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Abstract 

Single-cell transcriptomics provide a systematic map of gene expression in different human cell 
types. The next challenge is to systematically understand cell-type specific gene function. The 
integration of CRISPR-based functional genomics and stem cell technology enables the scalable 
interrogation of gene function in differentiated human cells. Here, we present the first genome-
wide CRISPR interference and CRISPR activation screens in human neurons.  
We uncover pathways controlling neuronal response to chronic oxidative stress, which is 
implicated in neurodegenerative diseases. Unexpectedly, knockdown of the lysosomal protein 
prosaposin strongly sensitizes neurons, but not other cell types, to oxidative stress by triggering 
the formation of lipofuscin, a hallmark of aging, which traps iron, generating reactive oxygen 
species and triggering ferroptosis. We also determine transcriptomic changes in neurons 
following perturbation of genes linked to neurodegenerative diseases. To enable the systematic 
comparison of gene function across different human cell types, we establish a data commons 
named CRISPRbrain. 
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Main 

The human body comprises hundreds of different cell types. Even though their genomes are 
nearly identical, cell types are characterized by vastly different cell biologies, enabling them to 
fulfill diverse physiological functions. Transcriptomic profiling, fueled by recent advances in 
single-cell- and single-nucleus-RNA sequencing technologies, has enabled the establishment of a 
Human Cell Atlas of cell-type specific gene expression signatures1. In addition to gene 
expression, gene function can also be cell type-specific, as evidenced by the fact that mutations 
in broadly expressed or housekeeping genes can lead to cell-type specific defects and disease 
states. Striking examples are familial mutations causing neurodegenerative diseases, which are 
often characterized by the selective vulnerability of specific neuronal subtypes, even if the 
mutated gene is expressed throughout the brain or even throughout the whole body. Cell-type 
specific gene function is also supported by our recent finding that knockdown of certain genes 
can have remarkably different impacts on cell survival and gene expression in different isogenic 
human cell types, including stem cells and neurons2. 
  
Therefore, understanding the function of human genes in different cell types is the next step 
toward elucidating tissue-specific cell biology and uncovering disease mechanisms. To this end, 
we recently developed a functional genomics platform, leveraging the strengths of CRISPR 
interference (CRISPRi) and induced pluripotent stem cell (iPSC) technology, that enables large-
scale, multimodal loss-of-function genetic screens in differentiated human cell types, as 
demonstrated in neurons2. 
  
Here, we present a gain-of-function screening platform in human iPSC-derived neurons based on 
CRISPR-activation (CRISPRa), which can yield complementary biological insights to CRISPRi 
screens3. Together, CRISPRi and CRISPRa in iPSC-derived neurons have enormous potential to 
uncover mechanisms and therapeutic targets in neurological diseases4. We conduct the first 
genome-wide CRISPRi and CRISPRa screens in human neurons based on a panel of cellular 
phenotypes, and CROP-seq screens to uncover transcriptional fingerprints of genes associated 
with neurodegenerative diseases. We apply our functional genomics platforms to systematically 
identify genetic modifiers of levels of reactive oxygen species and peroxidized lipids, and 
neuronal survival under oxidative stress, one of the predominant stresses in aging5 and 
neurodegenerative diseases6. These screens uncovered an unexpected role for the lysosomal 
protein prosaposin (PSAP), knockdown of which caused the formation of lipofuscin, a hallmark 
of aging, which traps iron, generating reactive oxygen species and triggering ferroptosis. 
Intriguingly, PSAP deficiency caused these dramatic phenotypes only in neurons, but not in 
iPSCs or HEK293 cells. 
  
These results demonstrate the power of our approach in uncovering novel, cell-type specific 
human cell biology. We establish a Data Commons, named CRISPRbrain, for systematic 
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exploration, interactive visualization, and comparison of functional genomics screening results in 
differentiated human cell types. 

Results 

Genome-wide CRISPRi and CRISPRa screens reveal genes controlling survival of human 
neurons 

 
We previously established a CRISPRi platform that enables robust knockdown of endogenous 
genes and large-scale loss-of-function genetic screens in human iPSC-derived neurons2. Here, 
we expand our toolbox by establishing a CRISPRa platform for overexpression of endogenous 
genes and genome-wide gain-of-function screens in human iPSC-derived neurons. We adapted a 
previously published inducible CRISPRa system, DHFR-dCas9-VPH, whose function had been 
validated in human iPSCs7. In this system, the CRISPRa machinery is tagged by a DHFR degron 
leading to proteasomal degradation of the entire fusion protein. Trimethoprim (TMP) stabilizes 
the DHFR degron and prevents turnover, thereby inducing CRISPRa activity. As for our 
CRISPRi platform, an expression cassette for the CRISPRa machinery, CAG promoter-driven 
DHFR-dCas9-VPH, was stably integrated into the CLYBL safe-harbor locus of an iPSC line 
with an inducible Neurogenin 2 (Ngn2) expression cassette in the AAVS1 safe-harbor locus, 
which can be efficiently differentiated into homogenous glutamatergic neurons in a highly 
scalable manner8 (i3N-iPSC, Fig. 1a). A monoclonal line of these CRISPRa-iPSCs was generated 
and a normal karyotype was confirmed (Extended Data Fig. 1a). We validated the functionality 
of CRISPRa-iPSCs by confirming robust induction of an endogenous gene, CXCR4, in iPSC-
derived neurons in a tightly inducible manner (Fig. 1b). 
  
We previously conducted a sub-genome scale CRISPRi screen to reveal genes controlling 
neuronal survival using an sgRNA library targeting 2,325 genes representing the “druggable 
genome”2. Here, we greatly expanded the screen to target all protein-coding human genes in both 
loss-of- and gain-of-function screens by CRISPRi and CRISPRa, respectively. To our knowledge, 
these are the first genome-wide CRISPR screens in human neurons. We lentivirally transduced 
our CRISPRi and CRISPRa iPSCs with the genome-wide hCRISPRi/a-v2 sgRNA libraries9 and 
differentiated them into neurons (Fig. 1c). For the CRISPRa screen, TMP was added to Day 0 
neurons to induce CRISPRa activity. Based on the depletion or enrichment of sgRNAs targeting 
specific genes at Day 10 compared to Day –3, we identified hit genes for which knockdown or 
overexpression was toxic or protective for neuronal survival, using our previously published 
pipeline, MAGeCK-iNC2 (Fig. 1d, see Methods). 
  
For CRISPRi, among the top 10 hits with toxic knockdown phenotypes were genes encoding 
superoxide dismutases SOD1 and SOD2, which protect cells from oxidative stress (Fig. 1e). 
Intriguingly, SOD1 and SOD2 are not broadly essential in other human cell types (Extended Data 
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Fig. 1b), including pluripotent stem cells10–12 and cancer cells13, suggesting a selective 
vulnerability to oxidative stress of neurons. Genes encoding subunits of the vacuolar ATPase (V-
ATPase) complex, including ATP6V1H, ATP6V1C1, and ATP6AP1, were also among the top 
hits with toxic knockdown phenotypes. The V-ATPase complex mediates acidification of the 
endo-lysosomal compartment through ATP hydrolysis-coupled proton transport, and its 
dysfunction can cause neurodegenerative diseases14. Gene Ontology (GO) analysis revealed 
additional pathways that were enriched in the top 100 hits with toxic or protective phenotypes in 
the CRISPRi screen (Fig. 1f, left). For example, genes involved in cholesterol biosynthesis were 
strongly enriched in hits with toxic knockdown phenotypes, suggesting an important role of 
cholesterol in maintaining neuronal survival, consistent with our previous findings2. Other 
homeostatic pathways, including iron homeostasis, protein folding, mRNA processing, and 
autophagy, were also essential for neuronal survival. 
  
For CRISPRa, GO analysis revealed that overexpression of pro- or anti-apoptotic genes showed 
expected toxic or protective survival phenotypes, respectively, validating our approach (Fig. 1f, 
right). Next, we compared hits from our CRISPRi and CRISPRa screens (Fig. 1e). Overall, there 
was little overlap between CRISPRi and CRISPRa hits, consistent with a previous study 
comparing parallel CRISPRi and CRISPRa screens in K562 cells3. The fact that CRISPRi and 
CRISPRa screens uncover distinct sets of hit genes can be explained by several factors. First, a 
gene that is not expressed in neurons will not have a CRISPRi knockdown phenotype, but may 
have a CRISPRa overexpression phenotype. Indeed, genes expressed at low or undetectable 
levels were strongly depleted from CRISPRi hits (Fig. 1g, left), whereas CRISPRa hits were not 
restricted by endogenous expression levels (Fig. 1g, right). Second, many genes encode proteins 
that form complexes (such as the V-ATPase complex), for which knockdown of a single 
component could abrogate the function of the entire complex and result in a phenotype, whereas 
overexpression of a single subunit by CRISPRa would generally be insufficient to induce an 
increased function of the complex. Last, knockdown of a single gene may not lead to a 
phenotype due to redundancy. For example, gene paralogs can compensate for each other’s loss-
of-function. Paralogs tend to have less deleterious loss-of-function effect in CRISPR-Cas9 
screens in different human cell lines15. Consistent with this idea, the percentage of hit genes with 
paralogs was much lower in our CRISPRi screen compared to that in CRISPRa screen (17.5% 
(355 / 2032) vs. 37.2% (314 / 845), P < 0.00001, Fig. 1h). Taken together, CRISPRi and 
CRISPRa screens can uncover complementary biological insights. 
  
Nevertheless, we identified a number of overlapping hit genes in the two screens (Fig. 1e). Many 
of these genes showed opposing phenotypes on neuronal survival upon CRISPRa induction and 
CRISPRi repression. Among these genes, we identified known regulators of apoptosis, such as 
TP53, IKBIP, and factors specifically of neuronal survival, such as XIAP16–19, GDPGP120 and 
MAP3K122,21–23, as well as genes not previously implicated in neuronal survival, such as 
IGF2BP1 and IGF2BP3. 
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For some genes, including several involved in protein homeostasis (e.g. CUL3, FBXO2, 
COMMD1, and HSPD1), perturbations in both directions were detrimental to neuronal survival 
(i.e. genes in the left lower quadrant of Fig. 1e), suggesting their endogenous expression levels 
are narrowly balanced for optimal survival. 
  
While some CRISPRi and CRISPRa hits were also survival-relevant in other cell types based on 
previously reported screens, a substantial fraction of hits was neuron-specific (Extended Data Fig. 
1b). 

Genome-wide CRISPRi/a screens elucidate pathways controlling neuronal response to 
oxidative stress 

  
Given the unique vulnerability of neurons to redox imbalance-induced oxidative stress, which is 
often found in the brain of patients with neurodegenerative diseases24–28, we sought to apply our 
functional genomics toolkit to systematically identify factors that are important for redox 
homeostasis and oxidative stress response in human neurons. We performed screens based on 
two strategies. 
  
