Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye ¹Wesley R. Sun, ^{1,2}Sara Ramirez, ¹Kelly E. Spiller, ¹Yan Zhao, ^{1,2}Sabine Fuhrmann* ¹Dept. of Ophthalmology and Visual Sciences; VEI, Vanderbilt University Medical Center; ²Dept. of Cell and Developmental Biology, Vanderbilt University Medical School; Nashville, TN ## Footnote: The authors wish to be known that, in their opinion, the first 2 authors Wesley R. Sun and Sara Ramirez should be regarded as joint First Authors. ## Corresponding author: Sabine Fuhrmann Dept. of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN (in VUIIS), Vanderbilt Eye Institute Research Laboratories Nashville, TN 37232 Phone: 615/936-0621 FAX: 615-936-6410 Email: sabine.fuhrmann@vanderbilt.edu ### **Abstract** Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (1~ in 5,000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggest multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicates that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased RPE proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during optic fissure closure. ### Introduction Congenital ocular malformations such as anophthalmia, microphthalmia and coloboma (MAC) are the cause for over 25% of childhood blindness worldwide (1-3). Uveal coloboma alone may account for up to 10% of childhood blindness, 1~ in 5,000 live birth (4, 5) for reviews, see (6-8); it is most commonly observed as missing tissue in the ventro-nasal region of the eye and originates from a failure in apposition and fusion of the margins of the optic fissure (OF). The OF forms as a ventral groove by asymmetric invagination, extending from the vitreal side to the proximal junction with the forebrain that allows mesenchymal cells to migrate in and form the hyaloid vessel (9-11). Closure of the OF occurs when mesenchymal cells end migration; the laterally growing edges of the retinal pigmented epithelium (RPE) and retina cells lining the OF margins appose to fuse and form a continuous optic cup. Fusion starts at the midpoint of the OF and moves in both directions distally and proximally (9, 12). The etiology of coloboma is complex, and defects result from disturbance of heterogenous genetic and/or environmental factors suggesting multiple mechanisms in regulating the closure process, including cell autonomous and cell non-autonomous tissue interactions. In humans, a subpopulation of colobomata is a result of mutations in developmentally important genes, however, the origins for many OF closure defects are unknown (for reviews, see (3, 7, 8, 13, 14)). Additional genes have been identified in animal models; substantial progress has been made in understanding critical processes, including growth and patterning of the ventral optic cup and optic nerve head (15-19), cell-cell contact and signaling (20-30), crosstalk with migrating hyaloid precursors and extracellular matrix components (31-36), cytoskeleton dynamics (37, 38), epigenetics (39), degradation of ECM and cellular proteins (40-42), programmed cell death, survival and cell proliferation (43, 44) (for reviews, see (7, 8, 13)). Elegant in vivo imaging studies in zebrafish and excellent anatomical analyses in chick have characterized important morphogenetic and cellular behavior (20, 27, 34, 45-49). In addition, comprehensive gene expression analyses have identified novel candidate genes potentially relevant for regulating OF closure (27, 47, 50-52). Gene mutations of Hippo signaling pathway components represent novel associations with coloboma (7, 23, 53, 54). Mutations in the Neurofibromin 2 gene (NF2) result in the autosomal dominant disorder Neurofibromatosis Type 2 (NF2, OMIM # 101000), a relatively rare syndrome characteristic of neoplastic lesions. Human NF2 mutations associate frequently with ocular abnormalities (53, 55-57). Importantly, some patients with loss of NF2 heterozygosity also exhibit coloboma, consistent with Nf2 being identified as a coloboma gene in mouse (53, 58, 59) (this study). The Nf2 gene encodes the FERM domain protein MERLIN, affiliated with Ezrin, Radixin, and Moesin (ERM) proteins. It exerts multiple functions in tumor suppression, development, and regeneration in diverse organs and tissues, for example by restricting proliferation, controlling apoptosis, and promoting differentiation, apicobasal polarity and junctional complex formation (60-62). NF2 localizes primarily to the cell cortex and links the cortical actomyosin cytoskeleton to the plasma membrane. It associates with α -catenin to promote establishment of intercellular junctions and polarity complexes (63). In addition, NF2 can localize to the nucleus and act as a contact-dependent tumor suppressor by inhibiting CRL4DCAF1 ubiquitin ligase (61). Importantly, among other regulatory inputs, NF2 also controls the Hippo pathway to balance organ size, proliferation and behavior of stem cells; it binds to and activates several Hippo pathway components, including the Hippo kinases MST1/2 and LATS1/2 (61, 62). Loss of Hippo signaling leads to nuclear translocation of the transcriptional co-activators YAP/TAZ, often associated with abnormal proliferation in cancer and during development. Human mutations of *YAP* and its transcriptional effector *TEAD* can result in coloboma and the autosomal dominant ocular disorder Sveinsson's chorioretinal atrophy, respectively (SCRA, OMIM # 108985) (54, 64, 65). Recent studies in Drosophila, zebrafish and mouse elucidate functions of Yap/Taz during ocular development, with some aspects of evolutionary conservation (59, 66-71) (for reviews, see (72-74)). Our study focuses on the role of Nf2 during OF closure in mouse. NF2 protein is expressed in developing ocular tissues and is required for development of the lens and the optic cup, particularly of the ciliary margin into ciliary body and iris (58, 59, 75-77). Coloboma occurs upon tissue-specific *Nf2* deletion (58, 59), however, it is unclear how loss of *Nf2* function affects the closure process. Our data demonstrates that *Nf2* disruption results in ectopic proliferation in the RPE layer in the OF region with concomitant maintenance of RPE cell fate. RPE cells in the temporal OF margin maintain columnar organization instead of transitioning to cuboidal shape. In the dorsal RPE of the optic cup, *Nf2* loss of function leads to a substantial increase in cell number, accompanied with local disorganization of cytoskeleton components F-actin and pMLC2. We propose that these abnormalities in the *Nf2* mutant optic cup cause insufficient alignment of the OF margins, resulting in a failure to attach and fuse properly, and, thus, leading to a persistent coloboma. Our analysis provides novel insights into the underlying mechanisms during OF closure as well as into the specific function of Nf2 in this process. 5 Results Loss of Nf2 function leads to a narrow coloboma in the ventral optic cup Germline disruption of the Nf2 gene causes early embryonic lethality before eye development commences (78). Therefore, we conditionally disrupted Nf2 using Rx3-Cre that is constitutively active in the early optic vesicle starting at E8.75 and later in the optic cup in the presumptive retina, RPE and lens vesicle (77, 79, 80). Optic fissure (OF) closure starts at E10.5 and is completed by E12.5, evident by continuous pigmentation in the ventral optic cup at E13.5 (Fig.1A, C). Rx3-Cre-mediated, conditional ablation of Nf2 (hereafter Nf2^{CKO}) results in failure of OF fusion in both eyes of each embryo (E13.5-E17.5; Fig.1B, D; n = 22). In $Nf2^{CKO}$ optic cups, the OF margins are tightly apposed, suggesting a defect during the final process of closing (Fig. 1D). Persistent expression of laminin in the central ventral optic cup confirms failed degradation of the basement membrane between the OF margins (Fig.1F; see Suppl. Fig.1A for sagittal section scheme). We did not observe any coloboma in conditional heterozygous embryos (not shown). Laminin persistence in $Nf2^{CKO}$ shows 100% penetrance in the distal optic cup, close to the ciliary margin, while some can exhibit laminin degradation proximally at E13.5 (33%, 3/9) eyes, n = 7). Thus, coloboma in $Nf2^{CKO}$ eyes is less likely to be a delay in timing since failed closure in the distal and frequently in the proximal region of the optic cup is persistent at later stages. Compared to controls, the RPE layer in Nf2^{CKO} eyes appears slightly darker (Fig.1D, H; Suppl. Fig.1C) and increased in height (Fig.1G, H; insets). In
addition, Nf2^{CKO} embryos display additional, fully penetrant tissue fusion defects in closure of eye lids, lip and palate, as previously observed (Fig.1B; not shown) (58). A 2.4kB human *NF2* promoter element was recently identified to generate a *NF2-lacZ* reporter mouse, showing robust activation specifically in the RPE between E10.5 and E12.5 (81). NF2 protein is transiently expressed in the retina and continuously present in RPE and ciliary margin (59, 75). Nf2 reporter activation and NF2 protein expression in the eye matches expression of the Hippo pathway target YAP. YAP1 protein normally shows cytoplasmic and nuclear localization in developing ocular tissues and in adjacent periocular mesenchyme (54, 59, 68, 72, 82, 83). Consistent with previous studies, we observed YAP1 expression in the cytoplasm and nucleus in retina and RPE during OF closure (Fig.1I, insets I'-I" Suppl. Fig.1F, M). In Nf2^{CKO} optic cups, nuclear localization of YAP can be increased in cells of the RPE, as well as in retina and lens (Fig. 1J, insets J'-J"; Suppl. Fig. 1I, N; E11.0-E11.5; n=9). We quantified nuclear YAP signal intensity, confirming a significant increase in RPE cells adjacent to the OF as well as in the retina of Nf2^{CKO} compared to controls (Fig.1K; Suppl. Fig.1K). Additionally, we calculated area of nuclei and observed no significant difference in the RPE and retina of control and Nf2^{CKO} in E11.5 optic cups (Suppl. Fig.1J, L). The ventral RPE layer in Nf2^{CKO} can appear increased in thickness, possibly due to an increase in cell number and cellular crowding (Suppl. Fig.1G, H, I; see also below Fig.4). In addition, we investigated expression the cell cycle regulatory protein cyclin D1, a direct transcriptional target of YAP/TEAD in