of a kinase complex that leads to
the degradation of the inhibitor and hence sets free (and active) NF-κB. For simplicity we assume
that an external stimulus produces instantaneously a constant number of active kinase IKK0>0
in presence of external stimulus, and IKK0=0 for unstimulated cells. When NF-κB is free, it can
activate the genes encoding for the inhibitor, that would go from inactiveGI,i,off to activeGI,i,on,
producing the transcript IκBRNA that is then translated (i = 1, 2 stands for each of the alleles).

3
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The copy numbers of the transcript and the inhibitor protein are written below as IκBRNA and
IκB respectively.

The deterministic model for this system [3] can be written as:

dNFκB

dt
= −ka ·NFκB · IκB + (kd + dCS · IKK0) · (NFκBtot −NFκB) (9)

dIκB

dt
= −ka ·NFκB ·IκB+kd ·(NFκBtot−NFκB)+kI ·IκBRNA−(dI+dIS ·IKK0)·IκB

(10)

dIκBRNA
dt

= kR ·GI(t)− dR · IκBRNA (11)

dGI
dt

= kon,0 ·NFκB · (2−GI)− koff,0 · IκB ·GI (12)

where GI(t) = G1,on(t) +G2,on(t). The values of the parameters are provided in table B.1

Table B.1: Parameters for the NF-κB system
Name Value Units
IKK0 105 mols
NFκBtot 3104 mols

ka 1.9 · 10−6 mols−1 · s−1

kd 8.4 · 10−5 s−1

dCS 2.5 · 10−8 mols−1 ·s−1

kI 2.5 · 10−1 s−1

dI 6.7 · 10−5 s−1

dIS 5 · 10−9 mols−1·s−1

kR 2 · 10−1 mols · s−1

dR 7.5 · 10−4 s−1

kon,0 6.9 · 10−8 s−1

koff,0 1.4 · 10−8 s−1

B.2. Deterministic, stochastic and hybrid simulations

To simulate the intrinsic variability of the system, an alternative is to take the biochemical reactions
that give rise to the mass action kinetic equations described above (details provided in [3]) and to
perform stochastic simulations using e.g. the Gillespie algorithm. However a less time consuming
approach is to perform what we can call hybrid simulations, in which the evolution in time of the
variables with high copy numbers are modelled using ordinary differential equations while those
with low copy numbers are modeled using an approximation of the next-reaction method (full
description is provided in the appendix). This is indeed the approach that was followed in other
works to model variability of the NF-κB nuclear localization dynamics [4–6], and applied to our
model this would imply to substitute Eq. 12 by the following stochastic process:

GI,i,off
kon,0·NFκB(t)
−−−−−−−−−→ GI,i,on (13)

and of inactivation
GI,i,on

koff,0·IκB(t)
−−−−−−−−→ GI,i,off , (14)

4
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Figure B.1: Results in each panel were obtained using hysim to perform stochastic simulations
(gray line), hybrid simulations where only the gene activation/inactivation is modelled
stochastically (black line) and deterministic simulations (—) (a) Example of sustained
oscillations obtained for the stochastic and hybrid simulations, but not for the deter-
ministic. For hybrid and stochastic simulations we obtained the distribution of the
oscillatory periods Tosc that peak at about 1.5 hours and (c) of the peak values of
each oscillation. The distributions of the hybrid simulations that we and others use
for simulating NF-κB signalling and fully stochastic simulations give fairly similar
results.

where i = 1, 2.
To our knowledge a comparison between fully stochastic simulations and this “hybrid” has

never been performed. We developed a software called hysim that one can use to flexibly decide
which variables shall be modeled as deterministic and which as stochastic processes. By using it,
we can say that both do provide a fairly similar sustained oscillations (as opposed to the purely
deterministic model, see Fig. B.1(a)). More importantly, the distributions of the peak values and
the peak periods Fig.B.1 (b) and (c), which justifies the use of the hybrid approach for stochastic
simulations.

B.3. Models of NF-κB-mediated transcription of target genes

We used the mathematical model of the NF-κB system described above as an input for the acti-
vation dynamics of a target gene G that can switch between Gon and Goff states following three
schemes. In all of them, following considerations on the non-cooperativity of NF-κB mediated
gene activation [7], we consider that the gene activation probability depends linearly on the nuclear
concentration of NF-κB:

Goff
kon·NFκB(t)−−−−−−−−→ Gon (15)

The models considered differ in their inactivation rates.