First, we conducted genome-wide CRISPRi and CRISPRa screens to identify modifiers of 
neuronal survival under oxidative stress conditions (Fig. 2a). Standard neuronal culture medium 
contains a combination of antioxidants, including vitamin E, vitamin E acetate, superoxide 
dismutase, catalase, and glutathione. To create an environment of chronic low-level oxidative 
stress, we cultured neurons in medium lacking the above antioxidants (–AO medium). We 
reasoned that compared to acute harsh treatments to induce ROS, such as adding H2O2 or 
rotenone, –AO medium provided a more physiologically relevant approximation of chronic 
oxidative stress. 
  
Next, we compared modifiers of neuronal survival in this oxidative stress condition to the 
modifiers of survival in the standard, unstressed condition (Fig. 2b). Interestingly, in the 
comparison of CRISPRi hits, we identified that GPX4 (encoding the selenoprotein Glutathione 
Peroxidase 4) and genes responsible for selenocysteine incorporation into proteins (including 
PSTK, SEPHS2, and SEPSECS) were particularly essential for neurons to survive under 
oxidative stress (Fig. 2b,c). GPX4 utilizes glutathione to reduce peroxidized lipids and thus 
prevents ferroptosis, which is a non-apoptotic type of cell death caused by iron-dependent lipid 
peroxidation29. This result suggested that neurons could be susceptible to ferroptosis under 
oxidative stress conditions. Hits from CRISPRa screens showed high correlation (R = 0.82) 
between oxidative stress and unstressed conditions, suggesting no strong stress-specific 
phenotypes for overexpressed genes (Extended Data Fig. 2).  
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Second, we conducted genome-wide CRISPRi screens for modifiers of levels of ROS and 
peroxidized lipids in neurons. Specifically, we stained CRISPRi neurons transduced with 
genome-wide sgRNA libraries with fluorescent indicators of ROS and lipid peroxidation 
(CellRox and Liperfluo, respectively) and sorted them into high and low fluorescence 
populations by FACS (Fig. 2a). The MAGeCK-iNC pipeline was used to identify hit genes, 
knockdown of which led to an increase (‘high signal’’) or decrease (‘low signal’) in ROS or 
peroxidized lipids. From these screens, we identified both known and unexpected genetic 
modifiers of ROS and peroxidized lipid levels. We found that knockdown of components of the 
electron transport chain increased both ROS and lipid peroxidation levels (Fig. 2d). This was 
expected because ROS are mainly generated by proton leak from the electron transport chain, 
and knockdown of electron transport chain components could increase proton leakage. Many 
autophagy-related genes were also common hits in the two screens (Fig. 2 d,e), such as WIPI2, 
ATG9A, ATG13, ATG14, and BECN1, suggesting an important role of autophagy in maintaining 
redox homeostasis in cells, as reported in previous studies30–32. 
  
Disruption of genes involved in the mTORC1 pathway, including components of the mTORC1 
complex (MTOR, RPTOR, and MLST8) or its activator RHEB reduced ROS and/or lipid 
peroxidation levels, whereas knockdown of NPRL3, a mTORC1 inhibitor, induced ROS and 
lipid peroxidation levels in neurons (Fig. 2d). This is consistent with previous observations that 
increasing mTORC1 signalling induced ROS production33, whereas inhibiting mTORC1 reduced 
ROS33–35. Moreover, GO term enrichment analysis of lipid peroxidation hits revealed a strong 
enrichment of peroxisomal genes, knockdown of which increased lipid peroxidation, consistent 
with the important roles of peroxisomes in redox regulation and degradation of (poly-
)unsaturated fatty acids. 
  
FBXO7, a gene associated with Parkinson’s disease, whose deficiency was found to cause 
complex I respiratory impairment and ROS production36, also increased ROS levels when 
knocked down in our screen (Fig. 2d). Knockdown of other previously characterized ROS 
regulators, including positive regulators such as PARP137, SAT138 and NOX539 and negative 
regulators such as PTEN40 and FH41,42 showed the expected effects on ROS and/or peroxidized 
lipid levels in our screens (Fig. 2d). 
  
Interestingly, key regulators of ferroptosis were also hits in the lipid peroxidation screen. ACSL4, 
encoding Acyl-CoA Synthetase Long Chain Family Member 4, which enriches cellular 
membranes with long PUFAs is required for ferroptosis43,44. ACLS4 inhibition has been shown to 
prevent ferroptosis43, consistent with a reduction of peroxidized lipids upon knockdown in our 
screen (Fig. 2d). By contrast, knockdown of CD44, whose splicing variant CD44v stabilizes the 
cystine/glutamate antiporter xCT at the plasma membrane and increases cysteine uptake for GSH 
synthesis, thereby inhibiting ferroptosis45,46, increased lipid peroxidation in our screen as 
expected (Fig. 2d). 
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Surprisingly, we found several strong hit genes with lysosomal functions but not associated with 
autophagy (Fig. 1d). In particular, PSAP (encoding the lysosomal protein prosaposin) was one of 
the strongest hits in both ROS and lipid peroxidation screens (Fig. 2d). 
  
To further investigate hit genes from the genome-wide ROS and lipid peroxidation screens in 
high-throughput, we conducted focused secondary screens with an sgRNA library targeting 730 
hit genes (Fig. 2a). One secondary screen used lysotracker stain as a readout to uncover redox 
hits that may also alter lysosomal status. Lysotracker is a fluorescent acidotropic probe for 
labeling and tracking acidic organelles in live cells, which has been used to detect lysosome 
localization, quantify the number and sizes of lysosomes47,48 and to monitor autophagy49,50. The 
other secondary screen used the labile Fe2+-detecting probe FeRhoNox-1. Since intracellular 
labile ferrous iron (Fe2+) can contribute to ROS generation and lipid peroxidation via Fenton 
reactions51, we asked whether some of the redox hits act through changing iron homeostasis. 
  
Our secondary screens uncovered that several of our original ROS/lipid peroxidation hit genes 
also strongly affected iron and/or lysosome status (Fig. 2f). We found that knockdown of many 
lysosome/autophagy-related genes affected both lysosomal status and iron levels, reflecting the 
key role of lysosomes in iron homeostasis52,53. Among these genes, we found WDR45, which is 
involved in autophagosome formation and lysosomal degradation and is also associated with 
Neurodegeneration with Brain Iron Accumulation (NBIA) in line with previous studies54,55. We 
also identified other known iron regulators for which knockdown increased iron levels, including 
FBXL5, a negative regulator of iron levels56, the Fe/S cluster biogenesis genes NFU1 and 
NUBPL, and MCOLN1, which encodes an endolysosomal iron release channel57 (Fig. 2f). 
Interestingly, knockdown of genes involved in the electron transport chain increased labile iron 
(Fig. 2f). Mitochondria are a major site of cellular iron storage and utilization in processes such 
as heme synthesis and iron-sulfur cluster biogenesis58. Disruption of the electron transport chain 
may lead to mitochondrial damage which can cause the subsequent release of labile iron and 
reduced iron utilization, thus increasing labile iron levels. 
  
In summary, our screens for survival of oxidative stress and levels of ROS and peroxidized lipids 
uncovered many categories of known redox regulators, validating the sensitivity of our approach 
and supporting the notion that core mechanisms of redox regulation are conserved across 
different cell types. A substantial fraction of the hit genes were also modifiers of labile iron 
levels and/or lysosomal status (Fig. 2g). 

Loss of prosaposin increases ROS and lipid peroxidation levels in neurons and causes 
neuronal ferroptosis under oxidative stress 
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Surprisingly, we identified that knockdown of PSAP altered lysosomal status and strongly 
induced ROS, lipid peroxidation, and iron levels when depleted (Fig. 2d,f,g). Given the screen 
phenotypes of PSAP, which were unexpected based on its known functions, and the association 
of PSAP variants not only with lysosomal storage disorders59–61 but also Parkinson's Disease62, 
we decided to further investigate the underlying mechanisms of PSAP in neuronal redox 
regulation. 
 
PSAP encodes prosaposin, which is a pro-protein that is proteolytically processed by cathepsin D 
(encoded by CTSD) in the lysosome to generate four cleavage products: saposins A, B, C, and 
D63. These four saposins, along with the lysosomal protein GM2A (GM2 Ganglioside Activator), 
function as activators for glycosphingolipid degradation by lysosomal hydrolases64 (Fig. 3a). 
Intriguingly, both CTSD and GM2A were also hits in at least one of the redox screens, showing 
similar knockdown phenotypes as PSAP (Fig. 3b). Together, these findings suggest an important 
and unexpected role for glycosphingolipid degradation in redox homeostasis. 
  
To validate our screen results using an independent approach, we generated a clonal PSAP 
knockout (KO) iPSC line (Fig. 3c,d). Next, we measured ROS and lipid peroxidation levels in 
WT and PSAP KO neurons. We included C11-BODIPY, another indicator for peroxidized lipid, 
as additional validation for lipid peroxidation levels. Indeed, we observed a substantial increase 
in ROS and peroxidized lipid levels in PSAP KO neurons, confirming our screen results (Fig. 3e). 
Moreover, ROS induction in PSAP KO neurons can be rescued by the overexpression of PSAP 
cDNA, confirming that phenotypes were not driven by off-target genome editing. Interestingly, 
PSAP KO or knockdown in other cell types (iPSCs and HEK293s) did not increase ROS levels 
(Fig. 3f), suggesting a neuron-specific role for PSAP in redox regulation. 
  
Next, we asked if increased ROS in PSAP KO neurons affects survival. Interestingly, we did not 
observe a survival defect of PSAP KO neurons over two weeks of culture in standard neuronal 
medium (+AO). Strikingly, however, when we cultured these neurons in the medium lacking 
antioxidants (–AO), PSAP KO caused a dramatic decrease in survival around Day 11, resulting 
in complete death of all neurons by Day 14 (Fig. 3g). 
  
To further investigate the underlying mechanism of cell death, we treated WT and PSAP KO 
neurons with compounds that inhibit different cell death pathways. Intriguingly, the viability of 
PSAP KO neurons under the -AO condition was not rescued by Z-VAD-FMK, a pan-caspase 
inhibitor that blocks apoptosis, but was fully rescued by ferroptosis inhibitors, including the iron 
chelator deferoxamine (DFO) and the lipid peroxidation inhibitor ferrostatin-1 (Fig. 3e,i), 
suggesting that mild oxidative stress triggers ferroptosis in PSAP KO neurons. 
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In summary, we validated the unexpected strong hit gene from our unbiased screens, PSAP, as a 
strong redox modifier in human neurons. Loss of PSAP increases ROS levels and leads to 
increased lipid peroxidation, resulting in neuronal ferroptosis in response to mild oxidative stress. 