other tissues (84). We observed that in mutant RPE, significantly more cells express cyclin D1 in the ventral optic cup (Fig.1M, N). Thus, our data strongly suggest that Nf2 function is required for retention of (phosphorylated) YAP in the cytoplasm during OF closure. # In the ventral optic cup of Nf2^{CKO}, RPE markers persist in the OF Loss of *Nf2* results in increased nuclear YAP localization (Fig.1), and YAP is required and sufficient to control RPE cell fate in zebrafish and mouse (67, 68). Therefore, we analyzed retina and RPE markers in the OF region between E11.5 and E13.5, during and after OF alignment and fusion, respectively (Fig.2). The expression patterns of the pan-ocular paired PAX6 transcription factor (n=3) and retina-specific VSX2 homeodomain transcription factor (n=4) are unchanged in the ventral optic cup of $Nf2^{CKO}$ embryos at E11.5 (Fig.2B, D). Dorsal localization of the T-box transcription factor TBX5 is unaltered in the $Nf2^{CKO}$ optic cup (Fig.2F; n=4, E11.5-E13.5) (85). Similarly, ventral expression of the paired homeodomain transcription factor PAX2, essential for OF closure, is robust in the OF margins in $Nf2^{CKO}$ (Fig.2H). Therefore, general tissue patterning of retina and dorsoventral regionalization is not affected by loss of Nf2 function. The bicoid transcription factor Otx2 is required for RPE cell fate and RPE differentiation at the advanced optic vesicle stage (86, 87). We observed that expression of OTX2 is ectopically maintained in the OF in several E11.5 Nf2^{CKO} embryos (Fig.2J; arrowheads; 57%; n=7). At E13.5 all analyzed eyes showed persistent OTX2 expression in the OF (Fig.2L; arrowheads; 100%; n=4), consistent with extended pigmentation into the OF (Fig.1D, H; Suppl Fig.1C). The bHLH transcription factor MITF, a critical key regulatory factor for RPE cell fate and OF closure (18, 88, 89) is normally present in the approaching OF margins at E11.0 (Suppl Fig.2A; arrowheads) and becomes progressively excluded ventrally during closing at E11.5 (Fig. 2M). At E11.0, MITF protein shows normal localization in the mutant OF (Suppl Fig.2B; n=4). However, at E11.5, MITF-labeled cells extend into the lower (ventral) OF in Nf2^{CKO} optic cups (Fig. 2N; arrows; 100%; n=4), suggesting persistent presence of RPE precursors in the OF. Abnormally upregulated RPE fate in the OF due to FGF pathway deficiency leads to failed OF fusion and YAP can cooperate with Pax transcription factors to promote MITF expression in neural crest progenitors (90-92). Therefore, to test whether excessive Mitf dosage in the OF margins is preventing OF closure, we removed one functional Mitf allele by crossing the Mitf^{Mi} allele into $Nf2^{CKO}$ (89). Normally, heterozygous $Mitf^{Mi/+}$ optic cups are less pigmented (Suppl. Fig.2D). In $Nf2^{CKO}$; $Mitf^{Mi/+}$ optic cups, pigmentation is strongly reduced at E13.5, however, coloboma is still apparent (Suppl Fig.2F, H; n=2). Thus, loss of Nf2 function can result in maintenance of RPE cell fate in the OF margins, however, it may not be the primary cause for defective OF closure in $Nf2^{CKO}$ eyes. # Wnt/β-catenin signaling and apicobasal polarity are unaltered upon loss of Nf2 Others and we have shown that Wnt/ β -catenin signaling is required and sufficient for MITF and OTX2 expression in the mouse optic cup, and RPE-specific β -catenin gene disruption causes coloboma (93-96). However, gain of function of the pathway by disruption of the Wnt/ β -catenin inhibitor Axin2 can also result in coloboma, with persistent expression of MITF and OTX2 (19) similarly to $Nf2^{CKO}$. Importantly, several studies have shown that NF2 can associate with LRP6 and block its phosphorylation resulting in inhibition of Wnt/ β -catenin pathway activation (97). To determine whether Wnt/ β -catenin pathway activity is hyperactivated upon loss of Nf2 function, we utilized a knock-in $Axin2^{LacZ}$ reporter (98). We did not detect obvious changes in $Axin2^{LacZ}$ (β -GAL) expression in $Nf2^{CKO}$ heterozygous for $Axin2^{LacZ}$ (Fig. 2P; n = 5). Additionally, expression of the downstream effector and target LEF1 as an additional readout for pathway activity was not altered (Suppl Fig.2I, J; n = 4). These data indicate that Wnt/ β -catenin pathway activity is not restrained by Nf2 function. NF2 participates in assembly of plasma membrane protein complexes and couples them with the cortical actin cytoskeleton (58, 60, 61, 63). In medaka, reduction of YAP results in decreased tension of the actomyosin network in embryonic tissues (99). Therefore, we reasoned that increased nuclear YAP may promote actomyosin activity in *Nf*2^{CKO} ventral optic cups. Phosphorylated myosin light chain II (pMLC2) is normally localized to the apical RPE surface in the optic cup (Fig.3A) (95, 100). In the mutant ventral RPE, adjacent to the OF, we observed no obvious changes in apical localization of pMLC2 protein (Fig.3B; n=3). Similarly, localization of ZO-1, indicative for intercellular apical junction formation between retina and RPE, is not altered in $Nf2^{CKO}$ (Fig.3D; n=5). NF2 also regulates assembly of adherens junctions (AJ) in the mouse epidermis, linking it to polarity protein complexes (63). However, we observed no change in the distribution of the AJ core protein α -catenin in the OF and apical surfaces (Fig.3E, F; n = 3). In addition, F-Actin localization in the ventral optic cup of $Nf2^{CKO}$ appears normal (Fig.6B, D; E11.0-E11.5; n=7). Thus, loss of Nf2 in the optic vesicle does not interfere with apicobasal polarity, formation of adherens/tight junctions or actomyosin organization in the ventral optic cup during closure of the OF. During OF closure, ventral RPE proliferation is abnormally increased in *Nf2*^{CKO} eyes Depending on the species, OF closure is tightly regulated by a balance of programmed cell death (apoptosis) and proliferation. In zebrafish, apoptosis is not abundant in the ventral optic cup, and cell death or proliferation are not required for OF closure (27, 34, 46, 101, 102). In chick and mammals, retinal apoptosis is prevalent and retinal proliferation is decreased in the vicinity of the OF margins during closure (9, 10, 27, 103-105). Accordingly, abnormal changes in cell number by altered cell death or cell divisions in the optic cup can result in OF closure defects and colobomata (44, 106). Since *Nf2* disruption causes altered apoptosis during neural tube closure (58), we first analyzed programmed cell death using TUNEL labeling. In the ventral optic cup of E11.5 *Nf2*^{CKO} embryos, apoptosis was not significantly altered in the ventral quadrant harboring the OF (V2; Suppl. Fig. 3A-D; see Suppl. Fig. 3C for subdivision scheme). Nuclear localization of YAP can stimulate cell division, and a significant increase in RPE marker-labeled cells and BrdU incorporation in the RPE layer is observed in Nf2^{CKO} using Nestin-Cre (58, 59). However, spatial and temporal information critical for the process of OF closure is lacking; these studies were performed after completion of OF closure, and not regionally correlated with the OF. Thus, we performed a detailed proliferation analysis in Nf2^{CKO} optic cups during OF closure. Phospho-histone H3-labeling to detect proliferating cells in G2/M of the cell cycle revealed an upward trend in the ventral $Nf2^{CKO}$ optic cup that was not significant (Fig.4A-C; E11.5; n=3). However, we observed a small but significant increase of phosphohistone H3-labeled cells in the ventral quadrant that includes the OF region (Fig.4D). Since the number of G2/M cells, particularly in the RPE, was generally very low in the optic cup, we additionally analyzed EdU incorporation (Fig.4E-J). We determined changes in proliferation specifically during the initial alignment of the OF margins, a critical stage for the subsequent attachment and fusion processes during OF closure (E11.0; n=4). The percentage of EdU-labeled cells is significantly increased by 46% in the Nf2^{CKO} RPE (Fig.4F, G). In contrast, no significant change is detectable in the retina (Fig.4G, H). The RPE-specific increase in EdU-labeled cell number is specific for the ventral
portion in Nf2^{CKO} optic cups, by 79% (Fig.4F, I; V1-V3), while the dorsal RPE shows no significant change at this stage (Fig.4F, I). Significantly higher numbers of EdU-labeled RPE cells are observed in all subdivisions of the ventral optic cup, including the optic fissure region (V2; Fig.4J). Consistent with stimulated proliferation, the total number of cells in the ventral optic cup is significantly expanded in Nf2^{CKO} RPE (Suppl. Fig.3E). In summary, our data indicates that Nf2 disruption in the optic vesicle results in abnormally increased RPE proliferation in the ventral optic cup early in the process of OF closure. # Ectopic RPE cell number in the dorsal optic cup of Nf2^{CKO} embryos As described above, we detected no significant increase in the percentage of EdU incorporation in the dorsal $Nf2^{CKO}$ RPE (Fig. 4I). However, we observed supernumerary cells and frequent cellular crowding in the MITF-labeled RPE layer of the dorsal optic cup (Fig. 5B). Quantification of total cell number revealed a robust significant increase by 47% specifically in the dorsal $Nf2^{CKO}$ RPE layer (Fig. 5C; n = 4). In contrast, total cell number in the dorsal retina did not change (Fig.5D). Furthermore, we observed regions with irregular F-actin organization and mis-localization of pMLC2 in the dorsal RPE layer (Fig.5F, H; arrowheads). Abnormally increased number of RPE cells with disorganization of the RPE layer was maintained later at E13.5, using OTX2 as a marker for differentiating RPE cells (Fig.5J; arrowheads). Collectively, our data indicates that ocular Nf2 disruption leads to a significant increase of cell number in the dorsal and ventral RPE layer of the optic cup. This occurs with concomitant acquisition of RPE cell fate and mis-localization of F-Actin and pMLC2. However, size of the $Nf2^{CKO}$ eye is unchanged, since measurement of the ocular diameter in embryos did not reveal a significant difference (Suppl. Fig.3F). # Alignment and cellular height are altered in the OF margins of the Nf2^{CKO} optic cup Early in the process of OF closure in controls, the fissure margins