5
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For the model i whe have that the inactivation is spontaneous, of the form:

Gon
koff−−→ Goff (16)

Instead, for model ii we consider that the inactivation is mediated by molecular stripping:

Gon
koff ·IκB(t)−−−−−−−→ Goff (17)

Finally, in model iii we consider a refractory state, meaning that the inactivation is spontaneous
but leads to a refractory state Gref so

Gon
koff−−→ Gref (18)

and
Gref

koff,2−−−→ Goff (19)

Table B.2: Reference values of the parameters for the models of NF-κB mediated transcription
model Name Value Units
i,ii,iii kon,0 6.9 · 10−8 mols−1 ·s−1

i,iii koff,0 3.7 · 10−4 s−1

ii koff,0 1.4 · 10−8 mols−1 · s−1

iii koff,2,0 3.7 · 10−4 s−1

The reference values around which we perform our numerical exploration (for up to two orders
of magnitudes above and below) for each model are specified in table B.2. They are based on
those used in our model of the NF-κB system, which were themselves derived from the literature
(details in Ref.[3]). Since models i and iii do not contemplate stripping, their effective value of
reference inactivation rate (koff,0) is equal to the one of model ii (with stripping) multiplied by
the average IκB levels 3 hours post-stimulation.

To explore the promptness and the sharpness of the gene response at population level we used
fully deterministic simulations of the above equations, which imply to add to the set of equations
9 to 12 the following ones for the gene activity:

- For Model i:
dG

dt
= kon ·NFκB · (1−G)− koff ·G (20)

- For Model ii:
dG

dt
= kon ·NFκB · (1−G)− koff · IκB ·G (21)

- For Model iii:
dG

dt
= kon ·NFκB · (1−G−Gref )− koff ·G (22)

dGref
dt

= koff · (G)− koff,2 ·Gref (23)

Instead, for stochastic simulations we used as an input for the stochastic processes above the
hybrid simulations of the NF-κB system. In all of the models, we allowed the number of nascent
transcripts n to grow and decrease incrementally following the equations:

n
k+−−→ n+ 1 (24)
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and decreasing incrementally

n
k−−−→ n− 1 (25)

Where we used values of k+ and k− producing bursts of fast increase and decrease of the signal
as compared to NF-κB translocation dynamics.

Finally, to ensure that the observed result did not depend on the particular shape of the NF-
κB nuclear localization dynamics, performed simulations of the model iii using as an input the
experimentally obtained data of the NF-κB nuclear localization dynamics in single cells. In short,
we used the data to compute the integrals necessary for application of the Gillespie algorithm,
such as Eq. 32 (see Appendix) and produce simulations of nascent transcription for single cells
and averaged across the population.

C. Search time calculation for NF-κB targets

In a recent paper [8], we applied single molecule tracking (SMT) to quantify the NF-κB bind-
ing kinetics at specific and at non-specific binding sites in HeLa cells. Upon stimulation with
TNF-α, NF-κB displayed a bound fraction equal to approximately 20 %. Mutant analysis allowed
to identify that NF-κB bound molecules partitioned into a transient non-specifically bound pop-
ulation ((fns = 96%,τns = 0.5 s) and a more stable population representing specific binding
(fs = 4%,τs = 0.4 s) As described in [9] we can use these quantities to estimate the time that it
takes for a single NF-κB molecule to reach one of its specific targets. The average residence time
of NF-κB on chromatin can be calculated as:

τ̄ = fsτs + fnsτns = 0.64s (26)

From this, we can then estimate the average free-diffusion time between two binding events as:

τ3D = τ̄
1− Fbound
Fbound

(27)

The search time to find a specific site can then be obtained by knowing the number bind-
ing events that a molecule needs to undergo on average before encountering a specific binding
site:Ntrials = 1

fs
= 25. Each trial round will take a time equal to τ3D + τns , except for the last

one which will last τ3D, after which a specific site is found. We can therefore calculate the search
time as:

τsearch = Ntrialsτ3D + (Ntrials − 1)τns = 80s (28)

This is the average time that it takes for one single NF-kB molecule to find one of its target
sites. By dividing τsearch for published estimates [10] of NF-κB molecules (approx. 30000) and
by multiplying it for the number of NF-κB target sites (estimated by the number of high-confidence
peaks obtained by ChIP-seq on NF-κB [11] (approx. 50000) we can provide a rough estimate of
approximately 2 minutes for the time that it will take for a specific NF-κB target gene to be found
by any of the available NF-κB molecules.