Loss of prosaposin leads to lipofuscin formation and iron accumulation 

  
Given the surprising connection between PSAP and ferroptosis, we further investigated the 
underlying mechanism. Neurons in the following experiments were cultured in standard neuronal 
medium (+AO) unless otherwise specified. We first asked if the loss of PSAP blocked 
glycosphingolipid degradation, given the canonical function of saposins. Indeed, untargeted 
lipidomics revealed that almost all glycosphingolipid species accumulated significantly in PSAP 
KO neurons compared to WT neurons (Extended Data Table 1, FDR < 0.01, Fig. 4a,b). Ether 
lipids, which are peroxisome-derived glycerophospholipids, were also enriched in PSAP KO 
neurons. The mechanisms driving ether lipid accumulation and whether this accumulation is 
protective or maladaptive remain to be investigated. Interestingly, the accumulation of ether 
lipids was also recently characterized as a feature of hypoxia65. 
  
We also confirmed the accumulation of a specific glycosphingolipid species, GM1 ganglioside, 
in PSAP KO neurons by immunostaining (Fig. 4c). Interestingly, we did not observe GM1 
accumulation in PSAP KO iPSCs (Fig. 4d), suggesting a cell-type specific role of PSAP. 
Strikingly, we observed dramatically enlarged lysosomes in PSAP KO neurons (Fig. 4c), which 
were also reflected in an increased lysotracker signal by flow cytometry (Fig. 4e), as expected 
based on our screen results (Fig. 2f). Again, this phenotype was neuron-specific, as PSAP KO 
did not cause enlarged lysosomes in other cell types, iPSCs or HEK293 cells (Fig. 4f). 
  
We observed colocalization of accumulated GM1 and lysosomes by conventional confocal 
microscopy and by STORM super-resolution microscopy66 (Fig. 4c,g), consistent with the notion 
that the lysosome is the main site of glycosphingolipid degradation. 
  
To further characterize the enlarged lysosome-like structures accumulating in PSAP KO neurons, 
we performed electron microscopy (EM). Remarkably, we observed a large number of electron-
dense granules that resembled the structure of lipofuscin (also known as age pigment). 
Lipofuscin is an insoluble aggregate of peroxidized lipids, proteins and metals in lysosomes of 
postmitotic cells, such as neurons, which is a hallmark of aging and also associated with several 
neurodegenerative diseases67. There is currently no consensus on the molecular mechanisms 
driving lipofuscin formation67. Further supporting the formation of lipofuscin in PSAP KO 
neurons was the detection of strong autofluorescence (Fig. 4i), a hallmark of lipofuscin68. 
Lipofuscin is known to accumulate iron from lysosomal degradation of iron-rich proteins or 
organelles (e.g. mitochondria), and accumulated iron in lipofuscin has been proposed to generate 
ROS through the Fenton reaction69,70. Indeed, we observed a substantial increase of iron levels in 
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PSAP KO neurons using a panel of different iron indicators (Fig. 4j,k, Extended Data Fig 3a,b), 
This result was consistent with our finding of PSAP as a top hit in our iron level screen (Fig. 2f). 
Iron accumulation occurred in lysosomes and was partially reversed by the iron chelator DFO 
(Fig. 4k, Extended Data Fig 3a,b). Meanwhile, dramatically increased lipid peroxidation was 
detected in lysosomes of PSAP KO neurons under the -AO condition (Fig. 4l), likely due to the 
accumulated iron, consistent with the strong lipid peroxidation-inducing phenotype of PSAP 
knockdown in our screen (Fig. 2d). 
  
Other lysosomal functions were also disrupted in PSAP KO neurons, likely due to the formation 
of lipofuscin. We observed a massive accumulation of autophagosomes in PSAP KO neurons as 
indicated by the increased ratio of PE-conjugated form of LC3B to its unconjugated form 
(LC3B-II / LC3B-I) by western blot (Fig. 4m,n), and increased LC3B puncta by immunostaining 
(Fig. 4o). Treatment with Bafilomycin A1 (BafA1), an inhibitor for degradation of 
autophagosomes by lysosomes, increased the LC3B-II / LC3B-I ratio in WT, but not PSAP KO 
neurons (Fig. 4m), suggesting a blockade of autophagic flux in PSAP KO neurons. 
  
Moreover, we performed RNA-seq on WT and PSAP KO neurons. Interestingly, a number of 
genes involved in cholesterol biosynthesis were upregulated in PSAP KO neurons (Extended 
Data Fig. 3c, d). Consistent with the induction of this pathway, we found increased cholesterol 
levels in lysosomes of PSAP KO neurons, as measured by Filipin staining (Extended Data Fig. 
3e,f). This finding mirrored the results of previous studies that PSAP is a strong genetic modifier 
of cholesterol levels71 and that accumulated glycosphingolipids can lead to the accumulation of 
cholesterol in lysosomes by inhibiting cholesterol efflux72,73. 
  
In summary, we elucidated that loss of saposins in PSAP KO neurons blocks glycosphingolipid 
degradation in lysosomes, leading to the formation of lipofuscin, which in turn accumulates iron 
and generates ROS that peroxidized lipids. The accumulation of peroxidized lipids leads to 
neuronal ferroptosis in the absence of antioxidants (Fig. 4p). 

Transcriptomic signatures of perturbations of disease-associated genes in human neurons 

 
Over the past decade, genome-wide association studies (GWASs) have uncovered hundreds of 
genes that are associated with human neurodegenerative diseases74,75. However, functional 
characterizations of these risk genes are largely lacking76. Our CRISPRi and CRISPRa platforms 
provide a high-throughput approach to systematically interrogate gene function in human 
neurons. Beyond one-dimensional phenotypes such as survival or fluorescent reporter levels, 
CRISPR perturbation can be coupled to single-cell RNA sequencing, using CROP-seq or 
Perturb-Seq strategies77–79, to provide rich transcriptomic phenotypes. 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


The hit genes from our unbiased genome-wide CRISPRi and CRISPRa screens included 
hundreds of genes associated with neurodegenerative diseases (based on DisGeNet annotation80 
and literature research). To better characterize these neurodegenerative disease risk genes, we 
performed CROP-seq experiments, targeting 184 genes for CRISPRi and 100 genes for 
CRISPRa with 2 sgRNAs per gene (Fig. 5a, see Method for details). Significant on-target gene 
knockdown or overexpression were detected for most of the targets in the CRISPRi or CRISPRa 
library, respectively (> 70% at P < 0.05, Fig. 5b). Within the population of cells expressing 
sgRNAs for a specific target gene, the levels of target knockdown or overexpression were 
heterogeneous in some cases (Fig. 5c,d), and we established a machine-learning based strategy to 
identify cells in which the targeted gene was effectively knocked down or overexpressed (Fig. 
5c,d, Extended Data Fig 4a,b, see Methods for details). 
  
We identified differentially expressed genes (DEGs) caused by each perturbation, and 
determined the similarity of DEGs among all perturbations (see Method for details). This 
analysis revealed clusters of genes that shared common DEG signatures (Fig.. 5e). As expected, 
knockdown of functionally related genes had similar transcriptomic consequences. For example, 
knockdown several mitochondria-related genes, namely COX10, NDUFS8, NDUFV1, MRPL10, 
and SOD2, resulted in similar DEGs, as did knockdown of the anti-apoptotic genes BNIP1 and 
XIAP. However, we also identified unexpected gene clusters. For example, knockdown of VPS54, 
PAXIP1, and PON2 caused highly correlated transcriptomic changes (Fig. 5e, Extended Data Fig. 
4c). VPS54 and PON2 have been implicated in Amyotrophic Lateral Sclerosis (ALS)81,82 
whereas PAXIP1 is associated with Alzheimer's disease (AD)83.  Shared transcriptomic changes 
included: (i) increased expression of EBF3, an apoptosis inducer84 that is also upregulated in the 
hippocampus of AD model mice85, (ii) decreased expression of components of neurofilaments, 
namely NEFL, NEFM, and NEFH. Importantly, significantly decreased expression of NEFL and 
NEFM was also found in neurons of early-stage AD patients in a recent single-cell 
transcriptomic study86 and (iii) decreased expression of other genes important for neuronal 
function, including PCDH11X and PCDH11Y, encoding protocadherin proteins, and SYT2, 
encoding synaptotagmin 2. 
  
To identify genes that were co-regulated under different genetic perturbations, we performed 
weighted gene co-expression network analysis (WGCNA87). This analysis identified 10 modules 
for CRISPRi and 8 modules for CRISPRa that were co-regulated across different perturbations 
(Fig. 5f,g). These modules contained genes enriched in various pathways (Fig. 5f). Interestingly, 
we found a cluster of genes including INSR, ATP5F1C, SOX5, GSX2 and GBX2 (Fig. 5e, 
CRISPRa) overexpression of which downregulated a gene module related to neurogenesis (M1) 
and upregulated a gene module related to the cell cycle (M5) (Fig. 5g, bottom), suggesting that 
overexpression of these genes interfered with neuronal differentiation thus kept cells in a 
proliferating state. This result was expected for SOX5, GSX2 and GBX2, which are transcription 
factors maintaining neural progenitor cell fate and/or their self-renewal88–90, but unexpected for 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


INSR (encoding the insulin receptor) and ATP5F1C (encoding a subunit of mitochondrial 
ATPsynthase), suggesting these genes might have uncharacterized functions in neuronal fate 
regulation, which require further investigation. 
  
The CROP-seq data also generated hypotheses for disease mechanisms. For example, NQO1, 
encoding the NAD(P)H:Quinone Oxidoreductase 1, is thought to be a cytoprotective factor 
through its antioxidant functions91. Elevated levels and activity of NQO1 has been found in the 
brains of patients with different neurodegenerative diseases92–97, as well as in patient iPSC-
derived neurons97. The upregulation of NQO1 was proposed to be a neuroprotective mechanism 
against oxidative stress in neurodegenerative diseases. Paradoxically, however, NQO1 
overexpression showed a strong negative impact on neuronal survival in our pooled CRISPRa 
screen (Fig. 1E). This finding suggests the intriguing hypothesis that elevated NQO1 in the 
context of neurodegenerative diseases is neurotoxic, rather than neuroprotective. 
  
Our CROP-Seq data reveals numerous transcriptomic changes induced by NQO1 overexpression 
(Fig. 5c, Fig. 6a-c), providing several potential hypotheses for the mechanisms underlying NQO1 
toxicity (Fig. 6d). 
  
First, we observed increased expression of many p53 target genes (including p53 itself). A 
previous study reported that overexpression of NQO1 stabilizes p5398. The induced p53 activity 
may contribute to the strong toxic survival phenotype of NQO1 overexpression in neurons. 
  
Second, NQO1 overexpression strongly induced the Nrf2 pathway (Fig. 6b,c). This finding was 
surprising because the transcription factor Nrf2 canonically functions upstream of NQO1 by 
inducing the expression of many antioxidant genes, including NQO1, in response to oxidative 
stress99. Intriguingly, the Nrf2 pathway is also induced in some neurodegenerative diseases, both 
in patient brains100 and in patient iPSC-derived neurons97. Upregulation of NQO1 could induce 
or mimic an oxidative stress condition through unknown mechanisms, in turn activating the Nrf2 
pathway, which however is insufficient to cope with the stress. Based on this hypothesis, the 
elevation of NQO1 levels in patients would actually contribute to disease, rather than being an 
effective defense mechanism. 
  