become tightly aligned, shaped with a convex surface toward the basal space (Fig.6A). In the $Nf2^{CKO}$ OF, the shape of the basal surface of the OF margins is convex, similar to controls, however, alignment of the margins is less advanced (Fig.6B). At E11.5, margins in control embryos are well aligned along most of the OF with a flattened basal surface (Fig.6C). In E11.5 $Nf2^{CKO}$ optic cups, we noticed that the shape of the approaching OF margins is consistently altered; the margins maintain a convex shape and the actual extent of contact area between both OF margins is often reduced (Fig.6D). We quantified this by measuring the extent by which the margins become tightly apposed and determined that the OF in $Nf2^{CKO}$ eyes shows a significant reduction (Fig. 6E). We observed a tighter cellular packing and crowding with occasional formation of a double layer in $Nf2^{CKO}$ RPE (Fig.4F). This is most likely caused by increased proliferation particularly in the ventral RPE layer that is continuous with the ventral OF margins (V2; Fig.4J). In addition, we found that the ventral marginal OF layers appears increased in height along the apicobasal axis and columnar in shape, in comparison to the rather cuboidal organization in controls (Fig.6C, D; brackets). We measured the apicobasal height of cells lining each temporal and nasal margin in the ventral OF (Suppl. Fig.3G) and observed a significant increase in cellular height particularly in the temporal OF in $Nf2^{CKO}$ (Fig.6F). In the nasal OF, cell height measurement showed an upward trend that is not significant (Suppl. Fig.3H). These results suggest that, in the absence of Nf2 function, convex shape of the OF margins is maintained, combined with a columnar organization, resulting in insufficient alignment and subsequent failure to fuse. ### Discussion In summary, our results demonstrate that conditional, ocular disruption of the *Nf2* gene at the optic vesicle stage results in a fully penetrant, distally persistent late-stage defect in OF closure in the mouse embryo (see Fig.6G for a proposed summary). *Nf2*^{CKO} eyes show increased nuclear localization of YAP protein in ocular tissues, without apparent defects in formation of junctional complexes or apicobasal polarity in the ventral optic cup. Here we identify expansion specifically of the RPE layer as a unique underlying cause for coloboma. In *Nf2*^{CKO} mutant eyes, more cells in the RPE layer in the ventral optic cup, including in the OF margins, proliferate and acquire RPE fate. In the OF margins, cells extend in height or double up as a second layer, and the RPE layer maintains columnar organization instead of transitioning into cells of cuboidal shape. In addition, in the RPE of the dorsal optic cup, *Nf2* loss of function leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that this specific effect on proliferation in the RPE layer in the *Nf2*^{CKO} optic cup may result in changes in mechanodynamics within the growing optic cup, causing the OF margins to align insufficiently. # Nf2 is required for balancing RPE cell number during OF closure During optic cup morphogenesis, the RPE is required for growth and OF closure; extreme, broad removal of RPE by diphtheria toxin in the early optic cup causes microphthalmia and coloboma (29, 107). Growth of the RPE during eye development is dynamic; proliferation is high in the entire optic vesicle (50-60%) and decreases in the RPE substantially soon after invagination (12-25%) (108-111). During normal OF closure, cell number in the mammalian optic cup is tightly balanced by cell proliferation and programmed cell death (13, 44, 106). Particularly close to the approaching OF margins, proliferation is lower compared to other regions of the optic cup, and deregulated proliferation leads to coloboma (44). This is assumed to prevent cellular crowding in the fissure to allow for cellular reorganization. However, it is unclear from these studies whether cell number specifically in the RPE layer is critical for OF closure (44, 91, 106). *Nf2*^{CKO} eyes exhibit a substantial increase in proliferation in the ventral RPE when the OF margins are approaching (by 79%; Fig.4I), as well as a robust increase of overall cell number in the dorsal RPE. Furthermore, RPE cell expansion is only observed when *Nf2* loss occurs in the optic vesicle and early optic cup, but not at later time points (59)(SR and SF; unpublished observations). This is consistent with the inability of the RPE to renew itself, once differentiation and further maturation commences (112). Few factors have been identified that can promote proliferation and expansion of RPE; these include transgenic hyperactivation of Notch signaling, resulting in microphthalmia and coloboma (29, 113), or loss of factors that normally limit proliferation in the developing RPE, such as the cyclin-dependent kinase inhibitor p27Kip1 or DAPL1 (114-116). Collectively, our analysis reveals a unique role for *Nf2* in regulating closure of the optic fissure by restricting RPE proliferation in the optic cup. # Ectopic cells in the outer layer of the Nf2^{CKO} optic cup acquire RPE fate In the growing optic cup, the presumptive RPE slowly proliferates to maintain a single layer and differentiates into pigmented cells in a central to peripheral and dorsal to ventral gradient, which is tightly coordinated with growth of the neural retina (88, 110, 111). Abnormal increases in proliferation in the presumptive RPE in the early optic cup is usually induced by loss of RPE key regulatory gene function or by direct misexpression of factors stimulating proliferation, for example, by modulation of extracellular matrix molecules, extracellular signaling pathways (e.g. FGF, Wnt, Shh), overexpression of oncogenes and loss of key RPE determination genes (112, 117). Since the presumptive RPE is bipotential at the early optic cup stage, these manipulations result in transdifferentiation of RPE into retina, with concomitant acquisition of neural retinaspecific cell fate and formation of an ectopic retina (for review, see (112)). Our findings are unusual; in $Nf2^{CKO}$ eyes, proliferation of the presumptive RPE is strongly upregulated without inducing transdifferentiation into retina, and more RPE cells are produced. This effect is associated with an increase in nuclear YAP localization, consistent with YAP/TAZ's role in regulating RPE cell fate and differentiation in zebrafish and mouse (59, 66-68). In addition, YAP mutant eyes develop coloboma in zebrafish. Thus, YAP/TAZ likely exerts a dual role in promoting proliferation and differentiation in the presumptive RPE layer in $Nf2^{CKO}$ optic cups. In premigratory neural crest progenitors, YAP cooperates with PAX3 to transactivate Mitf, thus, YAP/TAZ may directly regulate RPE-specific gene expression (92). To further confirm that YAP/TAZ are required for RPE expansion in $Nf2^{CKO}$ embryos, we attempted to block YAP/TEAD interaction by administering Verteporfin; however, this was not successful, possibly due to solubility issues. A recent analysis in mouse revealed that NF2 coordinates later proliferation and differentiation of peripheral retina, ciliary body/iris and RPE by limiting nuclear YAP/TAZ activation (59). Thus, it is very likely that RPE expansion in $Nf2^{CKO}$ eyes is mediated via nuclear translocation of YAP/TAZ and activation of TEAD. ## Coloboma may be due to persistent buckling of the OF margins In $Nf2^{CKO}$ optic cups apposition of both OF margins is significantly decreased; the margins show a higher degree of bending and do not flatten as observed in controls during OF alignment (Fig.6). Although, some optic cups can exbibit fusion at varying degrees proximally close to the optic disc, the OF closure defect in $Nf2^{CKO}$
optic cups is always persistent in the distal optic cup at later stages, excluding a simple delay. While we cannot rule out other potential mechanisms (e.g. constraints provided by the extracellular matrix), our results suggest that over-proliferation in $Nf2^{CKO}$ RPE is likely to be the primary defect. Expanded proliferation may exert a critical mechanical force for promoting tissue buckling, thereby possibly resulting in prolonged convex bending of the OF margins. In a potentially similar scenario, experimentally induced, localized increases in proliferation due to constitutively activated β -catenin can exert mechanical forces to stimulate cortical folding in the embryonic mouse telencephalon (118). Thus, it is possible that similar effects occur on mechanodynamics in the $Nf2^{CKO}$ optic cup. Our observations suggest that shape and organization of the RPE layer may be important for OF closure. RPE morphogenesis during formation of the optic cup is dynamic; RPE cells transition from a pseudostratified columnar epithelium into a single layer of cuboidal cells (for reviews, see (87, 88)). Interestingly, in zebrafish, RPE cells flatten further and expand around the retina in the optic cup, independent of cell proliferation and possibly by recruitment of additional cells into the layer (46, 119) (for review, see(120)). Electron microscopic studies in mouse and hamster suggest that marginal OF cells in the immediate vicinity of the first fusion contact re-orient their polarity during degradation of the basement membrane (9, 10). This is supported by live imaging studies in zebrafish, revealing extensive movements and incorporation of OF marginal cells into retina as well as RPE during closure (34, 49). In Nf2^{CKO} RPE, cells in the temporal OF margin do not properly transition to a cuboidal monolayer at the time of closure (Fig.6F). It is possible that the expansion of Nf2^{CKO} RPE results in cellular packing/crowding, preventing cells from reorienting properly in the OF. This re-arrangement may be necessary to prepare for fusion at the right time. However, we cannot fully exclude that the cells lining the OF harbor a primary intrinsic defect that ultimately prevents proper dissolution of the basement membrane. ### Role of Hippo signaling in OF closure in humans Hippo pathway components have been recently identified as genes with clinical relevance for coloboma (23, 53, 54, 64). Heterozygous loss of function mutations in YAP1 were