D. Stochastic simulations with hysim

The hybrid simulation approach proposed was described in detail [12], and is a simplified version
of the approach described in [13] to study the evolution in time of a system of biochemical species
with a wide variety of copy numbers and reaction speeds. The formal description of the approach
would be as follows: consider that the state of this system in time t is determined by the vector state
X = (X1(t), X2(t), ..., XN (t)), where Xj(t) is the number of copies of the biochemical species

7
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j at time t. Such species can interact through M biochemical reactions with rates aj(X(t)), so
the probability of the j-th reaction taking place in dt is aj(X(t))dt, while νji denotes the change
in species i due to the j-th biochemical reaction.

In [13], in order to speed up stochastic simulations, it is proposed to approximate as a Langevin
equation the evolution of the variables that satisfy the two following conditions

aj(X(t))∆t > α� 1 (29)

and
Xi(t) > β|νji|, β � 1 (30)

where the first equation imposes that many reaction events will take place in ∆t, while the second
ensures that the number of molecules is much bigger than the change in the number of molecules
caused by the reaction. The bigger α and β are, the better the approximation to the Langevin
equation is. The remaining species of the system should be modelled as a Markov process, using
for example the Gillespie algorithm [14].

In the case of stochastic simulations of genetic circuits, it is clear that certain biochemical
species will not satisfy eqs. 29 and 30: for example, the maximum number of active genes encod-
ing for a given protein is (typically) two, so eq. 30 will not be satisfied. The remaining biochemical
species have copy numbers that go from O(100) for the transcripts to O(105) for the proteins [15]
so, if eqs. 29 and 30 are fulfilled, they could be modelled using a Langevin equation. In this case,
since the relative fluctuations of these variables shall be small, an even simpler approximation
would be to model the dynamics of variables satisfying eqs. 29 and 30 using ordinary differential
equations instead of the proposed Langevin equation [13]. This idea was used in different works
dealing with NF-κB dynamics [4–6] and it is the same idea that we applied for our simulations of
a simple model of the NF-κB system.

In order to apply this approach to our model and (in principle) to any other models of signaling
pathways through mass action kinetics equations we created a sofware in c++, hysim, that per-
forms hybrid and fully stochastic simulations for an arbitrary biochemical system of reactions by
selecting which variables of the system should be modeled deterministically and which stochas-
tically. The hysim software can be downloaded at https://github.com/MolinaLab-IGBMC/hysim,
where we also provide a userguide.

To describe hysim, we can generalize the hybrid integration scheme by defining the determin-
istic variables vector as D(t) = (X1(t), X2(t), ..., XD(t)) and the stochastic variables vector
S = (XD+1(t), XD+2(t), ..., XN (t)). A possible criterion for this would be to choose for D the
variables that satisfy 29 and 30, and leave the remaining for S. Without loss of generality, we
can say that reactions going from n = 1 to n = NS ≤ M are those that imply a change in the
number of copies of some of the stochastic variables, i.e. that for 1 ≤ n ≤ NS , νni 6= 0 for some
D + 1 ≤ i ≤ N .

In this situation, our hybrid modelling scheme implies that the system evolves in time as pre-
scribed by

dD

dt
= f(D,S(t)) (31)

where the variables of the vector S(t) would evolve stochastically as a Markov process, according
to the next-step Gillespie algorithm [14].