Third, the toxicity of NQO1 overexpression may be caused by other mechanisms, such as 
downregulation of genes involved in axon development or cholesterol metabolism, which we 
observed in the CROP-seq data (Fig. 6b-d). 
  
Taken together, our CROP-seq results provide a rich resource for investigating the consequences 
of perturbations of neurodegenerative disease-associated genes in human neurons and for 
generating testable hypotheses for the neurodegenerative disease mechanisms and potential 
therapeutic strategies. 
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CRISPRbrain, an open-access data commons for functional genomics screens in 
differentiated human cell types 

 
To make the large dataset generated in this study publicly accessible, and to facilitate 
visualization, interactive exploration, and direct comparison with functional genomics screening 
data in a broad range of differentiated human cell types generated by many research groups, we 
developed a data commons, named CRISPRbrain (https://crisprbrain.org)  (Fig. 7a). 
  
CRISPRbrain currently features screens with “simple” readouts (such as survival and fluorescent 
reporter levels), as well as screens with complex readouts (such as transcriptomes) Screens can 
be browsed and searched based on parameters of interest, such as cell type, genotype, mode of 
CRISPR perturbation, screen method and phenotype, as well as full text search (Fig. 7b). 
  
For simple screens, the phenotypes for the perturbed genes can be displayed as volcano plots and 
rank plots (Fig. 7c). Data points can be selected individually or in groups to display information 
about the perturbed gene(s). Gene names can be entered to label them in the graph. Data for the 
entire screen or for selected genes can be exported for offline analysis. Two screens of interest 
can be compared in a scatter plot (Fig. 7d). 

  
For RNA-Seq-based screens, genes of interest can be selected to display the transcriptomic 
phenotype resulting from perturbation of the gene (Fig. 7e). Individual data points can be 
selected to display information about the transcript, and underlying data can be exported for 
offline analysis. Alternatively, the results from the entire screen can be explored in a 
hierarchically clustered heatmap of RNA-Seq phenotypes (Fig. 7f). 
  
We invite all research groups to contribute their functional genomics datasets to CRISPRbrain, 
with the ultimate goal to build a comprehensive atlas of gene function in all human cell types.  

Discussion 

In this study, we developed a CRISPRa platform in human iPSC-derived neurons to enable 
robust gene overexpression screens, complementing our previously established CRISPRi 
platform2. We demonstrated the power of these complementary screening approaches in multiple 
large-scale screens in human iPSC-derived neurons. 
  
We determine the first comprehensive inventories of genes that, when depleted or activated, 
modulate the survival of human neurons. Intriguingly, many of these genes only affect survival 
in neurons, but not stem cells or cancer cells, supporting the notion that neurons have cell-type 
specific vulnerabilities, which may explain why defects in some generally expressed genes 
specifically cause neurological diseases. 
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Neurons, as one of the longest-living cell types in the human body, are challenged by various 
stresses in aging and disease. Due to their post-mitotic nature, neurons do not have the ability to 
‘self-renew’ by cell division. Therefore, robust stress response mechanisms are required for 
neurons to maintain long-term health. One of the predominant types of stress in aging and 
neurodegenerative diseases is oxidative stress5,6, which is induced by excessive accumulation of 
ROS in the cell. The brain is highly susceptible to ROS and ferroptosis, due to its high levels of 
oxygen consumption, abundant redox-active metals such as iron and copper, limited antioxidants 
and high levels of PUFAs101. A large body of evidence has implicated oxidative stress, iron 
accumulation and ferroptosis in neurodegenerative diseases102–104, yet a comprehensive 
understanding of how neurons regulate redox homeostasis and maintain survival under oxidative 
stress is lacking. To this end, we decided to investigate neuronal redox homeostasis and survival 
under oxidative stress conditions using our CRISPRi/a screening platform. 
  
Compared to other recent genetic screens focusing on oxidative stress toxicity in human 
cells105,106, our screens are unique in the following aspects. First, we used post-mitotic neurons 
instead of cancer cell lines. Second, we induced milder oxidative stress in cells by prolonged 
culture of cells in an antioxidant-free medium, compared to severe oxidative stress induced by 
paraquat or H2O2 in other studies. Third, we screened not only based on cell survival, but also on 
direct ROS and lipid peroxidation levels, while other studies focused on survival only. Given 
these major differences, it is not surprising that our screens identified many unique hits not 
identified in previous screens. 
  
Numerous novel biological insights have emerged from our rich datasets. GPX4 and genes 
related to GPX4 synthesis are indispensable for neurons to survive oxidative stress. Given the 
major role of GPX4 in reducing lipid peroxidation and suppressing ferroptosis, this result 
suggests that lipid peroxidation-induced ferroptosis, rather than other forms of cell death, may be 
the main cause of neuronal loss under oxidative stress conditions that are commonly found in the 
brains of patients with neurodegenerative diseases. This is supported by numerous studies 
reporting high levels of iron and lipid peroxidation in neurodegenerative disease patient 
brains107,108, and by the finding that ferroptosis inhibitors such as iron chelators and the lipid-
peroxidation inhibitor Ferrostatin-1 are neuroprotective in animal and cellular models of 
neurodegenerative diseases109–112.  
  
We also found that that disruption of lipid metabolism, in particular glycosphingolipid 
degradation in the lysosome, by loss of prosaposin (PSAP), drives the formation of lipofuscin in 
neurons, which leads to iron accumulation and strongly induces ROS production, oxidizing lipids 
and leading to neuronal ferroptosis under oxidative stress. While lipofuscin has traditionally been 
considered a byproduct of aging and as a consequence of defective cellular homeostasis, its 
physiological and pathological functions have not been well characterized. This is largely due to 
the lack of robust systems to model lipofuscin given the fact that lipofuscin is normally only 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


formed in aged post-mitotic cells. Our PSAP KO neurons provide a reliable genetic system to 
model and study the biology of lipofuscin in young, live human neurons. Our result suggests a 
direct pathogenic role of lipofuscin in inducing neuronal ferroptosis. The accumulation of 
lipofuscin is a pathological hallmark of many degenerative diseases, such as neuronal ceroid 
lipofuscinosis (NCL)113 and inherited age-related macular degenerations114,115. It has also been 
characterized  in Alzheimer’s disease116,117, Parkinson’s disease118, Hungtinton’s disease119,120 
and GRN-associated frontotemporal dementia (FTD)121. Our findings suggest that inhibiting 
lipofuscin formation or subsequent ferroptosis may serve as new therapeutic strategies for these 
diseases. 
  
Our results highlight the importance of lipid homeostasis, in particular balanced levels of 
glycosphingolipids, for neuronal health. Among all tissues in the human body, the brain is one of 
the richest in lipid content and lipid diversity. Lipids are not only an essential structural 
component of membranes, but also important signaling molecules in the brain122. Therefore, 
maintaining lipid homeostasis is of vital importance for brain cells, especially neurons with long 
neurites and dynamic synaptic vesicles release and recycling. Abnormal lipid metabolism has 
been observed in neurodegenerative diseases123–125. Accumulation of some glycosphingolipids, 
especially simple gangliosides, caused by inhibition of lysosome membrane recycling, 
contributes to neurodegeneration both in cultured neurons and in animal models126.    
  
Many important questions around neuronal lipid and redox homeostasis and ferroptosis remain to 
be investigated. For example, since neurons have very long neurites, how do neurons sense and 
respond to a local lipid peroxidation event on the cell membrane? Are GPX4 or other enzymes 
recruited to sites of lipid peroxidation, or are peroxidized lipids internalized and delivered to 
GPX4 or other enzymes for detoxification? What are the sensors and mediators in these 
processes? How do peroxidized lipids cause death? Is it a passive physical process or a regulated 
biological program, and are there neuron-specific aspects of ferroptosis? If the latter is true, what 
are the players mediating cell death downstream of lipid peroxidation? Many of these questions 
can be readily investigated using our functional genomics platform. 
  
There are several areas for future technology development. First, a robust inducible CRISPRi 
system that allows temporal control of gene knockdown in mature neurons will help avoiding 
false-positive screening phenotypes due to interference with the differentiation process. For 
example, in the CRISPRi survival screen, we unexpectedly identified genes in the N6-
methyltransferase writer complex, including ZC3H13, METTL3, and METTL4, as strong 
protective hits when knocked down (Fig. 1e). The N6-methyltransferase writer complex is 
responsible for m6A RNA modification, which regulates a variety of biological processes 
including neuronal differentiation127,128. The inducible CRISPRi system will help to determine 
whether the strong protective phenotypes of these genes are false positive due to defects in 
neuronal differentiation. Second, we have previously used our platform for arrayed high-content 
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imaging screens for complex neuronal phenotypes, such as neurite outgrowth2. Such imaging-
based screens could be applied to study other neuronal phenotypes, such as electrophysiological 
signals (by voltage imaging or calcium imaging), synaptic vesicle dynamics and axonal transport, 
and cell non-autonomous phenotypes such as glia-neuron interaction. Imaging phenotyping can 
also be coupled with simultaneous transcriptomic profiling, thus allowing the association of gene 
expression with imaging phenotypes for a given genetic perturbation. Lastly, by combining our 
platform with base editor or prime editing technology129, we will be able to directly assess the 
effect of disease-associated mutations in human neurons on various cellular phenotypes in a 
scalable, massively parallel format. While base editor screens to assess human variants have 
been recently conducted in cancer cell lines130, it is of great interest to investigate how variants 
associated with different human diseases could affect various cell types differently given the fact 
that a lot of human diseases are tissue-specific. 
  
In the past decade, tremendous efforts have advanced the molecular characterization of various 
human cell types. For example, through global collaboration in the Human Cell Atlas project, 
gene expression profiles for >30 human organs in > 4.5M cells have been obtained so far 
(https://data.humancellatlas.org/). Beyond gene expression, characterizing gene function in 
different cell types will be the next step towards building complete reference maps for the human 
body at the cellular level. We anticipate that our iPSC-based functional genomics platforms can 
be broadly applied to a variety of human differentiated cell types. Our CRISPRbrain Data 
Commons is complementary to the Human Cell Atlas and serves as an open-access platform for 
sharing and exploring functional genomics screening data in differentiated human cell types 
across labs. In contrast to the Cancer Dependency Map (https://depmap.org/), a widely-used 
database for survival-based functional genomics screens in cancer cells131, CRISPRbrain is the 
first database focused on screens in non-cancerous, differentiated human cell types for a broad 
range of phenotypes, including survival, reporter levels, and gene expression changes. Future 
versions of CRISPRbrain will support other high-dimensional phenotypes, such as imaging and 
electrophysiological data, and enable cloud computing and machine learning, thus providing 
researchers with a suite of tools to process, visualize, analyze and contribute functional genomics 
screening data in different human cell types. Parallel genetic screens across the full gamut of 
isogenic human cell types will uncover context-specific roles of human genes, leading to a 
deeper mechanistic understanding of how they control human biology and disease. 
  