identified in 2 unrelated families exhibiting coloboma (3). According to previous studies using animal models, YAP1 may be important for regulating RPE cell fate and RPE proliferation during OF closure in humans (67, 68). However, YAP1 is also present in the periocular mesenchyme (Fig.1; (54)), which could be of importance for studies addressing the syndromic occurrence of coloboma. Furthermore, a mutation in the *Tead1* gene causes SCRA, preventing it from interacting with YAP1 (64, 121). SCRA manifests as bilateral stripes of atrophic retina and choroid; however, the contribution of RPE defects in disease pathology is not well understood. The protocadherin FAT1 represents a potential upstream regulator of the Hippo pathway, and it is expressed in the RPE (23). A new clinical syndrome with frequent ocular manifestations, in particular coloboma, is reportedly caused by frameshift mutations in the FAT1 gene that may restrict nuclear localization of YAP. While FAT1 may be critical for cell-cell contact during OF closure, a direct effect on YAP localization was not observed (23). Furthermore, NF2 mutations cause a variety of ocular defects particularly in the RPE; for example, increased pigmentation and combined retinal and RPE hamartomas (53, 122). Importantly, coloboma was observed in NF2 patients with germline nonsense mutations (53). Thus, it is possible that hyperproliferation of the RPE represents an underlying mechanistic cause for some of the observed ocular abnormalities, including coloboma, in individuals with inherited NF2 mutations. ### Material and Methods Mice Animal procedures were approved by the Vanderbilt University Medical Center Institutional and Animal Care and Use Committee. *Nf2*^{lox/lox} mice (77) were crossed with *Rx3-Cre* (80), *Axin2*^{lacZ} (Jax strain #009120); (98)), and *Mitf*^{Mi} (Jax strain #001573 (123, 124)). Mouse lines were maintained in a mixed genetic C57BL/6 and CD-1 background. No ocular or extraocular defects 18 were detected in $Nf2^{lox/+}$: Rx3-Cre eyes, and littermates without Cre allele were used as controls. Some samples were heterozygous for the Axin2^{lacZ} reporter allele, which did not reveal any difference to samples harboring the $Axin2^{wt}$ allele. Some control samples were heterozygous for the Rd8 mutation, and no difference to Rd8 wildtype controls was observed. The Rd8 mutation results from a mutation in the gene Crb1 (125, 126), however, only ocular abnormalities at postnatal ages such as retinal disorganization and photoreceptor degeneration have been observed (127). For timed pregnancies, counting started at day 0.5 when the vaginal plug was detected. Embryonic tissues were genotyped using the following primer combinations (19, 77, 79). The Nf2 primers CTT CCC AGA CAA GCA GGG TTC (forward, P4) and GAA GGC AGC TTC CTT AAG TC (reverse, P5) generate amplicons for wt (305 bp) and lox (442 bp); Rx3-Cre primers: GTT GGG AGA ATG CTC CGT AA (forward) and GTA TCC CAC AAT TCC TTG CG (reverse) produce a 362 bp amplicon; and the Axin2^{lacZ} primers: AAG CTG CGTCGG ATA CTT GAG A (Cs), AGT CCA TCT TCA TTC CGC CTA GC (Cwt), TGG TAA TGC TGC AGT GGC TTG (ClacZ) generate the Axin^{wt} (493 bp) and Axin^{lacZ} amplicons (400 bp). For genotyping of the Mitt^{Mi} allele, tissue samples were processed and genotyped by Transnetyx (Cordova, TN) using Taqman with custom-designed primers: CCTTTCCCATGCTCTTTTCTTGAAG (forward), CTAGCTCCTTAATGCGGTCGTTTAT (reverse), and the following reporter probes to detect the 3-nucleotide mutation: ACGAAGAAGAAGATTTAAC (wildtype allele), AACGAAGAAGATTTAAC (*Mitt*^{Mi} allele). To detect proliferating cells in S-phase of the cell cycle, pregnant dams received intraperitoneal EdU injections of 30 μg/g body weight 2 hours before sacrificing (Thermofisher/Invitrogen, Rockford, IL; #E10187). ## Immunohistochemistry Embryos at the indicated ages were processed as previously described (79). Briefly, embryonic heads were fixed in 4% paraformaldehyde (PFA) for 1 hour, cryoprotected in sucrose, sectioned on a Leica CM1950 cryostat at 12 µm and stored at -80C until further use. For immunohistochemical analysis, sections were processed using antigen retrieval with triton X-100 (0.1%, 1%) and hot citrate buffer pH 6.0. Primary and secondary antibody information is provided in Table 1. Filamentous actin was detected using phalloidin (1:50; Thermo Fisher Scientific, Walham, MA; #A12379). Labeling with WGA-555 (1:200; Thermo Fisher Scientific, Walham, MA; #W32464) was performed prior to antigen retrieval. For detection of apoptotic cells, ApopTag Fluorescein In Situ Apoptosis Detection Kit (EMD Millipore, #S7110) was used according to the manufacturer's instructions. EdU detection was performed using the Click-iT® EdU Imaging Kit (Thermo Fisher Scientific, Walham, MA; #C10637). Sections were counterlabeled with DAPI (Thermo Fisher Scientific, Walham, MA; #D3571) and mounted in Prolong Gold Antifade. A minimum of 3 eyes from 3 different embryos from at least 2 individual litters were analyzed per genotype, time point and marker. Embryo and whole eye images were captured using an Olympus SZX12 stereomicroscope, equipped with the Olympus MicroFire digital microscope camera U-CMAD3. Epifluorescence images were captured using an upright Olympus BX51 microscope (Tokyo, Japan), mounted with an Olympus XM10 camera. For confocal imaging, the ZEISS LSM 880 and 710 systems were used. Images were processed using Fiji (NIH), Adobe Illustrator 2020 and Adobe Photoshop CS6 and 2020 software. ## Quantification analyses For quantification of CCND1-labeled cells, TUNEL, PHH3-labeling, and EdU incorporation, labeled cells were counted in cryostat sections midway through the optic cup (see Suppl. Fig.1A for sagittal section scheme). The optic cup was sub-divided into 6 regions of interest (see Suppl. Fig.3C) allowing comparison of dorsal and ventral individual subdivisions (D1, D2, D3 and V1, V2, V3) as well as combined data subdivisions to generate values for dorsal (D1-D3) and ventral optic cup domains (V1-V3). The percentage of cells was calculated by determining the number of total cells using DAPI-labeled nuclei. Cell diameter measurements were performed on whole eye images (examples are shown in Fig.1C, D) by drawing a horizonal line across the center of the eye globe, measured using Fiji software (NIH). We analyzed a minimum of 6 eyes per genotype from n = 6 embryos (5 independent litters). To calculate the extent of attachment between OF margins, sagittal cryostat sections labeled with Phalloidin were analyzed. Attachment was defined for tightly apposed OF margins enclosing an area with phalloidin labeling apparent mostly as a single border between the OF margins (for examples, see Fig. 3A; Fig.6C, D; Suppl. Fig.3F). No attachment (set as "0") was defined as a distinguishable gap between the two opposing phalloidin-labeled OF margins, with detectable mesenchymal cells present in the OF (for example, see Fig.3B). Attachment of OF margins was measured by drawing a straight vertical line, analyzed using Fiji software. We analyzed 9 eyes; n = 7 embryos from 3 independent litters. Cellular height was calculated using Phalloidin-labeled images and Fiji software. Specifically, a straight line was applied along the apicobasal extent of each cell (Suppl. Fig.3F), and 2-4 cells for each temporal or nasal margin of the OF was measured for each sample. At least 6 eyes from 5 embryos per genotype, from a minimum of 3 independent litters were
analyzed. Statistical analysis was performed using Prism version 8 (Graphpad, San Diego, CA) for 2-Way ANOVA with Sidak's multiple comparison or Student's T-test. Differences were only considered significant when p < 0.05. To quantify nuclear fluorescence intensity, YAP1 immunofluorescence confocal images of E11.5 cryosections midway through the optic cup were taken at 63x magnification. Two images were taken on either side of the optic fissure in the ventral region of the eye for both *Nf*2^{CKO} and control tissue. At least 42 nuclei in the RPE and at least 194 nuclei in RPE + retina combined were analyzed per eye. Three control eyes and four *Nf*2^{CKO} eyes from different embryos were quantified. FIJI software was used to quantify mean nuclear YAP intensity. For quantification, we selected one slice of the z-stack (0.5 μm thickness) that was in the center of the nuclear plane of the optic cup. Background was subtracted using the FIJI rolling ball method. Nuclei in the ventral RPE and retina were manually traced using DAPI-counterstained images and added to the ROI manager. The nuclear ROI traces were then overlaid on their respective YAP1 channel to measure the area, mean intensity, and integrated density of the ROIs. For statistical analysis, average ROI (nuclei) area and average YAP1 integrated density per nuclei were used and unpaired two-tailed Welch's t-tests were performed. ## Acknowledgements The authors thank Katrina Hofstetter and Burns Newsome for technical support and Marco Giovannini, Ed Levine and members of the Levine and Fuhrmann laboratories as well as Jenny C. Schafer for helpful comments. We thank Jin Woo Kim for sharing data, Edward Levine for providing the Mitf^{Mi} allele and Marco Giovannini for providing the conditional Nf2 allele. This work was supported by the National Institutes of Health (R01 EY024373 to S.F, T32 HD007502 Training Grant in Stem Cell and Regenerative Developmental Biology to S.R. Core Grant P30 EY008126); a Catalyst Award to S.F. from Research to Prevent Blindness Inc./American Macular Degeneration Foundation, an unrestricted award to the Department of Ophthalmology and Visual Sciences from Research to Prevent Blindness, Inc.; the Vanderbilt University Medical Center Cell Imaging Shared Resource Core Facility (Clinical and Translational Science Award Grant UL1 RR024975 from National Center for Research Resources). Conflict of Interest statement: None declared. References Morrison, D., FitzPatrick, D., Hanson, I., Williamson, K., van Heyningen, V., Fleck, B., 1 Jones, I., Chalmers, J. and Campbell, H. (2002) National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. Journal of medical genetics, 39, 16-22. 