In other words, given the state of the system at time t, we generate two random numbers r1 and
r2 in the [0,1] interval and find the time τ at which the next reaction takes place [14], for which∫ t+τ

t
a0(t)dt = −log(r1) (32)
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where a0 is the cumulative probability of a reaction including a stochastic variable taking place, i.
e.

a0(t) =

NS∑
n=1

aj(X(t)). (33)

Once τ is found, the reaction that takes place is selected by choosing the k such that

k−1∑
n=1

an(X(t+ τ)) < r2a0(t+ τ) <
k∑

n=1

an(X(t+ τ)). (34)

Once the change is found the vectors X(t) and S(t) are updated as prescribed by νki, and the
process can be repeated for as long as required. This procedure speeds up simulation consistently
as compared to fully stochastic simulations while giving similar results (see the examples above).
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Supplementary Figure S1

smFISH for three target NF-κB genes upon stimulation with TNF-α

Figure S1, related to Figure 1. A. Exemplary fields of smFISH acquisi�ons for the three different targets at 

different �me-points. Maximum projec�on displayed.  
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B
Quantification of nascent and mature mRNA transcripts by smFISH

 

Estimation of burst size (b) and burst frequency (frel) from distributions of mRNA by smFISH

C

D E
Intron-targeted qPCR Timecourse of NF-κB localization by immunofluorescence

No TNF-α 20 min 60 min

180 min
Quantification of nuclear abundancy

Supplementary Figure S1 (cont.)

Figure S1, related to Figure 1 (cont). B. A cell displaying an ac�ve transcrip�on site (TS) and  single RNAs, detected using the 

smFISH quan�fica�on so�ware. C. Fi�ng of the distribu�on of mature RNAs obtained by smFISH with a nega�ve binomial allow 

es�ma�ng the rela�ve frequency of transcrip�onal bursts 𝑓𝑟𝑒𝑙 and the burst size 𝑏. D.   Nascent RNA es�mated by qPCR  for two 

NF-kB  targets upon TNF-α, also reproduces the average dynamics described in our single-cell assays. E. Immunofluorescence 

against NF-κB for our cells s�mulated with 10 ng/ml TNF-α and quan�fica�on using our rou�nes, showing a peak at 20 minutes. 
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Supplementary Figure S2

Subclones exhibit nascent MS2 transcription in a fraction of cells 
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Figure S2, related to Figure 2. A. PCR products of the unspliced (ac�vely 

transcribed) and spliced form of the  reporter’s RNA product, showing a shi� 

towards unspliced form in TNF-α  s�mulated cells a�er 1 hour, which indicates ac�ve transcrip�on. B. Exemplary smFISH 

acquisi�ons using probes targe�ng MS2 RNA at different �mes following TNF-α  and frac�on of cells  with either 0,1 or 2 ac�ve 

transcrip�on sites.  C. Representa�ve mages of six out of 10 clones generated from our cells for which at least 1 clear ac�ve TS 

per image is observed (red arrow). D. Average number of nascent MS2 transcripts per cell measured by smFISH (black, error bars 

SEM, ncells =80, 79, 76, 106 for 0’, 20’, 1 hour, 3 hours �me  -points respec�vely) and normalized to nuclear-to-cytosolic  NF -κB 

fluorescence intensity assessed by immunofluorescence (red, errorbars, SEM  ncells =326, 225, 212, 211 for 0’, 20’, 1 hour, 3 

hours �me-points respec�vely). Nascent MS2 RNA peaks at 20’ and decays faster than the NF-κB nuclear abundancy.  
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Supplementary Figure S3_1
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Figure S3_1, related to Figure 3.A. Workflow of the live cell imaging approach to study TS ac�vity dynamics. 

Time lapse of the z-stacks are maximal-projected and filtered. The nuclei are segmented using the MCP-GFP 

signal and using a low-pass filter the TS are detected as bright spots (red arrow). The informa�on is combined 

to track the TS within each cell and to obtain the TS signal dynamics for hundreds of cells.  B.Correla�on of 

the TS max intensity and the total TS intensity. Each dot corresponds to a single cell’s �me series (Pearson’s 

correla�on coefficient r 2=0.84). C. Absence of correla�on between the TS max intensity and the nuclear 

intensity (r2=5·10-5). Each dot corresponds to a single cell’s �me series.D.Probability distribu�on func�on of 

the average -normalized backgrou nd signal around the detected TS (blue line) compared to a normal 

distribu�on with the same mean and standard devia�on (red line). The graph show that the distribu�on is 

long-tailed so p(ξ>μ+4s )=2·10-3. When the maximum value of the detected TS is beyond the threshold, the 

gene is considered “ac�ve”; with this threshold the probability of observing a false posi�ve in 60 frames is 

below 5%. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.27.174995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.174995
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure S3_2

T
S

 s
ig

na
l

Figure S3_2, related to Figure 3. A. Features of the detected transcrip�onal bursts from three representa�ve 

experiments for each TNF  -α  dose considered.  B. TS signal for cells to which plain medium was added, 

confirming that the medium addi�on itself does not lead to significant TS ac�va�on.   