Methods 

Human iPSCs culture and neuronal differentiation 

Human iPSCs (male WTC11 background132) were cultured in StemFlex Medium 
(GIBCO/Thermo Fisher Scientific; Cat. No. A3349401) in plates or dishes coated with Growth 
Factor Reduced, Phenol Red-Free, LDEV-Free Matrigel Basement Membrane Matrix (Corning; 
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Cat. No. 356231) diluted 1:100 in Knockout DMEM (GIBCO/ v; Cat. No. 10829-018). StemFlex 
Medium was replaced every other day or every day once cells reached 50% confluence. When 
80%–90% confluent, cells were dissociated using StemPro Accutase Cell Dissociation Reagent 
(GIBCO/Thermo Fisher Scientific; Cat. No. A11105-01) at 37°C for 5 min, centrifuged at 200 g 
for 5 min, resuspended in StemFlex Medium supplemented with 10 nM Y-27632 
dihydrochloride ROCK inhibitor (Tocris; Cat. No. 125410) and plated onto Matrigel-coated 
plates or dishes at desired number. Studies with human iPSCs at UCSF were approved by the 
Human Gamete, Embryo, and Stem Cell Research (GESCR) Committee. 
  
The CRISPRi- and CRISPRa-iPSC lines used in this study were engineered to express mNGN2 
under a doxycycline-inducible system in the AAVS1 safe harbor locus. For their neuronal 
differentiation, we followed our previously described protocol2. Briefly, iPSCs were pre-
differentiated in matrigel-coated plates or dishes in N2 Pre-Differentiation Medium containing 
the following: Knockout DMEM/F12 (GIBCO/Thermo Fisher Scientific; Cat. No. 12660-012) as 
the base, 1X MEM Non-Essential Amino Acids (GIBCO/Thermo Fisher Scientific; Cat. No. 
11140-050), 1X N2 Supplement (GIBCO/ Thermo Fisher Scientific; Cat. No. 17502-048), 10 
ng/mL NT-3 (PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. No. 450-02), 1 
μg/mL Mouse Laminin (Thermo Fisher Scientific; Cat. No. 23017-015), 10nM ROCK inhibitor, 
and 2 μg/mL doxycycline to induce expression of mNGN2. After three days, on the day referred 
to hereafter as Day 0, pre-differentiated cells were re-plated into BioCoat Poly-D-Lysine-coated 
plates or dishes (Corning; assorted Cat. No.) in regular Neuronal Medium, which we will refer to 
as +AO Neuronal Medium, containing the following: half DMEM/F12 (GIBCO/Thermo Fisher 
Scientific; Cat. No. 11320-033) and half Neurobasal-A (GIBCO/Thermo Fisher Scientific; Cat. 
No. 10888-022) as the base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX 
Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050-061), 0.5X N2 Supplement, 0.5X 
B27 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 17504-044), 10ng/mL NT-3, 
10ng/mL BDNF and 1 μg/mL Mouse Laminin. For -AO experiments, we used a medium we 
refer to as -AO Neuronal Medium, in which B-27 Supplement minus antioxidants 
(GIBCO/Thermo Fisher Scientific; Cat. No. 10889-038) was used instead of regular B27 in the 
+AO Neuronal Medium. Neuronal Medium was half-replaced every week. 

Molecular cloning 

The CLYBL-targeting inducible CRISPRa vector pRT43 containing CAG-driven DHFR-dCas9-
VPH-T2A-EGFP was generated by sub-cloning DHFR-dCas9-VPH-T2A-EGFP from plasmid 
PB-CAG-DDdCas9VPH-T2A-GFP-IRES-Neo to the downstream of a CAG promoter in 
CLYBL-targeting plasmid pUCM-CLYBL-hNIL digested by SalI and EcoRV. (PB-CAG-
DDdCas9VPH-T2A-GFP-IRES-Neo was a gift from Timo Otonkoski (Addgene plasmid # 
102886 ; http://n2t.net/addgene:102886 ; RRID:Addgene_102886) and pUCM-CLYBL-hNIL 
was a gift from Michael Ward (Addgene plasmid # 105841 ; http://n2t.net/addgene:105841 ; 
RRID:Addgene_105841))  
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CRISPRa-iPSC cell line generation 

WTC11 iPSCs harboring a single-copy of doxycycline-inducible mouse NGN2 at the AAVS1 
locus (Ngn2-iPSCs,8) were used as the parental iPSC line for further genetic engineering. iPSCs 
were transfected with pRT43 containing DHFR-dCas9-VPH and TALENS targeting the human 
CLYBL intragenic safe harbor locus (between exons 2 and 3) (pZT-C13-R1 and pZT- C13-L1, 
gifts from Jizhong Zou (Addgene plasmid # 62196 ; http://n2t.net/addgene:62196 ; 
RRID:Addgene_62196, and Addgene plasmid # 62197 ; http://n2t.net/addgene:62197 ; 
RRID:Addgene_62197) using Lipofectamine Stem (Invitrogen/Thermo Fisher Scientific; Cat. 
No. STEM00003). Monoclonal lines were isolated by limiting dilution and CLYBL integration 
was confirmed by PCR genotyping. Karyotype testing (Cell Line Genetics) was normal for the 
clonal line used for further experiments in this study, which we termed CRISPRa iPSCs. 

Genome-wide survival-based and FACS-based screens 

The genome-wide CRISPRi and CRISPRa libraries hCRISPRi-v2 and hCRISPRa-v29, consisting 
of 7 sublibraries each (H1-H7), were packaged into lentivirus as previously described2. 
CRISPRi- and CRISPRa-iPSCs were infected by the sgRNA libraries at MOIs of 0.4-0.6 (as 
measured by the BFP fluorescence from the lentiviral vector) with approximately 1000x 
coverage per library element. Two days after infection, the cells were selected for lentiviral 
integration using puromycin (1 μg/mL) for 3 days as the cultures were expanded for the screens. 
After selection and expansion, a fraction of the cells (Day -3 iPSCs) were harvested and 
subjected to sample preparation for next-generation sequencing. Another fraction of Day -3 
iPSCs, with a cell count corresponding to 1000x coverage per library element, were 
differentiated into neurons as described in the Human iPSCs Culture and Neuronal 
Differentiation subsection. 
  
Neurons were cultured in either the +AO or -AO Neuronal Medium (see Human iPSCs Culture 
and Neuronal Differentiation subsection) for ten days. For the survival screens, Day 10 neurons 
were harvested and subjected to sample preparation for next-generation sequencing. For the 
FACS screens, Day 10 CRISPRi neurons cultured in the +AO medium and -AO medium were 
dissociated using Papain (Worthington; Code: PAP2; Cat. No.LK003178) and stained by 
CellRox Green (Invitrogen/Thermo Fisher Scientific; Cat. No. C10444) and Liperfluo (Dojindo 
Molecular Technologies, Inc.; Cat. No. L248-10) respectively (see Cell Staining by Fluorescent 
Probes) and sorted into high and low signal populations in each screen corresponding to the top 
40% and the bottom 40% of the staining signal distribution, followed by sample preparation for 
next-generation sequencing. 
  
For each screen sample, genomic DNA was isolated using a Macherey-Nagel Blood L kit 
(Macherey-Nagel; Cat. No. 740954.20). sgRNA-encoding regions were amplified and sequenced 
on an Illumina HiSeq- 4000 as previously described3.        
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Focused secondary screens 

The focused secondary screen library contained 2,190 sgRNAs targeting 730 genes that were hits 
in at least one of the ROS and lipid peroxidation screens with 3 sgRNAs per gene selected based 
on their phenotypes in the primary screens, and 100 non-targeting control sgRNAs. A pool of 
sgRNA-containing oligonucleotides were synthesized by Agilent Technologies and cloned into 
our optimized sgRNA expression vector as previously described3. CRISPRi-iPSCs were 
transduced with the batch characterization library, puromycin selected, and differentiated into 
neurons as for the primary screens. Day10 neurons were stained with FeRhoNox-1 (Goryo 
Chemical; Cat. No. GC901) or Lysotracker-green (Cell Signaling Technology; Cat. No. 8783S) 
and sorted into high and low signal populations corresponding to the top 40% and bottom 40% of 
the staining signal distribution. Screen samples were processed and sequenced by next-
generation sequencing as described above. 

CROP-seq 

For the CROP-seq experiments, we included 184 genes for CRISPRi and 100 genes for 
CRISPRa, which were hits in at least one of our genome-wide pooled screens and were also 
associated with human neurodegenerative diseases. We curated a list of genes associated with 
neurodegenerative diseases based on the literature and the DisGeNET database 
(https://www.disgenet.org/). The CROP-seq libraries included 2 sgRNAs per gene plus 6 non-
targeting control sgRNAs, for a total of 374 sgRNAs for CRISPRi and 206 sgRNAs for 
CRISPRa. Top and bottom strands of sgRNA oligos were synthesized (Integrated DNA 
Technologies) and annealed in an arrayed format. The annealed sgRNAs were then pooled in 
equal amounts and ligated into our optimized CROP-seq vector2. 
  
The CROP-seq experiments were carried out similarly as previously described2. Briefly, Day 0 
CRISPRi and CRISPRa neurons were infected by the corresponding CROP-seq sgRNA library at 
a MOI of 0.1-0.2, followed by puromycin selection at 4 µg/ml for 3 days and recovery. On Day 
10, neurons were dissociated with Papain and approximately 98,000 CRISPRi neurons and 
50,000 CRISPRa neurons were loaded into 10X chips with about 25,000 input cells per lane. 
Sample preparations were performed using the ChromiumNext GEM Single Cell 3� Reagent 
Kits v3.1 (10X Genomics; Cat. No.PN-1000121) according to the manufacturer’s protocol. To 
facilitate sgRNA assignment, sgRNA-containing transcripts were additionally amplified by 
hemi-nested PCR reactions as described2. The sgRNA-enrichment libraries were separately 
indexed and sequenced as spike-ins alongside the whole- transcriptome scRNA-seq libraries 
using a NovaSeq 6000 using the following configuration: Read 1: 28, i7 index: 8, i5 index: 0, 
Read 2: 91. 

Cell Staining by Fluorescent Probes 

All stains were performed according to manufacturing protocols. For Filipin staining, cells were 
washed with PBS three times and fixed with 3% paraformaldehyde for 1 hr at room temperature. 
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Cells were then washed 3 times with PBS and incubated with 0.05 mg/ml Filipin III from 
Streptomyces filipinensis (Sigma; Cat. No. F4767-1MG) in PBS for 2 h at room temperature. 
Cells were washed with PBS 3 times before analysis. For staining using other live cell probes, 
cells were washed with PBS and incubated in DMEM containing appropriate concentrations of 
the probes at 37 °C as detailed below. Cells were washed with PBS before analysis. 
Concentrations and staining conditions for different probes were as follows: CellRox Green, 2.5 
μM for 30 minutes; Lysotracker Green, 50 nM for 5 minutes; FeRhoNox-1, 5 μM for 60 minutes; 
Liperfluo, 5 μM for 30 minutes; C11-BODIPY, 2.5 μM for 30 minutes; FerroOrange (Dojindo 
Molecular Technologies, Inc.; Cat. No. F374-10), 1 μM for 30 minutes; Hoechst 33342 (Thermo 
Fisher Scientific; Cat. No. H3570),  1 μg/ml for 10 minutes; Propidium Iodide (PI)(Thermo 
Fisher Scientific; Cat. No. P1304MP ), 1 μg/ml for 10 minutes. 