2 Clementi, M., Turolla, L., Mammi, I. and Tenconi, R. (1992) Clinical anophthalmia: an epidemiological study in northeast Italy based on 368,256 consecutive births. Teratology, 46, 551-553. 3 Williamson, K.A. and FitzPatrick, D.R. (2014) The genetic architecture of microphthalmia, anophthalmia and coloboma. European journal of medical genetics, 57, 369- 380. 4 Shah, S.P., Taylor, A.E., Sowden, J.C., Ragge, N.K., Russell-Eggitt, I., Rahi, J.S., Gilbert, C.E. and Surveillance of Eye Anomalies Special Interest, G. (2011) Anophthalmos, 23 microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Investigative ophthalmology & visual science, 52, 558-564. - 5 Maumenee, I.H. and Mitchell, T.N. (1990) Colobomatous malformations of the eye. Trans Am Ophthalmol Soc, 88, 123-132; discussion 133-125. - 6 Chang, L., Blain, D., Bertuzzi, S. and Brooks, B.P. (2006) Uveal coloboma: clinical and basic science update. Current opinion in ophthalmology, 17, 447-470. - George, A., Cogliati, T. and Brooks, B.P. (2020) Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Experimental eye research, 193, 107940. - 8 AS, A.L., Gregory-Evans, C.Y. and Gregory-Evans, K. (2019) An update on the genetics of ocular coloboma. Human genetics, 138, 865-880. - 9 Hero, I. (1990) Optic fissure closure in the normal cinnamon mouse. An ultrastructural study. Investigative ophthalmology & visual science, 31, 197-216. - Geeraets, R. (1976) An electron microscopic study of the closure of the optic fissure in the golden hamster. The American journal of anatomy, 145, 411-431. - O'Rahilly, R. (1983) The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol (Berl), 168, 87-99. - Hero, I. (1989) The optic fissure in the normal and microphthalmic mouse. Experimental eye research, 49, 229-239. - Patel, A. and Sowden, J.C. (2019) Genes and pathways in optic fissure closure. Semin Cell Dev Biol, 91, 55-65. - Reis, L.M. and Semina, E.V. (2015) Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. Birth defects research. Part C, Embryo today: reviews, 105, 96-113. - Bosze, B., Moon, M.S., Kageyama, R. and Brown, N.L. (2020) Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. The Journal of neuroscience: the official journal of the Society for Neuroscience, 40, 1501-1513. - Pillai-Kastoori, L., Wen, W., Wilson, S.G., Strachan, E., Lo-Castro, A., Fichera, M., Musumeci, S.A., Lehmann, O.J. and Morris, A.C. (2014) Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis. PLoS genetics, 10, e1004491. - Wen, W., Pillai-Kastoori, L., Wilson, S.G. and Morris, A.C. (2015) Sox4 regulates choroid fissure closure by limiting Hedgehog signaling during ocular morphogenesis. Developmental biology, 399, 139-153. - George, A., Zand, D.J., Hufnagel, R.B., Sharma, R., Sergeev, Y.V., Legare, J.M., Rice, G.M., Scott Schwoerer, J.A., Rius, M., Tetri, L. et al. (2016) Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness. American journal of human genetics, 99, 1388-1394. - 19 Alldredge, A. and Fuhrmann, S. (2016) Loss of Axin2 Causes Ocular Defects During Mouse Eye Development. Investigative ophthalmology & visual science, 57, 5253-5262. - Gordon, H.B., Lusk, S., Carney, K.R., Wirick, E.O., Murray, B.F. and Kwan, K.M. (2018) Hedgehog signaling regulates cell motility and optic fissure and stalk formation during vertebrate eye morphogenesis. Development, 145. - Hocking, J.C., Famulski, J.K., Yoon, K.H., Widen, S.A., Bernstein, C.S., Koch, S., Weiss, O., Consortium, F.C., Agarwala, S., Inbal, A. et al. (2018) Morphogenetic defects - underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS genetics, 14, e1007246. - Knickmeyer, M.D., Mateo, J.L., Eckert, P., Roussa, E., Rahhal, B., Zuniga, A., Krieglstein, K., Wittbrodt, J. and Heermann, S. (2018) TGFbeta-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol, 8. - Lahrouchi, N., George, A., Ratbi, I., Schneider, R., Elalaoui, S.C., Moosa, S., Bharti, S., Sharma, R., Abu-Asab, M., Onojafe, F. et al. (2019) Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly. Nature communications, 10, 1180. - Smith, R., Huang, Y.T., Tian, T., Vojtasova, D., Mesalles-Naranjo, O., Pollard, S.M., Pratt, T., Price, D.J. and Fotaki, V. (2017) The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. The Journal of neuroscience: the official journal of the Society for Neuroscience, 37, 7975-7993. - Yan, X., Atorf, J., Ramos, D., Thiele, F., Weber, S., Dalke, C., Sun, M., Puk, O., Michel, D., Fuchs, H. et al. (2020) Mutation in Bmpr1b Leads to Optic Disc Coloboma and Ventral Retinal Gliosis in Mice. Investigative ophthalmology & visual science, 61, 44. - Ceroni, F., Aguilera-Garcia, D., Chassaing, N., Bax, D.A., Blanco-Kelly, F., Ramos, P., Tarilonte, M., Villaverde, C., da Silva, L.R.J., Ballesta-Martinez, M.J. et al. (2019) New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Human genetics, 138, 1027-1042. - Hardy, H., Prendergast, J.G., Patel, A., Dutta, S., Trejo-Reveles, V., Kroeger, H., Yung, A.R., Goodrich, L.V., Brooks, B., Sowden, J.C. et al. (2019) Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. Elife, 8. - Sedykh, I., Yoon, B., Roberson, L., Moskvin, O., Dewey, C.N. and Grinblat, Y. (2017) Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Developmental biology, 429, 92-104. - 29 Ha, T., Moon, K.H., Dai, L., Hatakeyama, J., Yoon, K., Park, H.S., Kong, Y.Y., Shimamura, K. and Kim, J.W. (2017) The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep, 19, 351-363. - Liu, C., Widen, S.A., Williamson, K.A., Ratnapriya, R., Gerth-Kahlert, C., Rainger, J., Alur, R.P., Strachan, E., Manjunath, S.H., Balakrishnan, A. et al. (2016) A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Human molecular genetics, 25, 1382-1391. - 31 Bryan, C.D., Casey, M.A., Pfeiffer, R.L., Jones, B.W. and Kwan, K.M. (2020) Optic cup morphogenesis requires neural crest-mediated basement membrane assembly. Development, 147. - 32 Bryan, C.D., Chien, C.B. and Kwan, K.M. (2016) Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis. Developmental biology, 416, 324-337. - James, A., Lee, C., Williams, A.M., Angileri, K., Lathrop, K.L. and Gross, J.M. (2016) The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye. Developmental biology, 419, 262-272. - Gestri, G., Bazin-Lopez, N., Scholes, C. and Wilson, S.W. (2018) Cell Behaviors during Closure of the Choroid
Fissure in the Developing Eye. Front Cell Neurosci, 12, 42. - Carrara, N., Weaver, M., Piedade, W.P., Vocking, O. and Famulski, J.K. (2019) Temporal characterization of optic fissure basement membrane composition suggests nidogen may be an initial target of remodeling. Developmental biology, 452, 43-54. - Sinagoga, K.L., Larimer-Picciani, A.M., George, S.M., Spencer, S.A., Lister, J.A. and Gross, J.M. (2020) Mitf-family transcription factor function is required within cranial neural crest cells to promote choroid fissure closure. Development, 147. - Rainger, J., Williamson, K.A., Soares, D.C., Truch, J., Kurian, D., Gillessen-Kaesbach, G., Seawright, A., Prendergast, J., Halachev, M., Wheeler, A. et al. (2017) A recurrent de novo mutation in ACTG1 causes isolated ocular coloboma. Human mutation, 38, 942-946. - Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O.A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N. et al. (2015) Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet, 23, 292-301. - Turner, K.J., Hoyle, J., Valdivia, L.E., Cerveny, K.L., Hart, W., Mangoli, M., Geisler, R., Rees, M., Houart, C., Poole, R.J. et al. (2019) Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PloS one, 14, e0211073. - Cao, M., Ouyang, J., Guo, J., Lin, S. and Chen, S. (2018) Metalloproteinase Adamts16 Is Required for Proper Closure of the Optic Fissure. Investigative ophthalmology & visual science, 59, 1167-1177. - 41 Tsuji, N., Matsuura, T., Narama, I., Yoshiki, A. and Ozaki, K. (2018) Macrophage-Associated Gelatinase Degrades Basement Membrane at the Optic Fissure Margins During Normal Ocular Development in Mice. Investigative ophthalmology & visual science, 59, 1368-1373. - Pereira Piedade, W., Veith, S. and Famulski, J.K. (2019) Ubiquitin-mediated proteasome degradation regulates optic fissure fusion. Biol Open, 8. - Gath, N. and Gross, J.M. (2019) Zebrafish mab2112 mutants possess severe defects in optic cup morphogenesis, lens and cornea development. Developmental dynamics: an official publication of the American Association of Anatomists, 248, 514-529. - Noh, H., Lee, H., Park, E. and Park, S. (2016) Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development, 143, 461-472. - Heermann, S., Schutz, L., Lemke, S., Krieglstein, K. and Wittbrodt, J. (2015) Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. Elife, 4. - Kwan, K.M., Otsuna, H., Kidokoro, H., Carney, K.R., Saijoh, Y. and Chien, C.B. (2012) A complex choreography of cell movements shapes the vertebrate eye. Development, 139, 359-372. - Picker, A., Cavodeassi, F., Machate, A., Bernauer, S., Hans, S., Abe, G., Kawakami, K., Wilson, S.W. and Brand, M. (2009) Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLoS biology, 7, e1000214. - Bernstein, C.S., Anderson, M.T., Gohel, C., Slater, K., Gross, J.M. and Agarwala, S. (2018) The cellular bases of choroid fissure formation and closure. Developmental biology, 440, 137-151. - Eckert, P., Knickmeyer, M.D. and Heermann, S. (2020) In Vivo Analysis of Optic Fissure Fusion in Zebrafish: Pioneer Cells, Basal Lamina, Hyaloid Vessels, and How Fissure Fusion is Affected by BMP. Int J Mol Sci, 21. - Brown, J.D., Dutta, S., Bharti, K., Bonner, R.F., Munson, P.J., Dawid, I.B., Akhtar, A.L., Onojafe, I.F., Alur, R.P., Gross, J.M. et al. (2009) Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure. Proceedings of the National Academy of Sciences of the United States of America, 106, 1462-1467. - Cao, M., Ouyang, J., Liang, H., Guo, J., Lin, S., Yang, S., Xie, T. and Chen, S. (2018) Regional Gene Expression Profile Comparison Reveals the Unique Transcriptome of the Optic Fissure. Investigative ophthalmology & visual science, 59, 5773-5784. - Richardson, R., Owen, N., Toms, M., Young, R.M., Tracey-White, D. and Moosajee, M. (2019) Transcriptome profiling of zebrafish optic fissure fusion. Sci Rep, 9, 1541. - Chan, C.C., Koch, C.A., Kaiser-Kupfer, M.I., Parry, D.M., Gutmann, D.H., Zhuang, Z. and Vortmeyer, A.O. (2002) Loss of heterozygosity for the NF2 gene in