Amplitude, intensity and timing of transcriptional bursts are modulated by TNF-α 

Plain addition of medium does not result in transcriptional activation
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Supplementary Figure S3_3
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Figure S3_3 , related to Figure 3 . A. Example of  single-cell traces  generated from a stochas�c model of 

ac�va�on-inac�va�on, on top of which our model of transcrip�on ini�a�on and elonga�on is superimposed 

given rise to bursts. Noise was added to the signal and then we applied our inference model to deconvolve 

the signal, obtaining inferred nascent transcript and gene activity signals that faithfully reproduce the original 

ones.  B.  Distribu�ons of burst-sizes and parameters obtained from our fi�ngs of the experiments from the 

three condi�ons considered.  C.  Coefficient of varia�on (ra�o of standard devia�on and mean) of the 

“prompt responders” as a func�on of �me, showing a decrease at approximately 20 mins post  -s�mula�on 

and a return to basal variability levels.  
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Figure S4, related to Figure 4. A. Parameters obtained by the stochas�c fi�ng of the experiments obtained 

upon s�mula�on with two TNF-α  pulses. B. Transcrip�onal ac�vity, inferred as area under the curve (AUC)  

following the first and the second TNF-α  pulse for cells responding to only one of the two pulses, or to both 

of them. 

Stimulation with two pulses of TNF
results in the modulation of bursting rates

Cells responding to both TNF-α pulses
generate more transcripts per pulse
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Supplementary Figure S4
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Figure S5, related to Figure 5. A. Parameters obtained by the stochas�c fi�ng of the experiments obtained 

upon s�mula�on 10ng/ml TNF-α  are iden�cal for transfected and untransfected cells. B. Maximum TS signal 

against fold change nuclear NF-κB showing no correla�on. C. Distribu�on of cells having different numbers 

of peaks of NF -κB ac�va�on. HeLa cells typically do not display oscilla�ons, so cells with just one peak are 

the most frequents.  
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Supplementary Figure S6
Stochastic simulation for Model i. 
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Figure S6, related to Figure 6. A. Determinis�c simula�ons of NF-kB ac�va�on, inhibitor IκBα  gene  concentra�on, IκBα  gene 

ac�vity and target gene ac�vity for the reference values used in the simula�ons. B. Stochas�c simula�ons of the oscilla�ons and

 bursts of nascent transcrip�on obtained for the stochas�c mathema�cal model, see Supplementary Methods. C. Simula�ons 

of the dynamics of the target gene ac�vity obtained when considering  the model with stripping, showing that prompt and sharp 

response are only obtained for parameter values out of the range considered. D. Quan�fica�on of the ac�va�on of NF-κB alone 

and in combina�on with cycloheximide (CHX): the la�er gives rise to a more sustained ac�va�on. E. Decay of the maximum 

TS signal with CHX (blue lines, two independent experiments) and in absence of CHX (lines indicate mean and standard devia�on 

of 4 experiments). CHX effect in the decay is negligible, further highligh�ng that stripping is not a plausible mechanism for 

the sharpness of the transcrip�onal response. 
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Figure S6 (cont.) F. Simula�ons of the dynamics of the target gene ac�vity obtained when considering the model with a 

refractory state, showing that a sharp and prompt response can be obtained within the parameter range considered.  

G. Stochas�c simula�ons performed with the model in which the gene is under stripping mechanism and by a refractory state, 

showing that the la�er is able to reproduce the dynamics observed in the experiments. H. The coefficient of varia�on of 

simulated n(t) for the same two models, showing that he model including a gene refractory state and an NF-κB mediated 

ac�va�on mirrors the behavior observed in the experiments.  I. The distribu�on of the �ming of the maxima tmax for the 

simula�ons of the two models. The one for the gene refractory state (Ref) is reminiscent to the one obtained experimentally, 

including the frac�on of first responders. J. Average simulated nascent transcrip�onal response and inferred gene state 

obtained using the NF-κB nuclear localiza�on dynamics of single cells as driver of gene ac�va�on of our Model iii. with a 

refractory gene state. The prompt and sharp transcrip�onal response is reproduced. 
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