Immunofluorescence 

Cells were washed with PBS and fixed with 4% paraformaldehyde for 15 min at room 
temperature. After washing with PBS for 3 times, cells were permeabilized with 0.1% Triton X-
100 for 10 min and blocked with 5% normal goat serum with 0.01% Triton X-100 in PBS for 1 
hr at room temperature. Cells were then incubated with primary antibodies diluted in blocking 
buffer at 4 °C overnight. After that, cells were washed with PBS for 3 times and incubated with 
secondary antibodies diluted in blocking buffer for 1 hr at room temperature. Cells were then 
washed with PBS for 3 times and stained with 10 μg/ml Hoechst 33342 (Thermo Fisher 
Scientific; Cat. No. H3570) for 10 min. Cells were imaged using a confocal microscope (Leica 
SP8) or an IN Cell Analyzer 6000 (GE; Cat. No.  28-9938-51). Primary antibodies used for 
immunofluorescence in this study were as follows: rabbit anti-PSAP antibody (1:50 dilution; 
Proteintech; Cat. No. 10801-1-AP), mouse anti-LAMP2 antibody (1:100 dilution; abcam; Cat. 
No. ab25631), rabbit anti-GM1 antibody (1:20 dilution; abcam; Cat. No. ab23943), rabbit anti-
LC3B antibody (1:200 dilution; Cell Signaling Technology; Cat. No. 2775S) and chicken anti-
TUJ1 antibody (1:500; AVES; Cat. No. TUJ). Secondary antibodies used in this study were as 
follows: goat anti-rabbit IgG Alexa Fluor 555 (1:500 dilution; abcam; Cat. No. ab150078), goat 
anti-mouse IgG Alexa Fluor 488 (1:500 dilution; abcam; Cat. No. ab150113) and goat anti-
chicken IgG Alexa Fluor 647 (1:500 dilution; abcam; Cat. No. ab150171). 

Western blots 

Cells were lysed in RIPA buffer and 20-30 μg of total proteins were loaded into NuPAGE 4%–
12% Bis-Tris Gels (Invitrogen, Cat# NP0336BOX). Subsequently, the gels were transferred onto 
nitrocellulose membranes and the membranes were blocked by Odyssey Blocking Buffer (PBS) 
(LI-COR, Cat#927-50000), followed by overnight incubation with primary antibodies at 4°C. 
After incubation, the membranes were washed three times with TBST and then incubated with 
secondary antibodies at room temperature for 1 hr. The membranes were then washed 3 times 
with TBST and once with TBS and imaged on the Odyssey Fc Imaging system (LI-COR Cat# 
2800). Digital images were processed and analyzed using ImageJ. 
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Primary antibodies used were mouse anti-β-Actin antibody (1:2000 dilution; Cell Signaling 
Technology; Cat. No. 3700), rabbit anti-PSAP antibody (1:1000 dilution; Proteintech; Cat. No. 
10801-1-AP) and rabbit anti-LC3B antibody (1:1000 dilution; Cell Signaling Technology; Cat. 
No. 2775S). Secondary antibodies were IRDye 680RD goat anti-mouse IgG (1:20,000 dilution; 
LI-COR; Cat. No. 926-68070) and IRDye 800CW goat anti-rabbit IgG(1:20,000 dilution; LI-
COR; Cat. No. 926-32211). 

Generating the PSAP KO iPSC line 

An sgRNA targeting PSAP exon 2 (sgRNA sequence: GGACTGAAAGAATGCACCA) was 
cloned into plasmid px330-mcherry (px330-mcherry was a gift from Jinsong Li (Addgene 
plasmid # 98750 ; http://n2t.net/addgene:98750 ; RRID:Addgene_98750)). The plasmid was 
transfected into WT Ngn2-iPSCs using Lipofectamine Stem (Invitrogen/Thermo Fisher 
Scientific; Cat. No. STEM00003). Monoclonal lines were isolated in 96-well plates by limiting 
dilution. One clonal line was selected and frameshift indels were confirmed by Sanger 
sequencing. Protein level KO was confirmed by western blot and immunofluorescence (Fig. 
5c,d). A normal karyotype was confirmed (Cell Line Genetics). 

Bulk RNA sequencing 

RNA was extracted from cells using the Quick-RNA Miniprep Kit (Zymo; Cat. No. R1054), and 
3′-tag RNA-seq was performed by the DNA Technologies and Expression Analysis Core at the 
UC Davis Genome Center. 

Electron Microscopy 

Neurons grown on a poly-D-lysine coated 35-mm ibidi µ-Dish (ibidi; Cat. No. 81156) were  
fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (EMS) for at least an hour at 
room temperature. Samples were further post-fixed with 1% osmium tetroxide and 1.6% 
potassium ferrocyanide, later dehydrated in graded series of ethanols, and embedded in epon 
araldite resin. Samples were then trimmed, 70nm sections were cut using Ultra cut E (Leica) and 
stained with 2% uranyl acetate and Reynold's lead citrate. Images were acquired on a FEI Tecnai 
12 120KV TEM (FEI) and data was recorded using UltraScan 1000 Digital Micrograph 3 
software (Gatan Inc.) 

STORM super-resolution microscopy 

Sample preparation and STORM imaging were performed as described previously133. Samples 
were fixed in 3% paraformaldehyde and 0.1% glutaraldehyde (Electron Microscopy Sciences) in 
PBS (Corning) for 30 minutes at room temperature, followed by reduction with 0.1% NaBH4 in 
PBS for 10 minutes and three times of washing with PBS. Prior to immunostaining, samples 
were treated by a blocking buffer (BB) of 3% bovine serum albumin (Sigma) and 0.1% Triton-
X100 (Sigma) in PBS for 1 hour at room temperature. Primary antibodies were diluted in BB and 
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labeled at 4C overnight. Unbound antibodies were rinsed three times, 10 minutes each time with 
a washing buffer (WB) prepared by 10X dilution of BB in PBS. Secondary antibodies Dye-
labeled secondary antibodies from Invitrogen or Jackson ImmunoResearch Laboratories were 
diluted in BB and labeled at room temperature for 1 hour, followed by three times of washing 
with WB. 
  
Before STORM imaging, the sample was mounted in a standard STORM imaging buffer of 5% 
[w/v] glucose (Sigma), 0.1 M cysteamine (Sigma), 0.8 mg/mL glucose oxidase (Sigma), and 40 
mg/mL catalase (Sigma) in 0.1 M Tris-HCl pH 7.5 (Corning). Two-color STORM was carried 
out on a custom setup modified from a Nikon Eclipse Ti-E inverted fluorescence microscope134 
by sequentially imaging the Alexa Fluor 647-labeled GM1 and the CF568-labeled LAMP2 using 
647 nm and 560 nm excitations, respectively. A strong (~2 kW/cm2) excitation laser (647 nm or 
560 nm) was applied to photoswitch most of the AF647 or CF568 dye molecules into the dark 
state while also exciting the remaining dye molecules at a low density for single-molecule 
localization. A weak (0-1 W/cm2) 405-nm laser was used simultaneously with the 647-nm or 
560-nm laser to reactivate dye molecules in the dark state into the emitting state to acquire 
adequate sampling of the labeled molecules. Images were collected at 110 frames per second 
with an electron multiplying charge-coupled device camera (Andor iXon Ultra 897) for ~50,000 
frames per image. 

Untargeted Lipidomics 

The untargeted lipidomics experiment and primary analysis were performed by Cayman 
Chemical. Briefly, lipids were extracted using a methyl�tert�butyl ether (MTBE)�based 
liquid�liquid method. Cell pellets (approximately 100 μL in volume) were thawed on ice and 
transferred into 8-mL screw-cap tubes before adding 600 μL MeOH, the 600 μL MeOH 
containing 200 ng each of the internal standards TG(15:0/18:1�d7/15:0), PC(15:0/18:1�d7), 
PE(15:0/18:1�d7), PG(15:0/18:1�d7), and PI(15:0/18:1�d7) (EquiSPLASH, Avanti Polar 
Lipids), and finally 4 mL MTBE. After vigorous vortexing, the samples were incubated at room 
temperature on a shaker for 1 h. For phase separation, 1 mL water was added, and samples were 
vortexed and centrifuged for 10 min at 1000 x g. The upper organic phase of each sample was 
carefully removed using a Pasteur pipette and transferred into a pre�weighed empty glass tube. 
The remaining aqueous phase was re-extracted with 2 mL of clean MTBE/methanol/water 
10:3:2.5 (v/v/v). The two upper organic phases were combined and dried under vacuum in a 
SpeedVac concentrator. The dried lipid extracts were weighed and resuspended in 100 μL 
isopropanol/acetonitrile 1:1 (v/v) for untargeted lipidomic analysis by LC�MS/MS. Triplicates 
of samples for WT and PSAP KO neurons were analyzed. 
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Data analysis 

Pooled CRISPR screens 

Pooled CRISPR screens were analyzed using the MAGeCK-iNC pipeline as described2. Briefly, 
raw sequencing reads from next-generation sequencing were cropped and aligned to the 
reference using Bowtie135 to determine sgRNA counts in each sample. Counts files for samples 
subject to comparison were entered into the MAGeCK-iNC software 
(kampmannlab.ucsf.edu/mageck-inc). Phenotype scores and significance P values were 
determined for all target genes in the library, as well as for ‘negative-control-quasi-genes’ that 
were generated by random sampling from non-targeting control sgRNAs. A gene score was 
calculated for each gene, which was defined as the product of the phenotype score and −log10(P 
value). To determine hit genes, a gene score cutoff value was chosen to make sure the false-
discovery rate (FDR) is less than 0.05. 

CROP-seq 

CROP-seq analysis was performed similarly to previously described2. Cellranger (version 
3.1.0,10X Genomics) with default parameters was used to align reads and generate digital 
expression matrices from single-cell sequencing data. 
  
Approximately 58,000 CRISPRi neurons and 38,000 CRISPRa neurons were detected. The mean 
reads per cell was around 48,000 for CRISPRi and 36,000 for CRISPRa. The median number of 
genes detected per cell was around 4,341 for iPSCs and 3,100 for CRISPRa. 
  
sgRNA-enrichment libraries were analyzed using methods previously described136 to obtain 
sgRNA UMI counts for each cell barcode. For a given cell, sgRNA(s) whose UMI counts were 
greater than 4 standard deviations of the mean UMI counts of all sgRNAs were assigned to that 
cell as its identity. Single sgRNAs could be assigned to about 35,000 CRISPRi cells and about 
21,000 CRISPRa cells, which were retained for further analysis. 
  