retinal and optic nerve lesions of patients with neurofibromatosis 2. J Pathol, 198, 14-20. - Williamson, K.A., Rainger, J., Floyd, J.A., Ansari, M., Meynert, A., Aldridge, K.V., Rainger, J.K., Anderson, C.A., Moore, A.T., Hurles, M.E. et al. (2014) Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. American journal of human genetics, 94, 295-302. - Painter, S.L., Sipkova, Z., Emmanouil, B., Halliday, D., Parry, A. and Elston, J.S. (2019) Neurofibromatosis Type 2-Related Eye Disease Correlated With Genetic Severity Type. J Neuroophthalmol, 39, 44-49. - Waisberg, V., Rodrigues, L.O.C., Nehemy, M.B., Bastos-Rodrigues, L. and de Miranda, D.M. (2019) Ocular alterations, molecular findings, and three novel pathological mutations in a series of NF2 patients. Graefes Arch Clin Exp Ophthalmol, 257, 1453-1458. - Ragge, N.K., Baser, M.E., Riccardi, V.M. and Falk, R.E. (1997) The ocular presentation of neurofibromatosis 2. Eye, 11 (Pt 1), 12-18. - McLaughlin, M.E., Kruger, G.M., Slocum, K.L., Crowley, D., Michaud, N.A., Huang, J., Magendantz, M. and Jacks, T. (2007) The Nf2 tumor suppressor regulates cell-cell adhesion during tissue fusion. Proceedings of the National Academy of Sciences of the United States of America, 104, 3261-3266. - Moon, K.H., Kim, H.T., Lee, D., Rao, M.B., Levine, E.M., Lim, D.S. and Kim, J.W. (2018) Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Developmental cell, 44, 13-28 e13. - Bretscher, A., Edwards, K. and Fehon, R.G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nature reviews. Molecular cell biology, 3, 586-599. - 61 Cooper, J. and Giancotti, F.G. (2014) Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett, 588, 2743-2752. - Mota, M. and Shevde, L.A. (2020) Merlin regulates signaling events at the nexus of development and cancer. Cell Commun Signal, 18, 63. - Gladden, A.B., Hebert, A.M., Schneeberger, E.E. and McClatchey, A.I. (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Developmental cell, 19, 727-739. - Fossdal, R., Jonasson, F., Kristjansdottir, G.T., Kong, A., Stefansson, H., Gosh, S., Gulcher, J.R. and Stefansson, K. (2004) A novel TEAD1 mutation is the causative allele in Sveinsson's chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Human molecular genetics, 13, 975-981. - Holt, R., Ceroni, F., Bax, D.A., Broadgate, S., Diaz, D.G., Santos, C., Gerrelli, D. and Ragge, N.K. (2017) New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep, 7, 7975. - Asaoka, Y., Hata, S., Namae, M., Furutani-Seiki, M. and Nishina, H. (2014) The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish. PloS one, 9, e97365. - Kim, J.Y., Park, R., Lee, J.H., Shin, J., Nickas, J., Kim, S. and Cho, S.H. (2016) Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Developmental biology, 419, 336-347. - Miesfeld, J.B., Gestri, G., Clark, B.S., Flinn, M.A., Poole, R.J., Bader, J.R., Besharse, J.C., Wilson, S.W. and Link, B.A. (2015) Yap and Taz regulate retinal pigment epithelial cell fate. Development, 142, 3021-3032. - Neal, S.J., Zhou, Q. and Pignoni, F. (2020) STRIPAK-PP2A regulates Hippo-Yorkie signaling to suppress retinal fate in the Drosophila eye disc peripodial epithelium. J Cell Sci, 133. - Zhang, H., Deo, M., Thompson, R.C., Uhler, M.D. and Turner, D.L. (2012) Negative regulation of Yap during neuronal differentiation. Developmental biology, 361, 103-115. - 71 Zhang, T., Zhou, Q. and Pignoni, F. (2011) Yki/YAP, Sd/TEAD and Hth/MEIS control tissue specification in the Drosophila eye disc epithelium. PloS one, 6, e22278. - Lee, M., Goraya, N., Kim, S. and Cho, S.H. (2018) Hippo-yap signaling in ocular development and disease. Developmental dynamics: an official publication of the American Association of Anatomists, 247, 794-806. - Moon, K.H. and Kim, J.W. (2018) Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells, 41, 257-263. - Zhu, J.Y., Lin, S. and Ye, J. (2018) YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol, 234, 246-258. - Huynh, D.P., Tran, T.M., Nechiporuk, T. and Pulst, S.M. (1996) Expression of neurofibromatosis 2 transcript and gene product during mouse fetal development. Cell Growth Differ, 7, 1551-1561. - Wiley, L.A., Dattilo, L.K., Kang, K.B., Giovannini, M. and Beebe, D.C. (2010) The tumor suppressor merlin is required for cell cycle exit, terminal differentiation, and cell polarity in the developing murine lens. Investigative ophthalmology & visual science, 51, 3611-3618. - Giovannini, M., Robanus-Maandag, E., van der Valk, M., Niwa-Kawakita, M., Abramowski, V., Goutebroze, L., Woodruff, J.M., Berns, A. and Thomas, G. (2000) Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes & development, 14, 1617-1630. - McClatchey, A.I., Saotome, I., Ramesh, V., Gusella, J.F. and Jacks, T. (1997) The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes & development, 11, 1253-1265. - Bankhead, E.J., Colasanto, M.P., Dyorich,
K.M., Jamrich, M., Murtaugh, L.C. and Fuhrmann, S. (2015) Multiple requirements of the focal dermal hypoplasia gene porcupine during ocular morphogenesis. Am J Pathol, 185, 197-213. - Swindell, E.C., Bailey, T.J., Loosli, F., Liu, C., Amaya-Manzanares, F., Mahon, K.A., Wittbrodt, J. and Jamrich, M. (2006) Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis, 44, 361-363. - Akhmametyeva, E.M., Mihaylova, M.M., Luo, H., Kharzai, S., Welling, D.B. and Chang, L.S. (2006) Regulation of the neurofibromatosis 2 gene promoter expression during embryonic development. Developmental dynamics: an official publication of the American Association of Anatomists, 235, 2771-2785. - Hamon, A., Masson, C., Bitard, J., Gieser, L., Roger, J.E. and Perron, M. (2017) Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Muller Cells. Investigative ophthalmology & visual science, 58, 1941-1953. - Miesfeld, J.B. and Link, B.A. (2014) Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway. Mechanisms of development, 133, 177-188. - Monroe, T.O., Hill, M.C., Morikawa, Y., Leach, J.P., Heallen, T., Cao, S., Krijger, P.H.L., de Laat, W., Wehrens, X.H.T., Rodney, G.G. et al. (2019) YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis In Vivo. Developmental cell, 48, 765-779 e767. - 85 Cardozo, M.J., Almuedo-Castillo, M. and Bovolenta, P. (2020) Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist, 26, 185-196. - Martinez-Morales, J.R., Rodrigo, I. and Bovolenta, P. (2004) Eye development: a view from the retina pigmented epithelium. BioEssays: news and reviews in molecular, cellular and developmental biology, 26, 766-777. - Moreno-Marmol, T., Cavodeassi, F. and Bovolenta, P. (2018) Setting Eyes on the Retinal Pigment Epithelium. Front Cell Dev Biol, 6, 145. - Bharti, K., Nguyen, M.T., Skuntz, S., Bertuzzi, S. and Arnheiter, H. (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res, 19, 380-394. - Bumsted, K.M. and Barnstable, C.J. (2000) Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Investigative ophthalmology & visual science, 41, 903-908. - 90 Cai, Z., Tao, C., Li, H., Ladher, R., Gotoh, N., Feng, G.S., Wang, F. and Zhang, X. (2013) Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development, 140, 2711-2723. - Chen, S., Li, H., Gaudenz, K., Paulson, A., Guo, F., Trimble, R., Peak, A., Seidel, C., Deng, C., Furuta, Y. et al. (2013) Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell research, 23, 254-273. - Manderfield, L.J., Engleka, K.A., Aghajanian, H., Gupta, M., Yang, S., Li, L., Baggs, J.E., Hogenesch, J.B., Olson, E.N. and Epstein, J.A. (2014) Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest. Cell Rep, 9, 1885-1895. - Fu, X., Sun, H., Klein, W.H. and Mu, X. (2006) Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Developmental biology, 299, 424-437. - Fujimura, N., Taketo, M.M., Mori, M., Korinek, V. and Kozmik, Z. (2009) Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Developmental biology, 334, 31-45. - Hagglund, A.C., Berghard, A. and Carlsson, L. (2013) Canonical Wnt/beta-catenin signalling is essential for optic cup formation. PloS one, 8, e81158. - Westenskow, P., Piccolo, S. and Fuhrmann, S. (2009) Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development, 136, 2505-2510. - 97 Kim, M., Kim, S., Lee, S.H., Kim, W., Sohn, M.J., Kim, H.S., Kim, J. and Jho, E.H. (2016) Merlin inhibits Wnt/beta-catenin signaling by blocking LRP6 phosphorylation. Cell Death Differ, 23, 1638-1647. - Lustig, B., Jerchow, B., Sachs, M., Weiler, S., Pietsch, T., Karsten, U., van de Wetering, M., Clevers, H., Schlag, P.M., Birchmeier, W. et al. (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Molecular and cellular biology, 22, 1184-1193. - Porazinski, S., Wang, H., Asaoka, Y., Behrndt, M., Miyamoto, T., Morita, H., Hata, S., Sasaki, T., Krens, S.F.G., Osada, Y. et al. (2015) YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature, 521, 217-221. - 100 Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T. and Sasai, Y. (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472, 51-56. - 101 Cole, L.K. and Ross, L.S. (2001) Apoptosis in the developing zebrafish embryo. Developmental biology, 240, 123-142. - Lee, J., Lee, B.K. and Gross, J.M. (2013) Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata. Human molecular genetics, 22, 3568-3582. - Bozanic, D., Tafra, R. and Saraga-Babic, M. (2003) Role of apoptosis and mitosis during human eye development. European journal of cell biology, 82, 421-429. - Laemle, L.K., Puszkarczuk, M. and Feinberg, R.N. (1999) Apoptosis in early ocular morphogenesis in the mouse. Brain research. Developmental brain research, 112, 129-133. - Ozeki, H., Ogura, Y., Hirabayashi, Y. and Shimada, S. (2000) Apoptosis is associated with formation and persistence of the embryonic fissure. Current eye research, 20, 367-372. - 106 Kim, T.H., Goodman, J., Anderson, K.V. and Niswander, L. (2007) Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Developmental cell, 13, 87-102. - Raymond, S.M. and Jackson, I.J. (1995) The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Current biology: CB, 5, 1286-1295. - Huang, J., Liu, Y., Oltean, A. and Beebe, D.C. (2015) Bmp4 from the optic vesicle specifies murine retina formation. Developmental biology, 402, 119-126. - Lee, H.Y., Wroblewski, E., Philips, G.T., Stair, C.N., Conley, K., Reedy, M., Mastick, G.S. and Brown, N.L. (2005) Multiple requirements for Hes 1 during early eye formation. Developmental biology, 284, 464-478. - Bodenstein, L. and Sidman, R.L. (1987) Growth and development of the mouse retinal pigment epithelium. I. Cell and tissue morphometrics and topography of mitotic activity. Developmental biology, 121, 192-204. - Stroeva, O.G. and Mitashov, V.I. (1983) Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol, 83, 221-293. - Fuhrmann, S., Zou, C. and Levine, E.M. (2014) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Experimental eye research, 123, 141-150. - Schouwey, K., Aydin, I.T., Radtke, F. and Beermann, F. (2011) RBP-Jkappa-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice. Oncogene, 30, 313-322. - Defoe, D.M., Adams, L.B., Sun, J., Wisecarver, S.N. and Levine, E.M. (2007) Defects in retinal pigment epithelium cell proliferation and retinal attachment in mutant mice with p27(Kip1) gene ablation. Molecular vision, 13, 273-286. - 115 Ma, X., Li, H., Wang, Y., Wang, J., Zheng, Q., Hua, J., Yang, J., Pan, L., Lu, F., Qu, J. et al. (2017) DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation in the retinal pigment epithelium. Human molecular genetics, 26, 1612-1621. - Yoshida, K., Nakayama, K., Kase, S., Nagahama, H., Harada, T., Ikeda, H., Harada, C., Imaki, J., Ohgami, K., Shiratori, K. et al. (2004) Involvement of p27(KIP1) in proliferation of the retinal pigment epithelium and ciliary body. Anat Embryol (Berl), 208, 145-150. - 117 Schmidt, A., Tief, K., Yavuzer, U. and Beermann, F. (1999) Ectopic expression of RET results in microphthalmia and tumors in the retinal pigment epithelium. Int J Cancer, 80, 600-605. - 118 Chenn, A. and Walsh, C.A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 297, 365-369. - 119 Cechmanek, P.B. and McFarlane, S. (2017) Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Developmental dynamics: an official publication of the American Association of Anatomists, 246, 598-609. - Martinez-Morales, J.R., Cavodeassi, F. and Bovolenta, P. (2017) Coordinated Morphogenetic Mechanisms Shape the Vertebrate Eye. Front Neurosci, 11, 721. - Bokhovchuk, F., Mesrouze, Y., Izaac, A., Meyerhofer, M., Zimmermann, C., Fontana, P., Schmelzle, T., Erdmann, D., Furet, P., Kallen, J. et al. (2019) Molecular and structural characterization of a TEAD mutation at the origin of Sveinsson's chorioretinal atrophy. FEBS J, 286, 2381-2398. - Bouzas, E.A., Parry, D.M., Eldridge, R. and Kaiser-Kupfer, M.I. (1992) Familial occurrence of combined pigment epithelial and retinal hamartomas associated with neurofibromatosis 2. Retina, 12, 103-107. - Hertwig, P. (1942) Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z Indukt Abstamm Vererbungsl, 80, 220-246. - Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A. and Arnheiter, H. (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74, 395-404. - Mattapallil, M.J., Wawrousek, E.F., Chan, C.C., Zhao, H., Roychoudhury, J., Ferguson, T.A. and Caspi, R.R. (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Investigative ophthalmology & visual science, 53, 2921-2927. -
126 Chang, B., Hawes, N.L., Hurd, R.E., Davisson, M.T., Nusinowitz, S. and Heckenlively, J.R. (2002) Retinal degeneration mutants in the mouse. Vision Res, 42, 517-525. - Mehalow, A.K., Kameya, S., Smith, R.S., Hawes, N.L., Denegre, J.M., Young, J.A., Bechtold, L., Haider, N.B., Tepass, U., Heckenlively, J.R. et al. (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Human molecular genetics, 12, 2179-2189. # Legends to Figures ### Figure 1 Nf2 disruption in ocular tissues causes coloboma in the embryonic mouse eye. A: Control embryonic head at E13.5. B: Nf2^{CKO} embryos exhibit cleft lip and palate (arrowhead). C: Higher magnification of E13.5 control eye. D: In $Nf2^{CKO}$ embryos at E13.5, the ventral eye shows an OF closure defect with a narrow gap (arrowhead) and the pigment appears slightly darker. E: Immunolabeling for the basement marker laminin in the E13.5 ventral optic cup of controls confirms absence of laminin and successful fusion of the OF region (arrowhead). Sagittal view with nasal orientation to the left. F: Laminin is persistent in the ventral optic cup in E13.5 Nf2^{CKO} embryos indicating failed OF fusion (arrowhead). G: Brightfield image of the ventral optic cup in control showing pigmentation of the RPE in the fused OF (arrowhead). H: In the ventral optic cup of E13.5 Nf2^{CKO} embryos, pigmentation extends into the unfused OF (arrowhead) and the RPE layer appears slightly increased in height. Insets in G, H show magnified regions outlined in boxed area, revealing increased thickness in mutant RPE (H). I: During OF closure at E11.5, YAP1 protein expression can be localized both to the cytoplasm and nucleus in the RPE (arrowheads point to RPE nuclei). J: In Nf2^{CKO} eyes, nuclear YAP1 expression can be increased in retina and RPE (arrowheads display nuclear Yap localization in RPE). RPE in I and J is indicated by dotted lines and sections were counterstained with Dapi (blue). Insets in I and J show enlarged greyscale images of individual cells in the RPE (boxed area). I' and J' display the Dapi channel, I" and J" display the YAP1 channel. Individual nuclei in the insets are outlined by dotted lines. K: YAP1 average integrated density per RPE nuclei shows a significant increase in Nf2^{CKO} compared to control nuclei. L, M: Cyclin D1 (CCND1)-labeled cells are significantly increased in Nf2^{CKO} ventral RPE (M; arrowheads; N). Asterisks in I, J, L, M indicate OF. Data are shown as means \pm s.d., and p values are indicated above the horizontal lines in each graph (significant < 0.05). Statistical analysis was performed using unpaired, two-tailed Student T-test (Welch's correction included for K). Scale bars: 100 µm in E, L; 20 µm in I, J. Figure 2 Analysis of tissue patterning in the $Nf2^{CKO}$ optic cup reveals persistence of RPE markers in the open optic fissure. (A-J, M-P: E11.5; K, L: E13.5) A, B: Expression of the pan-ocular protein PAX6 is unaltered in Nf2^{CKO} eyes (B). Asterisks label overlying OF. C, D: The retina-specific homeodomain protein VSX2 is normally expressed in Nf2^{CKO} eyes (D). E, F: Analysis of TBX5 expression shows normal patterning of the dorsal optic cup in Nf2^{CKO} embryos (F; arrow). G, H: In the ventral Nf2^{CKO} optic cup, the key transcription factor PAX2 is normally localized (H). I, J: Expression of the RPE determination transcription factor OTX2 can be maintained in the open fissure of Nf2^{CKO} eyes (J, arrows). K, L: At E13.5, coloboma is persistent in Nf2^{CKO} embryos and the margins of the unclosed OF are lined with OTX2-positive cells (L, arrows). M, N: The bHLH transcription factor MITF is present in the RPE layer of the optic cup (M). In Nf2^{CKO} embryos, MITF localization extends into the OF (N; arrows). O, P: Axin2 reporter expression, a readout 41 for Wnt/ β -catenin pathway activation, is not altered in the ventral RPE in $Nf2^{CKO}$ optic cups (arrows). Sagittal view with nasal orientation to the left. Scale bars: 100 µm in A, E, G. Figure 3 Apicobasal polarity and intercellular junction assembly are maintained during OF closure in the ventral optic cup in $Nf2^{CKO}$ embryos. (A, B, E, F: E11.5; C, D: E11.0) A, B: Localization of pMLC2 on the apical surface of the RPE layer appears normal in $Nf2^{CKO}$ embryos (B; arrow). Asterisk marks the overlying OF. C, D: Apical distribution of the tight junction component ZO-1 is not affected in the $Nf2^{CKO}$ ventral optic cup (D; arrow). The cadherin associated protein α -catenin shows normal localization in the OF and apical space between retina and RPE in $Nf2^{CKO}$ eyes (F, arrows). Sagittal view with nasal orientation to the left. Scale bars: 20 µm in E, F. ## Figure 4 Proliferation is upregulated in the RPE layer in the $Nf2^{CKO}$ optic cup. (A-D: E11.5; E-J: E11.0) A-B: Phospho-histone H3 (pHH3) labeling (red) of control (A) and $Nf2^{CKO}$ (B) detects ocular cells in G2/M phases of the cell cycle (red). Dapi is used as a nuclear label (blue). Quantification shows that the number of phospho-histone H3-labeled cells is not changed in the ventral optic cup in $Nf2^{CKO}$ eyes (C); however, there is a small significant increase in the ventral-most area that harbors the OF (V2; D). E-J: EdU labeling and quantification. EdU-labeled cells in control (E; green), with nuclear Dapi co-labeling (blue). In the RPE of the $Nf2^{CKO}$ ventral optic cup, the number of EdU-labeled cells is increased (F; arrowheads), in comparison to controls (E, arrowheads). Quantitative analysis of EdU incorporation reveals that the number of cells in S-phase is significantly upregulated specifically in the RPE but not in the retina (G, H). (RPE: control: 19.91% \pm 1.74 s.d.; $Nf2^{CKO}$: 29.07% \pm 4.60 s.d.) The increase in EdU-labeled cell number is significant for the ventral RPE (I; control: 27.82% \pm 5.66 s.d.; $Nf2^{CKO}$: 49.86% \pm 7.10 s.d.), while the dorsal RPE shows no change. Significant stimulation of proliferation in the ventral RPE applies to all regions in the ventral optic cup, including the V2 region harboring the OF (J). Data are shown as means \pm s.d., and p values are indicated above the horizontal lines in each graph (significant < 0.05). Statistical analysis was performed using unpaired, two-tailed Student T-test or 2-Way ANOVA with Sidak's multiple comparison. Images show sagittal view with nasal orientation to the left. Scale bar: 100 µm in A, E. Figure 5 Cell number in the RPE layer is increased in the Nf2^{CKO} dorsal optic cup at E11.0. A, B: MITF labeling reveals increased RPE layer thickness in Nf2^{CKO} (B; arrowheads point to ectopic RPE cells located apically). C, D: Quantification indicates a significant increase in total cell number in the dorsal RPE in $Nf2^{CKO}$ (C; see Suppl. Fig.3C for subdivisions; control: 183.75 ± 15.13 s.d.; $Nf2^{CKO}$: 271.00 ± 10.42 s.d.), while cell number is unchanged in the dorsal retina (D). Data are means \pm s.d., Student's T-test was applied for statistical analysis, and p values are indicated on the horizontal lines in each graph (significance < 0.05). F: Phalloidin-labeling reveals irregularities in localization in the dorsal RPE layer in Nf2^{CKO} (arrowheads). H: In addition, mis- localization of