The Scanpy package137 (version 1.4.6) implemented in Python was used for downstream analysis 
of the digital expression matrices with mapped sgRNA identities. To ensure data quality, a 
stringent criterion was applied to filter cells based on the number of genes detected (> 2000 for 
CRISPRi and > 1500 for CRISPRa) and percentage of mitochondrial transcript counts (< 0.15%). 
Genes that had less than 0.5 UMIs on average in all perturbation groups were filtered out. 
  
Within the population of cells expressing sgRNAs for a specific target gene, the levels of target 
knockdown or overexpression were heterogeneous in some cases. This could be due to different 
efficiencies of the two sgRNAs targeting that gene (see Extended Data Fig. 4a for an example), 
misassignment of sgRNA identities for some cells or stochastic silencing of the CRISPR 
machinery in some cells. To select cells in which functional perturbations happened, we 
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leveraged an unsupervised outlier detection method based on the local outlier factor (LOF) using 
the LocalOutlierFactor function in the Python package scikit-learn (version 0.23.0). A similar 
strategy was described previously78. Specifically, for every target gene, we selected two 
populations of cells, including one population of cells that were mapped with sgRNAs targeting 
that gene (i.e. perturbed group) and another population of cells that were mapped with non-
targeting control sgRNAs (i.e. control group). We then identified differentially expressed genes 
(DEGs) between the two populations by t-tests at p < 0.05. A gene-expression matrix containing 
only expression of DEGs in cells from the two populations was generated and principal 
component analysis (PCA) was performed to reduce the matrix to 4 dimensions.  Cells in the 
control group in the 4-dimensional space were used as the training set to fit a LocalOutlierFactor 
model. Then, the model was used to determine whether a cell in the perturbed group was an 
‘outlier’ based on the extent it deviated from the controls. The ‘outliers’ were considered as cells 
in which functional perturbations occurred and were retained for downstream analysis.  This 
classification method was particularly useful for CRISPRi when the basal expression level of the 
target gene was too low to be detected by single-cell RNA-seq thus did not allow selecting cells 
based on knockdown level of target gene (see Extended Data Fig. 4b for an example). 
  
DEGs for each perturbation group compared to the control group were then determined by t-tests 
using the diffxpy package in Python. 
  
A mean gene-expression matrix was generated for different perturbation groups (including the 
control group) by averaging the normalized expression profile of all cells within that group. This 
matrix was used for weighted correlation network analysis (WGCNA) using the WGCNA 
package87 (version 1.69) implemented in R. The blockwiseModules function was used to detect 
gene modules that were co-regulated in different perturbation groups and to determine eigengene 
expression of each module in each perturbation group. Relative eigengene expression values 
were calculated by subtracting the eigengene expression value of each module in the control 
group from that in each perturbation group. 

RNA-seq 

Raw sequencing reads from 3′-tag RNA-seq were mapped to the human reference transcriptome 
(GRCh38, Ensembl Release 97) using Salmon138 (v.0.14.139) with the ‘–noLengthCorrection’ 
option to obtain transcript abundance counts. Gene-level count estimates were obtained using 
tximport139 (v.1.8.040) with default settings. Subsequently, genes with more than 10 counts were 
retained for differential gene-expression analysis, and adjusted P values (Padj) were calculated 
using DESeq2140 (v.1.20.041). 
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Pathway enrichment analysis 

Gene Ontology (GO) term and Wikipathways enrichment analysis was performed using 
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) using the over-representation analysis 
(ORA) method141. 

Lipidomics 

Lipostar software (Molecular Discovery) was used for feature detection, noise and artifact 
reduction, alignment, normalization, and lipid identification. For each lipid, the log2-fold change 
and a significance P value by t-test were determined by comparing the abundances of that lipid in 
WT and PSAP KO neurons (samples in triplicates). The Benjamini-Hochberg (BH) method was 
used to correct for multiple hypothesis testing. 

Data commons development 

CRISPRbrain (https://crisprbrain.org) was developed as an open-access and cloud-based 
platform striving to make data and code easily accessible to the scientific community. To enable 
scientific transparency and replication, each dataset in CRISPRbrain is licensed under a Creative 
Commons Attribution 4.0 International License (CC BY 4.0). To handle a large volume of 
storage and computation demand, CRISPRbrain is deployed on the cloud with elastic resource 
allocation. We have prioritized a low-latency interactive user experience by pre-computing and 
caching complex queries. CRISPRbrain is implemented in a manner that is “future-proof”, 
supporting scalability and addition of more complex features. 
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Fig. 1 (legend overleaf) 
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Fig. 1: Genome-wide CRISPRi and CRISPRa screens in human iPSC-derived neurons 
identify regulators of neuronal survival 

  
(a) Strategy for generating the CRISPRa iPSC line: an inducible CRISPRa construct, CAG 
promoter-driven DHFR-dCas9-VPH, was stably integrated into the CLYBL safe harbor locus 
through TALEN-mediated knock-in. dCas9, catalytically dead Cas9. VPH, activator domains 
containing 4X repeats of VP48, P65, and HSF1. 
  
(b) Functional validation of CRISPRa activity. qPCR quantification of the relative fold change of 
CXCR4 mRNA levels in CRISPRa-neurons expressing a CXCR4 sgRNA as compared to a non-
targeting control sgRNA in the presence or absence of trimethoprim (TMP), which stabilizes the 
DHFR degron  (mean +/s sd, n = 3 technical replicates). CXCR4 levels were normalized to the 
housekeeping gene ACTB. 
  
(c) Strategy for neuronal survival screens. CRISPRi/a iPSCs were transduced with genome-wide 
sgRNA libraries, containing ~100,000 sgRNAs targeting ~19,000 protein-coding genes and 
~1,800 non-targeting control sgRNAs. TMP was added to CRISPRa neurons from Day 0 to 
induce CRISPRa activity. Frequencies of cells expressing a given sgRNA were determined by 
next-generation sequencing for Day 10 neurons and Day -3 iPSCs. 
  
(d) Volcano plots summarizing knockdown or overexpression phenotypes and statistical 
significance (Mann-Whitney U test) for genes targeted in the CRISPRi (left) and CRISPRa (right) 
screens. Dashed lines: gene score cutoff for hit genes (FDR = 0.05, see Methods) 
  
(e) Comparing hits from CRISPRi and CRISPRa screens. Hit genes with protective or toxic 
phenotypes in either screen are shown in red or blue, respectively. Genes that are hits in both 
screens are shown in orange. 
  
(f) Gene Ontology (GO) term enrichment analysis for the top 100 hit genes with protective or 
toxic phenotypes in CRISPRi (left) and CRISPRa (right) survival screens. Significantly enriched 
Biological Process terms (FDR < 0.01) are shown. 
  
(g) Expression levels of hit genes and non-hit genes from CRISPRi (left) or CRISPRa (right) 
screens are shown, binned by order of magnitude. 
  
(h) Percentage of hits with paralogs in CRISPRi and CRISPRa survival screens. A list of human 
paralog genes was obtained from a previous study15. P value was calculated using Fisher's exact 
test. 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


 

 

Fig. 2 (legend overleaf) 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


Fig. 2:  Genome-wide CRISPRi and CRISPRa screens in human iPSC-derived neurons 
identify regulators of oxidative stress survival and redox homeostasis 

  
(a) Screening strategy. First, survival-based screens were conducted to identify modifiers of 
neuronal survival under mild oxidative stress induced by anti-oxidant removal from the neuronal 
medium (-AO). Second, FACS-based screens were conducted for modifiers of ROS and lipid 
peroxidation levels. Last, secondary screens for lysosomal status and labile iron levels were 
conducted to further characterize hit genes. 
  
(b) Comparison of gene scores in +AO and -AO conditions for CRISPRi survival screens. 
  
(c) Pathway for selenocysteine incorporation into GPX4. Hit genes are highlighted in orange. 
  
(d) Ranked gene scores from the ROS screen and the lipid peroxidation screen. High-signal hits 
are shown in red and low signal hits in blue. Genes discussed in the paper are highlighted in 
orange. 
  
(e) GO term enrichment analysis for the top 100 high-signal and low-signal hits in the ROS 
screen (left) and the lipid peroxidation screen (right). Significantly enriched Biological Process 
terms (FDR<0.01) are shown. 
  
(f) Gene scores from the lysosome and iron secondary screens. Genes are color-coded by 
pathways based on GO annotation. 
  
(g) Heatmap showing gene scores across screens (rows) for genes that are among the top 20 
high-signal or low-signal hits in at least one screen (columns). Rows and columns are 
hierarchically clustered. Genes are color-coded by pathways based on GO annotation. 
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Fig. 3:  Loss of prosaposin induces ROS and lipid peroxidation in neurons and causes 
neuronal ferroptosis in the absence of antioxidants   

  
(a) Prosaposin is processed in the lysosome by cathepsin D (encoded by CTSD) into saposin 
subunits, which function together with GM2A as activators for glycosphingolipid degradation. 
  
(b) Results from the ROS and lipid peroxidation screens, highlighting PSAP and the related 
genes CTSD and GM2A. 
  
(c) Western blot showing the depletion of prosaposin in the PSAP KO iPSC line. 
  
(d) Representative immunofluorescence microscopy images showing the loss of prosaposin in 
PSAP KO neurons. WT and PSAP KO neurons were fixed and stained by antibodies against 
prosaposin (shown in green) and the neuronal marker Tuj1 (shown in purple). Nuclei were 
counterstained by Hoechst, shown in blue. Scale bars, 20 μm. 
  
(e) ROS levels (as indicated by CellRox) and lipid peroxidation levels (as indicated by Liperfluo 
and C11-BODIPY) in WT and PSAP KO neurons, measured by flow cytometry. 
  
(f) ROS levels in iPSCs and HEK293 cells in WT and PSAP KO backgrounds (PSAP KO for 
iPSCs and PSAP knockdown by CRISPRi in HEK293s), measured by CellRox via flow 
cytometry. 
  
(g) Survival curves for WT and PSAP KO neurons cultured in normal neuronal medium (+AO) 
or medium lack of antioxidants (-AO), quantified by imaging using Hoechst stain (all cells) and 
propidium iodide (PI) (dead cells). Survival fraction is calculated as (total cell count - dead cell 
count) /  total cell count. Data is shown as mean +/- sd, n = 4 culture wells per group. 16 imaging 
fields were averaged for each well. 
  
(h) Survival fractions of WT and PSAP KO neurons treated with different cell death inhibitors 
under +AO or -AO conditions, quantified by imaging in the same way as for G. Data is shown as 
mean +/- sd, n = 16 imaging fields per group. 
  
(i) Representative images for the Hoechst (shown in blue) and PI (shown in red) staining in H. 
Scale bars, 50 μm. 
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Fig. 4 (legend overleaf) 
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Fig. 4: Loss of prosaposin disrupts glycosphingolipid degradation, leads to lipofuscin 
formation, iron accumulation and impaired autophagy 

  
(a) Untargeted lipidomics comparing abundances of different lipid species in WT and PSAP KO 
neurons. P values were calculated using two-sided Student’s t-test (n = 3 replicates per group). 
Dashed line, P value cutoff for FDR < 0.01. Glycosphingolipids are shown in orange and ether 
lipids in green. 
  