pMLC2 is detectable in the dorsal RPE layer in Nf2^{CKO} optic cups (arrowheads). I, 43 J: OTX2 labeling shows that supernumerary cells persist in the dorsal optic cup at E13.5 (J; arrowheads). Scale bars: 50 µm in A, I. Figure 6 Rx3-Cre-mediated disruption of Nf2 results in defective alignment of OF margins during the closure process. A-D: F-actin localization in the OF at E11.0 (A, B) and at E11.5 (C, D) in control (A, C) and Nf2^{CKO} optic cups (B, D). A: In E11.0 control embryos, the OF margins become tightly aligned, shaped with a convex surface toward the basal space (arrowheads). B: In the Nf2^{CKO} OF, shape of the basal surface of the OF margins is convex, similar to controls, however, alignment of the margins is less advanced (B, arrowheads). At E11.5, the OF margins in controls are well aligned along most of the OF with flattened basal surfaces (C, arrowheads). The RPE layer consists of cuboidal cells (bracket). D: In $Nf2^{CKO}$ eyes, the OF margins align only partially (arrowheads), exhibit convex shape, and OF cells continuous with the RPE layer show increased height in the apicobasal axis, thereby appearing columnar (bracket). E: Quantification of aligned OF margins. Extent of attached margins was measured in the OF, as outlined in representative examples shown in C, D for aligned OF between arrowheads. In Nf2^{CKO}, few margins show close alignment, which is often much reduced, compared to controls (lack of alignment defined = 0). Data are means \pm s.d. and Student's T-test was applied for statistical analysis. F: Analysis of cellular height along the apicobasal axis of cells lining the ventral OF margins (see brackets in C, D; Suppl. Fig. 3G) reveals significantly increased cellular height in the temporal OF margin. Statistical analysis was performed using nested T-test, data are means (with minimal and maximal points). P values are indicated on the horizontal lines in each graph (E, F). G: Proposed model summarizing our observations, for explanation, see text (left: control optic cup; right: Nf2^{CKO}). The arrows point to potential effects of RPE hyperproliferation on the mechanodynamics of optic cup growth and apposition of OF margins. Sagittal view with nasal orientation to the left. (NR: neural retina, L: lens, N: nasal, T: temporal) Scale bars: 50 µm in A, C. Supplemental Figure 1 A: Cartoon of scheme for sagittal sections. B, C: Low magnification images of E13.5 bright field of control eye (B) and Nf2^{CKO} optic cup (C). In Nf2^{CKO} optic cups, pigmentation extends deep into the unfused OF (C; arrowhead) and the RPE appears darker (C; arrow; compare with B). D, G: WGA labeling of the cell membrane demonstrates
that cells in the E11.5 optic cup have little cytoplasm (Blue: Dapi). E, H: DAPI-stained nuclei were outlined in the RPE (yellow outlines) and the retina (not shown). F, I: Nuclei outlines (yellow) from E, H were overlayed on YAP1stained images as ROIs and used for quantification. J: Average RPE nuclei (ROI) area demonstrate no difference between control and Nf2^{CKO} nuclei. K: Average integrated density quantification in the RPE and retina combined displays significantly increased nuclear localization in Nf2^{CKO} compared to control. L: Average nuclei area in the RPE and retina combined demonstrates no difference between control and Nf2^{CKO} nuclei. Data are shown as means \pm s.d., and p values are indicated above the horizontal lines in each graph (significant < 0.05). Statistical analysis was performed using unpaired, two-tailed Student T-test (Welch's correction included for J-L). M, N: Lower magnification of YAP1 immunolabeling in E11.5 control and Nf2^{CKO} embryos. YAP1 labeling in the lens and retina of controls (M; arrowheads). In $Nf2^{CKO}$, YAP1 is detectable in nuclei of cells in the lens, retina, and RPE (N; arrowheads). Asterisks in D-I, M, N indicate OF. 45 Scale bars: 100 μm in B, C; 20 μm in D-I, 50 μm in M, N. Supplemental Figure 2 Investigation of MITF protein localization and Mitf function in *Nf2*^{CKO} eyes. A, B: At E11.0, MITF expression appears similar in the closing OF in control (A) and *Nf2*^{CKO} eyes (B; arrowheads). Arrow in B points to MITF expression in the periphery. C-H: Mitf haploinsufficiency does not rescue coloboma in the *Nf2*^{CKO} optic cup. C, D: In control eyes, removal of one Mitf allele results in reduction of pigmentation (D). G: Sagittal view of *Nf2*^{CKO} optic cup showing persistent laminin expression ventrally (also shown in Fig. 1F at higher magnification). In *Nf2*^{CKO}; *Mitf*^{Mi+/-} optic cups, OF closure is not prevented, confirmed by persistence of laminin expression in the ventral optic cup (H). I, J: Analysis of LEF1 protein expression shows no change in the mutant RPE in the ventral optic cup (J). Arrowheads (E, F) and asterisks (A, B, G, H, I, J) label the OF. Sagittal view with nasal orientation to the left. Scale bars: 50 μm in A, I, 200 μm in C, G. ## Supplemental Figure 3 Analysis of apoptosis, eye diameter and height measurements in the RPE in $Nf2^{CKO}$ optic cups. A-D: TUNEL-labeled cells in the OF in E11.5 controls (A; arrows) and in $Nf2^{CKO}$ (B; arrows). Asterisks mark the overlying optic fissure. C: Scheme of subdivisions used for quantification in the optic cup. D: Quantification of TUNEL-labeled cells shows no significant change in $Nf2^{CKO}$ optic cups. E: The total number in ventral regions was quantified at E11.0 using Dapi labeling (see scheme in C). V1+3 contains counts of the two ventrolateral compartments and shows a significant increase in total cell number in $Nf2^{CKO}$. V1-3 shows cell number counts for all three ventral regions combined. The region harboring the OF (V2) can exhibit a clear gap in $Nf2^{CKO}$ optic cups, therefore, the cell number can be underestimated. However, the total cell number shows still a significant increase, when V2 is included. F: No significant difference of the eye diameter is detectable between controls and Nf2^{CKO} embryos. G: Example for measuring the apicobasal height of RPE cells in the nasal and temporal OF margins during alignment (E11.5). Measurements were performed using ImageJ. Asterisks mark the overlying optic fissure. H: Nested T-test analysis reveals no significant change in cellular height along in the apicobasal axis in cells lining the nasal OF margins in Nf2^{CKO} embryos. Data are means (with minimal and maximal points). Statistical analysis for data shown in D and F was performed using Student T- test and in E using 2-Way ANOVA with Sidak's multiple comparison. Data are means \pm s.d., and p values are indicated above the horizontal lines in each graph. Sagittal view with nasal 47 orientation to the left. Scale bars: 100 µm in B, C. Table 1: Antibodies used in this study | Primary Antibodies | Dilution | Supplier, Product Number | |------------------------------|----------|--| | α-catenin | 1:2,000 | Sigma; St. Louis, MO; #C2081 | | β-galactosidase | 1:5,000 | Cappel; MP Biomedicals, Aurora, OH; #55976 | | CCND1 | 1:600 | Abcam; Cambridge MA, USA; #16663 | | phospho-histone H3 | 1:1,000 | EMD Millipore; Billerica, MA; #06-570 | | laminin | 1:2,000 | Abcam, Cambridge MA, USA; #ab30320 | | LEF1 | 1:125 | Cell Signaling; Danvers, MA; #2230 | | MITF | 1:800 | Exalpha; Shirley, MA; # X1405M | | OTX2 | 1:1,500 | EMD Millipore,;Temecula; #AB9566 | | OTX2 | 1:700 | R&D Systems; Minneapolis, MN; #AF1979 | | PAX2 | 1:800 | BioLegend; San Diego, CA; #901001 | | PAX6 | 1:500 | BioLegend; San Diego, CA; #901301 | | phospho-Myosin Light Chain 2 | 1:80 | Cell Signaling; Danvers, MA; #3674 | | TBX5 | 1:200 | Novus Biologicals; Centennial, CO; NBP183237 | | VSX2 | 1:800 | Exalpha; Shirley, MA; #X1180P | | YAP1 | 1:100 | Cell Signaling, Danvers; MA; #14074 | | ZO1 | 1:100 | Thermo Fisher Scientific; Walham, MA; #40-2200 | | WGA-555 | 1:200 | Thermo Fisher Scientific; Walham, MA; #W32464 | | Secondary Antibodies | | | | donkey anti-mouse Alexa | 1:1,000 | Jackson ImmunoResearch; West Grove, PA; #715- | |---------------------------------|---------|--| | Fluor®594 | | 585-150 | | donkey anti-mouse Alexa | 1:800 | Thermo Fisher Scientific; Walham, MA; #A31571 | | Fluor647 | | | | goat anti-mouse Alexa Fluor647 | 1:1,000 | Thermo Fisher Scientific; Walham, MA; #A32728 | | donkey anti-rabbit Alexa | 1:1,000 | Jackson ImmunoResearch; West Grove, PA; #711- | | Fluor®488 | | 545-152 | | donkey anti-rabbit Alexa | 1:1,000 | Jackson ImmunoResearch; West Grove, PA; #711- | | Fluor®594 | | 585-152 | | goat anti-rabbit Alexa Fluor568 | 1:1,000 | Thermo Fisher Scientific; Walham, MA; #A11036 | | donkey anti-goat Alexa | 1:800 | Thermo Fisher Scientific; Walham, MA; #A110357 | | Fluor568 | | | | donkey anti-goat TRITC | 1:800 | Jackson ImmunoResearch; West Grove, PA; #705- | | | | 025-147 | | donkey anti-sheep Cy™3 | 1:800 | Jackson ImmunoResearch; West Grove, PA; #713- | | | | 165-003 | ### **Abbreviations** AJ: Adherens junctions Axin2: Axis inhibition protein 2 BHLH: Basic helix-loop-helix BrdU: Bromodeoxyuridine CCND1: Cyclin D1 Crb1: Crumbs family member 1 DAPI: 4',6-diamidino-2-phenylindole DAPL1: Death associated protein-like 1 DCAF1: DDB1 and CUL4 associated factor 1 ECM: Extracellular matrix ERM: Ezrin, radixin, and moesin FAT1: FAT atypical cadherin 1 FERM: Ezrin, radixin, and moesin FGF: Fibroblast growth factor LATS1/2: Large tumor suppressor 1/2 LEF1: Lymphoid enhancer binding factor 1 LRP6: Low density lipoprotein receptor-related protein 6 MAC: Microphthalmia, anophthalmia and coloboma MITF: Microphthalmia associated transcription factor MST1/2: Macrophage stimulating 1/2 NF2 (disorder): Neurofibromatosis Type 2 NF2 (gene): Neurofibromin 2 OF: Optic fissure Otx2: Orthodenticle homeobox 2 PAX2: Paired box 2 PAX6: Paired box 6 PFA: Paraformaldehyde PHH3: Phospho-histone H3 pMLC2: Phospho-myosin light chain II PORCN: Porcupine Rd8: Retinal degeneration 8 RPE: Retinal pigmented epithelium SCRA: Sveinsson's chorioretinal atrophy TAZ: Tafazzin TBX5: T-box 5 TEAD: TEA domain family member TFAP2A: Transcription factor AP-2 Alpha TRITC: Tetramethylrhodamine TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling VSX2: Visual system homeobox 2 WGA: Wheat Germ Agglutinin Wnt: Wingless-type YAP: Yes-associated protein ZO-1: Zonula occludens-1