(b) Heatmap showing the abundances of significantly increased or decreased lipids in PSAP KO 
neurons as compared to WT (FDR < 0.01). Enrichment P values for glycosphingolipids and ether 
lipids were calculated using Fishers exact test. Lipid abundances were Z score-normalized across 
samples. 
  
(c) Representative immunofluorescence microscopy images for WT and PSAP KO neurons 
stained with LAMP2 antibodies (shown in green) and GM1 antibodies (shown in red). Nuclei 
were counterstained by Hoechst, shown in blue. Scale bar, 10 μm. 
  
(d) Representative immunofluorescence microscopy images for WT and PSAP KO iPSCs stained 
with GM1 antibodies (shown in red). Nuclei were counterstained by Hoechst, shown in blue. 
Scale bar, 20 μm 
  
(e,f) Lysotracker signals measured by flow cytometry in WT and PSAP KO neurons (e), WT and 
PSAP KO iPSCs (f, left) and WT (no sgRNA) and PSAP knockdown (PSAP sgRNA) HEK293 
cells (f, right). 
  
(g) Two-color STORM super-resolution images of PSAP KO neurons immunolabeled for 
LAMP2 (shown in green) and GM1 (shown in magenta). Scale bars, 2 μm. 
  
(h) Electron microscopy images for WT and PSAP KO neurons. The red arrow points to a 
representative lipofuscin structure. Scale bar, 1 μm. 
  
(i) Representative images for autofluorescence in WT and PSAP KO neurons. Excitation, UV 
(405 nm). Emission, FITC (525/20 nm). Scale bar, 10 μm. 
  
(j) Labile iron levels in WT and PSAP KO neurons. Neurons were stained with the iron 
indicators FeRhoNox-1 (left) or FerroOrange (right) and fluorescence was measured by flow 
cytometry. 
  
(k) Representative fluorescence microscopy images for WT neurons, PSAP KO neurons, and 
PSAP KO neurons treated with 10 μM DFO for 3 days, stained with Lysotracker (shown in green) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.06.27.175679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175679


and FeRhoNox-1 (shown in red). Nuclei were counterstained by Hoechst, shown in blue. Scale 
bar, 10 μm. 
  
(l) Representative fluorescence microscopy images for WT and PSAP KO neurons under the -
AO condition stained with Lysotracker (shown in green) and Liperfluo (shown in red). Nuclei 
were counterstained by Hoechst, shown in blue. Scale bar, 10 μm. 
  
(m) Western blot showing protein levels of phosphatidylethanolamine (PE)-conjugated LC3B 
(LC3B-II) and unconjugated LC3B (LC3B-I) in WT and PSAP KO neurons in the absence or 
presence of Bafilomycin A1 (BafA1). β-Actin was used as a loading control. Ratios of LC3B-II 
to LC3B-I are indicated at the bottom. 
  
(n) Quantification of LC3B-II / LC3B-I ratios for WT and PSAP KO neurons (mean +/- sd, n = 6 
independent experiments). P value was calculated using Student's t-test. 
  
(o) Representative immunofluorescence microscopy images for WT and PSAP KO neurons, 
stained with LC3B antibodies (shown in red). Nuclei were counterstained by Hoechst, shown in 
blue. Scale bar, 20 μm. 
  
(p) A model for the mechanism linking prosaposin loss to neuronal ferroptosis. Loss of saposins 
blocks glycosphingolipid degradation in the lysosome. The build-up of glycosphingolipids leads 
to lipofuscin formation, which accumulates iron and generates ROS through the Fenton reaction. 
ROS then peroxidize lipids and cause neuronal ferroptosis in the absence of antioxidants. Other 
consequences are cholesterol accumulation and impaired autophagy. 
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Fig. 5 (legend overleaf) 
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Fig. 5: CROP-seq reveals transcriptomic responses to perturbations of neurodegenerative 
disease-associated genes in human iPSC-derived neurons 

  
(a) Hit genes from our screens that are also associated with neurodegenerative diseases were 
targeted in a CROP-seq screen to detect their knockdown or overexpression effects on gene 
expression at single-cell resolution in human iPSC-derived neurons. 
  
(b) Summary of on-target knockdown by CRISPRi (top) or overexpression by CRISPRa (bottom) 
for all target genes in the CROP-seq libraries. log2FC represents the log2 fold change of the 
mean expression of a target gene in perturbed cells (i.e. cells expressing sgRNAs targeting that 
gene) compared to unperturbed cells (i.e. cells expressing non-targeting control sgRNAs). P 
values were calculated by the two-sided Wilcoxon rank-sum test. Target genes are ranked by 
their expression in unperturbed cells. 
  
(c,d) Examples of CROP-seq results showing on-target knockdown (TUBB4A in CRISPRi, c) or 
overexpression (NQO1 in CRISPRa, d) and the classification method, shown in a two-
dimensional UMAP projection. 
  
(e) Pairwise similarities of differentially expressed genes among perturbations. Similarity scores 
were determined by the OrderedList package in R (see Methods). Genes in clusters with high 
similarity are labeled. 
  
(f,g) Eigengene expression of gene modules identified from WGCNA analysis in cells containing 
different perturbations relative to unperturbed cells (f). Enriched pathways in each module are 
shown in g. 
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Fig. 6: Overexpression of NQO1 induces unexpected transcriptome changes in human 
iPSC-derived neurons that provide hypotheses for its toxicity 

  
(a) Transcriptomic changes induced by NQO1 overexpression in neurons. Significantly 
upregulated or downregulated genes (FDR < 0.01) are shown in red or blue, respectively. 
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(b) Pathway analysis showing enriched pathways in upregulated and downregulated genes in 
NQO1-overexpressing neurons. 
  
(c) String-db association networks of selected pathways enriched in upregulated and 
downregulated genes. Genes with stronger associations are connected by thicker lines. Colors 
and sizes of nodes reflect log2-fold changes (log2FCs) and significance (-log10P) of differentially 
expressed genes, respectively. 
  
(d) Hypotheses for potential mechanisms of neurotoxicity of NQO1 overexpression. 
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Fig. 7: CRISPRbrain, a Data Commons for functional genomics screens in differentiated 
human cell types. 

  
(a) CRISPRbrain (https://crisprbrain.org) is a Data Commons organizing results from genetic 
screens for different phenotypes in different human cell types, by different research groups. 
  
(b) Screens can be browsed and searched based on a range of parameters, and full text search. 
  
(c,d) Survival- and FACS-based screens (“simple screens”) can be visualized and explored 
interactively, and compared pairwise. 
  
(e,f) RNA-Seq-based screens can be explored one perturbed gene at a time as MA plots (e), or 
globally in a hierarchically clustered heatmap (f). 
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Extended Data Fig. 1: Karyotyping of the monoclonal CRISPRa-iPSC line, gene paralogs 
in CRISPRi and CRISPRa hits, and comparison of CRISPRi and CRISPRa screen results 
for neuronal survival with other published survival screens for different cell types (related 
to Fig. 1) 

(a) A normal karyotype was confirmed for the monoclonal CRISPRa-iPSC line. 
  
(b) Venn diagrams comparing CRISPRi and CRISPRa screen results for neuronal survival from 
this paper with other published survival screens for different human cell types. For CRISPRi, hit 
genes with toxic phenotypes for the survival of neurons were compared with those for cancer 
cells (‘gold-standard’ essential genes13) and pluripotent stem cells10-12 (genes that were identified 
as essential in more than one studies were retained for comparison). Protective hits for the 
survival of neurons were compared with those for human pluripotent stem cells10,11 (genes that 
were identified as essential in both studies were retained for comparison). For CRISPRa, hits 
were compared with our published survival screen in K562 cells9 reanalyzed using our 
MAGeCK-iNC pipeline. 
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Extended Data Fig. 2: Comparing CRISPRa survival screens in +AO and -AO conditions 
(related to Fig. 2) 

Each dot represents one gene, and its gene score in the +AO screen was plotted on the x-axis and 
gene score in the -AO screen on the y-axis. The Pearson correlation coefficient is shown. 

  

Extended Data Fig. 3 (legend overleaf) 
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Extended Data Fig. 3: Characterization of PSAP KO neurons (related to Fig. 4) 

  
(a) Labile iron levels in WT and PSAP KO neurons with or without DFO treatment. Cells were 
stained by FeRhoNox-1 and fluorescence was quantified by flow cytometry. Median signal 
intensities are indicated. 
  
(b) Labile iron levels in WT neurons, PSAP KO neurons, and PSAP KO neurons with DFO 
treatment. Cells were stained by Calcein and fluorescence was quantified by flow cytometry. 
Median signal intensities are indicated. 
  
(c) Gene expression changes in PSAP KO neurons as compared to WT. Genes that are 
significantly upregulated and downregulated in PSAP KO neurons are shown in red and blue, 
respectively (FDR < 0.05). The top 50 up- and down-regulated genes are labeled, and within this 
set, genes involved in the cholesterol biosynthesis pathway are highlighted in orange. 
  
(d) GO term enrichment analysis for significantly up- and down-regulated genes (FDR < 0.05) in 
PSAP KO neurons. Significantly enriched Biological Process terms are shown (FDR < 0.01). 
  
(e) Cholesterol levels measured by flow cytometry in filipin-stained WT and PSAP KO neurons 
in +AO and -AO conditions. 
  
(f) Representative fluorescence microscopy images of WT and PSAP KO neurons stained with 
filipin (shown in cyan) and LAMP2 antibodies (shown for PSAP KO neurons, in red). Scale bar, 
10 μm. 
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Extended Data Fig. 4. Examples of the CROP-seq classification method, and shared 
transcriptomic signatures of VPS54, PAXIP1, and PON2 knockdown in human iPSC-
derived neurons (related to Fig. 5) 

  
(a,b) CROP-seq examples showing the application of the outlier detection-based classification 
method in cases where two sgRNAs targeting the same gene had heterogeneous efficacy (a, 
SOX5 in CRISPRa) or the expression level of the target gene was too low to quantify knockdown 
level (b, ZNF592 in CRISPRi). 
  
(c)Transcriptomic changes induced by knockdown of VPS54 (left), PAXIP1 (middle), and PON2 
(right) in neurons. For each perturbation, the top 200 upregulated and downregulated genes 
compared to control (i.e. unperturbed cells) are shown in red and blue, respectively. Within this 
set, shared genes among all three perturbations are highlighted in green. 
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Supplementary Figure 1: Gating strategy for FACS-based screens.  

Intact neurons were identified from FSC-SSC plot and then gated for singlets. These cells were 
sorted into high and low signal populations corresponding to the top 40% and the bottom 40% of 
the staining signal distribution. 
 
 

Extended Data Table 1 

  
Untargeted lipidomics data for WT and PSAP KO neurons. P values were calculated using 
Student’s t-test and were corrected for multiple testing using the Benjamini-Hochberg procedure. 
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